孫淑豪 胡彥如 余迪求
摘要: HDACs(Histone deacetylase)家族蛋白質(zhì)負(fù)責(zé)組蛋白H3K4和H4K19脫乙酰化,并參與植物生長和應(yīng)激反應(yīng)的信號轉(zhuǎn)導(dǎo)過程。茉莉酮酸酯Jasmonates(JA)是一種重要的天然植物激素,不僅調(diào)節(jié)植物生長和發(fā)育而且還參與植物對多種逆境脅迫響應(yīng)的信號轉(zhuǎn)導(dǎo)和調(diào)控過程。但是,HDACs在植物中參與JA信號轉(zhuǎn)導(dǎo)的具體機(jī)制目前還不是很清楚。該研究以HDA19(Histone deacetylase 19)為對象,探討了HDACs在植物JA信號轉(zhuǎn)導(dǎo)中的功能和作用。結(jié)果表明:HDA19的TDNA插入純合突變體在JA處理?xiàng)l件下沒有出現(xiàn)明顯的JA根長反應(yīng)。在相同處理?xiàng)l件下,hda19的不同突變體株系與相同生態(tài)型背景的野生型植株(WT)花色素苷含量無顯著差異,但下游JAZ1、VSP1等JA信號通路的標(biāo)記基因都顯著上調(diào)表達(dá)。同時(shí),hda19相比于WT對真菌Botrytis cineara的抗性顯著增強(qiáng),且hda19中下游基礎(chǔ)防御標(biāo)記基因PDF1.2、Thi2.1、ERF1等的表達(dá)水平顯著高于WT。基于上述研究結(jié)果,該研究認(rèn)為HAD19通過JA信號通路負(fù)調(diào)控?cái)M南芥對真菌B. cineara的防御反應(yīng)。
關(guān)鍵詞: HDA19, JA, Botrytis cineara, 生物脅迫
中圖分類號: Q945.78
文獻(xiàn)標(biāo)識碼: A
文章編號: 10003142(2017)11135513
Abstract: HDACs (Histone deacetylase) family proteins are responsible for the deacetylation of histones H3K4 and H4K19 and are involved in signal transduction processes of plant growth and stress. Jasmonates(JA) is an important natural plant hormone that not only regulates plant growth and development but also participates in the process of signal transduction and regulation of plant responses to multiple stress conditions. However, the specific mechanism by which HDACs participate in JA signal transduction is not very clear. We investigated the function and role of HDACs in plant JA signal transduction with HDA19 (Histone deacetylase 19). In this study, we found that the HDA19 TDNA insertion homozygous mutant did not show a significant JA root length response treated by MeJA. Under the same conditions, there was no significant difference in anthocyanin content between different mutant lines of hda19 and WT plants of the same ecotype background. However, JAZ1, VSP1 and other downstream JA signaling pathway marker genes were significantly upregulated expression. At the same time, the resistance of hda19 to fungi Botrytis cineara was significantly enhanced compared with WT, and the expression levels of basic defense marker genes PDF1.2, Thi2.1 and ERF1 were significantly higher than WT in hda19. Based on these results, we believe that HAD19 negatively regulates Arabidopsis thaliana defense against Botrytis cineara via JA signaling pathway.
