吳嬋,陳曄
(1.長沙理工大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 長沙,410114;2.湖南文理學(xué)院 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 常德,415000)
帶漂移布朗運(yùn)動的一個局部時的Laplace變換
吳嬋1,陳曄2
(1.長沙理工大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 長沙,410114;2.湖南文理學(xué)院 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 常德,415000)
在Borodin和Salminen(2002)文獻(xiàn)中有關(guān)帶漂移布朗運(yùn)動占位時的Laplace變換結(jié)果的基礎(chǔ)上,運(yùn)用Li等(2014)計(jì)算局部時的方法,推出了帶漂移布朗運(yùn)動在獨(dú)立指數(shù)時間eq前,及停留在0處的局部時的Laplace變換表達(dá)式。當(dāng)μ=0時,本文結(jié)果與標(biāo)準(zhǔn)布朗運(yùn)動的結(jié)果吻合。
局部時;Laplace變換;帶漂移的布朗運(yùn)動
局部時和占位時是隨機(jī)過程理論研究的2個熱點(diǎn)問題,它們在風(fēng)險理論和金融模型中有廣泛應(yīng)用。占位時是隨機(jī)過程在一個特定區(qū)間內(nèi)逗留的時間總和,而局部時是其相關(guān)的占位密度。計(jì)算占位時的Laplace變換的表達(dá)式主要有3種方法,經(jīng)典的方法是通過Feynman-Kac公式[1-2]得到過程對應(yīng)的隨機(jī)微分方程,從而得到相應(yīng)的占位時的Laplace變換的表達(dá)式[3]。Landriault等[4-5]采用了逼近占位時的方法并結(jié)合游弋理論,得到了譜負(fù)Lévy過程的占位時Laplace變換[6]。為了克服隨機(jī)過程路徑的無變差性,Li和Zhou[7]首次運(yùn)用泊松過程的性質(zhì),將計(jì)算譜負(fù)Lévy過程的聯(lián)合占位時的Laplace變換問題轉(zhuǎn)化為求某個隨機(jī)事件的概率問題[8]。目前,對隨機(jī)過程的局部時的Laplace變換的研究還比較少。
本文在文獻(xiàn)[9]的有關(guān)帶漂移布朗運(yùn)動在隨機(jī)指數(shù)時間eq之前,停留在區(qū)間(0,a)上的占位時表達(dá)式的基礎(chǔ)上,運(yùn)用文獻(xiàn)[10]中求局部時的方法,通過對過程占位時的 Laplace變換求極限,得到過程停留在0處的局部時的Laplace變換表達(dá)式。本文得到了局部時的Laplace變換表達(dá)式。
設(shè)Xt=μt+Wt是帶漂移布朗運(yùn)動[9],其中漂移系數(shù)μ∈ R,Wt是一維標(biāo)準(zhǔn)布朗運(yùn)動。帶漂移布朗運(yùn)動在獨(dú)立指數(shù)時間eq之前,停留在區(qū)間(0,a)上占位時的Laplace變換表達(dá)式[9]為
其中,eq是強(qiáng)度為q的指數(shù)隨機(jī)變量,與過程X獨(dú)立,且
運(yùn)用文獻(xiàn)[10]中求局部時的方法,通過對帶漂移布朗運(yùn)動占位時的 Laplace變換表達(dá)式取極限,得到局部時的Laplace變換表達(dá)式。
[1]Pitman J,Yor M.Laplace transforms related to excursions of a one-dimensional diffusion [J].Bernoulli,1999:249-255.
[2]Pitman J,Yor M.Hitting,occupation and inverse local times of one-dimensional diffusions:martingale and excursion approaches [J].Bernoulli,2003,9:1-24.
[3]Cai N,Chen N,Wan X.Occupation times of jump-diffusion processes with double exponential jumps and the pricing of options [J].Math Oper Res,2010,35:412-437.
[4]Asmussen S,Taksar M.Controlled diffusion models for optimal dividend payout [J].Insur Math Econ,1997,20:1-15.
[5]Landriault D,Renaud J F,Zhou X.Occupation times of spectrally negative Lévy processes with applications [J].Stochastic Process Appl,2011,121:2 629-2 641.
[6]Li Y,Wang S,Zhou X,et al.Diffusion occupation time before exiting [J].Front Math China,2014,9:843-861.
[7]Li Y,Zhou X.On pre-exit joint occupation times for spectrally negative Lévy processes [J].Stat Probab Lett,2014,94:48-55.
[8]Chen Y,Yang X,Li Y,et al.A joint Laplace transforms for diffusion for pre-exit diffusion of occupation times [J].Acta Math,2016:1-17.
[9]Borodin,A N,Salminen P.Handbook of Brownian Motion-Facts and Formulae [M].2nd edition.Basel:Birkh?user Verlag,2002:261-262.
[10]Li Y,Zhou X,Zhu N.Two-sided discounted potential measures for spectrally negative Lévy processes [J].Stat Probab Lett,2015,100:67-76.
(責(zé)任編校:劉剛毅)
Laplace transform of one local time on brownian motion with drift
Wu Chan1,Chen Ye2
(1.College of Mathematics and Statistics,Changsha University of Science and Technology,Changsha 410114,China;2.College of Mathematics and Computational Science,Hunan University of Arts and Science,Changde 415000,China)
On the basis of the results in Borodin and Salminen(2002),the approach in Li et al.(2014)is adopted to consider the local time at 0 before independent exponential timeeq,and the Laplace transform of local time on Brownian motion with drift is obtained.The result is.Whenμ=0,the result consists with classical result of Brownian motion.
local time;Laplace transform;brownian motion with drift
O 211.6
A
1672-6146(2017)02-0009-03
吳嬋,1003011369@qq.com。
2017-01-20
國家自然科學(xué)基金(11571052,11171044);湖南省自然科學(xué)基金(2016JJ4061);湖南省研究生科研創(chuàng)新項(xiàng)目(CX2016B417);湖南文理學(xué)院科學(xué)研究項(xiàng)目(15ZD05)。
10.3969/j.issn.1672-6146.2017.02.003