Key words: HDA19, JA, Botrytis cineara, biological stress
在自然界中,植物不僅受到非生物條件,如干旱、寒冷、冷凍、高溫和洪水的威脅;而且還受到病毒、細(xì)菌、真菌和昆蟲等病原體引起的生物脅迫的侵害。在長期的進(jìn)化過程中,植物和病原體不斷相互適應(yīng),使植物進(jìn)化出一系列防御措施來抵抗病原體的侵染。植物針對細(xì)菌或真菌病原體的免疫應(yīng)答,主要通過依賴于一組病原體相關(guān)分子模式(pathogen associated molecular pattern, PAMP)的模式識別受體(pattern recognition receptor,PRR)來識別保守的病原體信號分子(Boller & He,2009)。 PTI(PAMPtriggered immunity)抗性病毒病原體的功能已在哺乳動物細(xì)胞中得到報(bào)道,但在植物中尚未完全了解(Calil & Fontes,2016)。然而,最近的幾項(xiàng)研究發(fā)現(xiàn)了PTI和其相關(guān)成分也參與植物抗病毒防御反應(yīng)的證據(jù)(Korner et al,2013;Nicaise,2014;Iriti & Varoni,2015;Calil & Fontes,2016;Nicaise & Candresse,2016;Niehl et al,2016)。一般來說,植物主要基于RNA或蛋白質(zhì)介導(dǎo)病毒病原體觸發(fā)的防御反應(yīng)的。其中,主要涉及宿主RNA介導(dǎo)的RNA沉默途徑的抗性反應(yīng),這是病毒侵入觸發(fā)的基礎(chǔ)防御反應(yīng),這個(gè)途徑通過對病毒RNA的切割達(dá)到抗病毒侵染植物體的目的。除了這種基礎(chǔ)防御反應(yīng)外,還有宿主抗性(R)蛋白介導(dǎo)的針對病毒病原體的防御反應(yīng),這條途徑能在大多數(shù)情況下限制病毒復(fù)制和傳播(Zhou & Chai,2008;Verlaan et al,2013;Nakahara & Masuta,2014)。 R基因介導(dǎo)效應(yīng)物觸發(fā)的免疫(effectortriggeredimmunity, ETI)是PTI的高度擴(kuò)增版本(Jones & Dangl,2006)。 PTI和ETI的開放轉(zhuǎn)導(dǎo)可激活下游如茉莉酸(JA)、水楊酸(SA)、乙烯(ET)等信號通路,調(diào)節(jié)免疫相關(guān)基因表達(dá),達(dá)到幫助植物預(yù)防病原體感染的目的。
由脂質(zhì)衍生的植物激素茉莉酮酸酯Jasmonates(JAs)不僅響應(yīng)于植物生長和發(fā)展,同時(shí)也參與病原體和草食動物的防御反應(yīng)。生物脅迫或非生物脅迫將促使植物茉莉酮酰L異亮氨酸(JAIle)含量的升高,被其共受體COI1JAZ所感知,隨后通過SCFCOI126S蛋白酶體途徑降解抑制子JAZs蛋白(Xu et al, 2002;Chini et al,2007;Thines et al,2007;Yan et al,2009; Sheard et al,2010)。JAZs蛋白,具有Jas和ZIM結(jié)構(gòu)域,通過與廣泛的轉(zhuǎn)錄因子相互作用負(fù)調(diào)節(jié)茉莉酮酸信號; JAZs降解使這些調(diào)控因子釋放,隨后激活下游生長發(fā)育和應(yīng)激反應(yīng)相關(guān)的響應(yīng)基因等下游信號。在這些下游調(diào)節(jié)因子中,bHLH家族轉(zhuǎn)錄因子JASMONATE INSENSITIVE1(JIN1/MYC2),MYC3和MYC4是JAZ蛋白質(zhì)的直接靶標(biāo),調(diào)控例如抑制根伸長和防御反應(yīng)等過程(Boter et al,2004;Lorenzo et al,2004;Chini et al,2007;Dombrecht et al,2007;Fernández-Calvo et al,2011)。此外,JA還負(fù)責(zé)植物繁殖、其他生長和發(fā)育過程;包括側(cè)向和不定根形成,雄性能育性,花青素積累,種子萌發(fā),葉片衰老,以及腺毛狀體、樹脂管和蜜腺的形成(Wasternack & Hause, 2013;Campos et al,2014;Kazan,2015;Wasternack & Strnad,2016;Staswick et al,1992;Feys et al,1994;Pauwels et al,2010;Mcconn & Browse,1996;Sanders et al,2000;Stintzi & Browse,2000;Cheng et al,2009;Franceschi & Grimes,1991;Shan et al,2009;Ueda & Kato,1980;Schommer et al,2008;Shan et al,2011)。 JAs還幫助植物防御各種草食動物以及壞死性病原體的侵染(Howe & Jander,2008;Antico et al,2012; Erb et al,2012; Campos et al,2014;Yan & Xie,2015)。 JA參與植物防御葉食性昆蟲,如毛蟲和甲蟲;以及穿刺吸食昆蟲,如薊馬、葉蟬、葉螨、真菌癬和蟲蛆;防御利用管針器在韌皮部進(jìn)食的蚜蟲和白蛉,以及在葉片上下表面之間軟組織上進(jìn)食的昆蟲等(Howe & Jander,2008;Campos et al,2014;Lu et al,2015; Goossens et al,2016)。除草食動物外,JA信號介導(dǎo)植物對抗壞死性病原體的防御,如細(xì)菌病原體紅色腐質(zhì)桿菌(胡蘿卜軟腐歐文氏菌亞種)、真菌病原體如鏈格孢菌、Botrytis cinerea、Plectosphaerella cucumerina和尖孢鐮刀菌,以及卵菌(Campos et al,2014;Yan & Xie,2015)。
組蛋白乙?;粌H是最早被研究報(bào)道的組蛋白化學(xué)修飾,而且還是組蛋白翻譯后修飾的表征之一(Allfrey et al,1964)。負(fù)責(zé)催化組蛋白乙?;拿阜Q為組蛋白乙酰轉(zhuǎn)移酶(HAT)(Gallwitz,1971),相對的組蛋白去乙?;福℉DAC)基于其能從組蛋白中除去乙?;哪芰Χ?。然而,這些酶還利用除組蛋白之外的蛋白質(zhì)作為催化底物,如轉(zhuǎn)錄因子或基因轉(zhuǎn)錄的配體調(diào)節(jié)劑等(Chen & Tian,2007)。核小體的四種核心組蛋白均可被乙?;?去乙?;揎?,且核小體已被報(bào)道包含26個(gè)確定的乙酰化位點(diǎn)。Lusser et al(2001)發(fā)現(xiàn)在植物中,H3的賴氨酸殘基的第9、第14、第18和23位點(diǎn)以及H4的賴氨酸殘基的第5、8、12、16和20位點(diǎn)都能夠被乙酰化和脫乙?;‵uchs et al,2006 )修飾通過改變?nèi)旧|(zhì)結(jié)構(gòu)調(diào)節(jié)基因轉(zhuǎn)錄、DNA復(fù)制和DNA修復(fù)等過程(Bertos et al,2001)。組蛋白乙?;山档拖噜徍诵◇w之間的相互作用,并防止核小體壓縮成30 nm染色質(zhì)纖維,從而松散染色質(zhì)結(jié)構(gòu)促進(jìn)轉(zhuǎn)錄起始(Shahbazian & Grunstein,2007)。由HDAC介導(dǎo)的低乙?;瘎t是促進(jìn)染色質(zhì)絲螺旋化使結(jié)構(gòu)更致密,阻斷轉(zhuǎn)錄因子到靶基因的接觸導(dǎo)致基因的阻遏/沉默(Hollender & Liu,2008)。除了改變?nèi)旧|(zhì)結(jié)構(gòu),組蛋白乙?;€能改變核小體的表面活性,并調(diào)控參與基因轉(zhuǎn)錄蛋白質(zhì)的結(jié)合(Berger,2007;Shahbazian & Grunstein,2007)。在過去10年中,植物HDACs得到更多的關(guān)注,許多HDACs家族成員從植物如玉米、擬南芥、水稻、大麥(Demetriou et al,2009)、馬鈴薯(Lagace et al,2003)、葡萄(Busconi et al, 2009)和煙草(Bourque et al,2011)中分離鑒定。即使在木本植物山毛櫸中,HDACs也已被鑒定。基于和酵母HDACs的序列同源性,植物HDACs被分為三個(gè)不同的亞家族,其中兩個(gè)主要的亞族為植物和其他真核生物共有:RPD3(reduced potassium dependency protein 3)HDA1(HDAC1)亞家族和SIR2(silent information regulator 2)亞家族。第三個(gè)亞家族HD2家族在植物細(xì)胞中特異存在,且至少在結(jié)構(gòu)水平上嚴(yán)格區(qū)別于其他家族(Fu et al,2007)。第一個(gè)被分離的植物HDACsZmRpd3屬于RPD3HDA1超家族,在玉米中被鑒定并發(fā)現(xiàn)其在功能上補(bǔ)充酵母rpd3突變體(Rossi et al,1998)。在擬南芥中,編碼具有脫乙酰酶活性蛋白質(zhì)的18個(gè)基因中,根據(jù)聚類模式和引導(dǎo)支持,鑒定了12個(gè)ZmRPD3的HDACs同源物并分類為三個(gè)不同的類別:I類(由HDA6、7、9、10、17和19組成也稱為HDA1)由RPD3結(jié)構(gòu)類似來限定;II類(包括HDA5、15和18)定義HDA1樣組;IV類(僅由一個(gè)成員HDA2組成)定義為AtHDA2組(Alinsug et al,2009,2012),后一類在一些其他研究中也稱為III類(Hollender & Liu,2008)。其他RPD3 HDACs即HDA8和HDA14未分類。
在RPD3/HDA1家族的12個(gè)成員中,只有HDA6和HD1/HDA19已經(jīng)被廣泛研究。同時(shí)人們發(fā)現(xiàn)在擬南芥中,各種亞細(xì)胞區(qū)室中的大量非組蛋白也可以被乙?;‵inkemeier et al,2011;Tran et al,2012;Wu et al,2011)。然而,所有這些HDACs的分子靶點(diǎn)仍然很大程度上未知。HDACs基因的表達(dá)響應(yīng)于應(yīng)激,并且由應(yīng)激相關(guān)激素如水楊酸(SA)、茉莉酸(JA)或脫落酸(ABA)調(diào)節(jié)(Fu et al,2007;Hu et al,2009;Xu et al,2013)。 SA和JA介導(dǎo)植物防御反應(yīng),而ABA則參與水脅迫反應(yīng)調(diào)節(jié)植物水平衡和滲透脅迫耐受性。HDA6在許多基本過程中起作用,例如轉(zhuǎn)錄基因沉默(Probst et al,2004)、開花和衰老(Wu et al,2000)或ABA(脫落酸)和鹽信號傳導(dǎo)(Chen et al,2010)。據(jù)報(bào)道HD1/HDA19可以調(diào)節(jié)胚胎發(fā)育(Tanaka et al,2008),也參與對生物和非生物脅迫的調(diào)控反應(yīng)(Song et al,2005;Chen & Wu,2010;Choi et al,2012)。在擬南芥中,JA信號誘導(dǎo)了AtHDA6和AtHDA19的表達(dá)(Zhou et al,2005)。HDACs基因的表達(dá)可能影響植物生長和發(fā)育,產(chǎn)生各種可見表型。 RPD3同源HDACs基因(AtHDA6,AtHDA9和AtHDA19)的表達(dá)譜高度相似(Xu et al,2013)。擬南芥AtHDA19定位于核獨(dú)立區(qū)域,負(fù)責(zé)全局轉(zhuǎn)錄調(diào)控(Fong et al,2006)。擬南芥AtHDA19可在整個(gè)胚胎發(fā)生過程中表達(dá),并與Topless1(TPL1)(轉(zhuǎn)錄共抑制子)一起作用,以確保枝桿的正確發(fā)育(Long et al,2006)。AtHDA19的轉(zhuǎn)錄可被病原體相關(guān)激素(如JA和乙烯)和真菌病原體鏈格孢菌(Alternaria brassicicola)誘導(dǎo)(Zhou et al,2005)。研究發(fā)現(xiàn)AtHDA19與轉(zhuǎn)錄因子WRKY38和WRKY62相互作用,WRKY38和WRKY62是植物病害抗性的負(fù)調(diào)節(jié)物,HDA19可以消除它們靶基因激活物的活性。最近,Choi et al(2012)報(bào)道在擬南芥中,AtHDA19在由依賴SA信號傳導(dǎo)途徑介導(dǎo)的基礎(chǔ)防御中起負(fù)調(diào)控作用。AtHDA19也可以由另一種細(xì)菌病原體,假單胞菌(Pseudomonas syringae)誘導(dǎo)(Kim et al,2008)。
本研究發(fā)現(xiàn),HDA19受JA信號的調(diào)控。但是,令人驚訝的是,hda19在JA處理下沒有顯示明顯的JA根長度反應(yīng)?;ㄇ嗨睾繙y定結(jié)果顯示,不同突變體株系的hda19在相同的處理?xiàng)l件下與野生型相比沒有顯著差異,但它們體內(nèi)花色素苷的含量卻都顯著高于myc234。然而,hda19相比于野生型卻增強(qiáng)了擬南芥對真菌B. cineara的抗性,hda19下游抗病相關(guān)標(biāo)記基因PDF1.2、Thi2.1、ERF1的表達(dá)水平都高于WT。本研究結(jié)果表明,HDA19在JA調(diào)節(jié)的植物對真菌疾病抗性中發(fā)揮負(fù)調(diào)節(jié)作用。
1材料與方法
1.1 材料和植物生長條件
所有hda19 的純合TDNA插入突變體都是Columbia0遺傳背景。從Arabidopsis Biological Resource Center購買hda194(SALK_139443)、hda195(CS370961)和hda196(SALK_027241C),并通過兩對引物篩選,見表1。突變體myc234、myc2已在Patricia et al(2011)中報(bào)道。在本研究中,野生型和突變植物用于Columbia0遺傳背景,先進(jìn)行種子表面滅菌 [20%(v/v)漂白15 min],然后播種在半倍Murashige和Skoog(1/2 MS)培養(yǎng)基并在4 ℃下保持3 d。將一周齡的植物轉(zhuǎn)移到土壤中。將該植物在22 ℃下 10 h光/14 h暗光周期下的人工生長室中生長。植物激素MeJA購自SigmaAldrich。Taq DNA聚合酶由Takara Biotechnology提供,其他常用化學(xué)品從上海Sangon購買。
1.2 JA處理
為了測量茉莉酮酸處理的幼苗根長度的變化,將擬南芥種子在不含或具有1、10或25 μmol·L1 MeJA的Murashige和Skoog(MS)瓊脂培養(yǎng)基上播種,在4 ℃下儲存3 d,并在22 ℃垂直生長,1周后測量幼苗根長度并進(jìn)行統(tǒng)計(jì)分析。 對于每個(gè)樣品,用于JA處理分析的生物重復(fù)不少于3次,并且對于每個(gè)試驗(yàn)重復(fù)不少于3次。
1.3 花青素含量的測定
為了測量花青素含量,在包含100 μmol·L1 MeJA 的MS瓊脂培養(yǎng)基表面生長的7 d齡幼苗WT和hda194/5/6和myc234[在稱重W(g)]各加入1 mL鹽酸甲醇提取物(甲醇∶鹽酸體積比為99∶1),保持在4 ℃暗處并連續(xù)振蕩24 h。13 000 r·min1離心10 min,取浸出液在530 nm波長和600 nm波長處測量吸光度,花色素苷的相對含量用公式(OD5300.25×OD600)/W計(jì)算。
1.4 RNA提取和qRTPCR
使用Trizol試劑(Invitrogen)從擬南芥幼苗中提取總RNA。如Hu et al(2012)所述進(jìn)行qRTPCR。簡言之,第一鏈cDNA使用具有oligo(dT)18引物的MMu LV逆轉(zhuǎn)錄酶(Fermentas),其在20 mL反應(yīng)體系中由1.5 mg DNA酶處理的RNA合成。在Roche Light Cycler 480實(shí)時(shí)PCR儀上,根據(jù)制造商的說明書使用2×SYBR Green I master mix進(jìn)行qRTPCR。在本研究中,每個(gè)樣品用于qRTPCR分析的生物學(xué)重復(fù)多于3次, 并且對每
個(gè)生物學(xué)重復(fù)分析至少有兩個(gè)技術(shù)重復(fù)。擬南芥ACTIN2基因用作基因表達(dá)的內(nèi)部對照。用于檢測轉(zhuǎn)錄物的基因特異性引物,見表2。
1.5 病原體感染試驗(yàn)
如先前所述,B. cineara在2×V8瓊脂上生長(Mengiste et al,2003)。為了感染植物,從10 d齡的真菌培養(yǎng)物收集分生孢子,并在Sabouraud Maltose Broth中調(diào)節(jié)孢子密度,使用Preval噴霧器噴霧。將接種的植物在生長室中保持在黑暗高濕度下,并觀察從3~5 dpi的癥狀發(fā)展。通過從接種的植物分離的總RNA的qRTPCR定量真菌病原體的生物量。
1.6 統(tǒng)計(jì)分析
基于通過Sigma Plot 10.0計(jì)算的Students檢驗(yàn)的統(tǒng)計(jì)學(xué)顯著性差異(*P<0.05,或**P<0.01,***P<0.001)數(shù)據(jù)是五個(gè)獨(dú)立實(shí)驗(yàn)重復(fù)的平均值 ± 標(biāo)準(zhǔn)差。
1.7 登錄號
本研究討論的擬南芥基因組基因登錄號如下:HDA19,AT4G38130; MYC2,AT1G32640; MYC3,AT5G46760; MYC4,AT4G17880; LOX2,AT3G45140; LOX3,AT1G17420; JAZ1,AT1G19180; DFR,AT5G42800 UF3GT,AT5G54060; VSP1,AT5G24780; VSP2,AT5G24770; ERF1,AT3G23240; JR1,AT3G16470; PR4,AT3G04720; PR5,AT1G75040; PDF1.2,AT5G44420; Thi2.1,AT1G72260和ACTIN2,AT3G18780。
2結(jié)果與分析
2.1 HDA19不參與JA調(diào)節(jié)的根長反應(yīng)
HDA19是受植物激素信號JA的誘導(dǎo)表達(dá)的,我們懷疑hda19是否具有典型的JA根長反應(yīng)。和不含MeJA的1/2 MS培養(yǎng)基上生長的幼苗相比,在含有MeJA的1/2MS培養(yǎng)基上生長的野生型擬南芥幼苗具有典型的根長變短的表型。功能缺失的JA相關(guān)突變體如coi12和myc2對MeJA信號不敏感,在含有JA的條件下根長并沒有受抑制,顯示出了比WT顯著變長的根長表型。
為了檢測hda19突變體是否影響JA信號傳導(dǎo)過程,我們在同一批次中收獲hda194,hda195和hda196種子,播種到具有不同MeJA濃度的1/2MS培養(yǎng)基表面,Columbia生態(tài)型背景野生型種子WT和myc234三突變體擬南芥種子作為對照。結(jié)果表明,三種不同的突變株hda194、hda195和hda196與野生型一樣對JA信號敏感(圖1)。同時(shí),對不同濃度下幼苗的根長進(jìn)行了統(tǒng)計(jì)分析,hda194,hda195,hda196和WT相比沒有顯著差異,但它們與myc234的根長有顯著差異(圖2)。本研究重復(fù)6次,每次都得到相同的實(shí)驗(yàn)結(jié)果。
2.2 hda19的花色素含量明顯高于myc234
JA濃度增加能誘導(dǎo)植物體積累大量的花色素苷,表現(xiàn)為植物體顏色加深,植株顯示出紫紅色的表型。本研究測量了不同JA處理時(shí)間hda19突變體株系體內(nèi)的花色素苷含量。結(jié)果表明hda194,hda195,hda196的花青素含量顯著高于myc234,但hda194,hda195,hda196的花色苷含量與WT差異并不不顯著(圖3:A)。為在分子水平上驗(yàn)證這一結(jié)果,我們對擬南芥花青素生物合成基因UF3GT,DFR的表達(dá)量進(jìn)行qRTPCR分析。分別對用100 μmol·L1 MeJA處理的7 d齡幼苗hda194,hda195,hda196,WT,myc234在不同處理時(shí)間進(jìn)行采樣。在hda194,hda195,hda196和WT中花青素生物合成基因的轉(zhuǎn)錄水平顯著高于myc234,但是hda194,hda195,hda196與WT相比,花青素生物合成基因在幼苗中的表達(dá)差異并不顯著。定量結(jié)果與本研究觀察到的表型結(jié)果一致,該實(shí)驗(yàn)重復(fù)了至少3次(圖3:B)。
2.3 hda19突變體中的JA下游基因表達(dá)量顯著增加
在這些突變體中,測定了JA信號傳導(dǎo)途徑中標(biāo)記基因的表達(dá)水平。對不同處理時(shí)間100 μmol·L1 MeJA處理的7 d齡的hda194,hda195,hda196,WT,myc234幼苗進(jìn)行取樣,提取這些樣品的RNA,并通過qRTPCR測量它們JA相關(guān)標(biāo)記基因的相對表達(dá)。圖4顯示在hda194,hda195和hda196中的JA合酶基因LOX2和LOX3表達(dá)水平顯著高于WT和myc234中的表達(dá)水平,并且在myc234三突變體中,LOX2和LOX3的轉(zhuǎn)錄水平最低。 JAZ1的轉(zhuǎn)錄水平與LOX2和LOX3的表達(dá)情況相似。 JAZ1是MeJA信號存在后JA信號通路開始轉(zhuǎn)導(dǎo)的標(biāo)志。 JAZ1基因表達(dá)的顯著增加表明hda194、hda195和hda196突變體內(nèi)的JA信號通路被激活,這意味著JA下游的調(diào)節(jié)基因?qū)l(fā)生轉(zhuǎn)錄水平的增加或降低。另外,在hda194/5/6中VSP1基因的表達(dá)也顯著高于WT和myc234。這表明hda19突變體中的防御反應(yīng)開啟且高于WT中相關(guān)基因的表達(dá)水平。
2.4 HDA19功能的喪失增強(qiáng)了擬南芥對Botrytis cineara的基礎(chǔ)防御
為檢查HDA19是否在植物的基礎(chǔ)防御過程中起作用,使用hda194,hda195,hda196,WT來觀察用營養(yǎng)性壞死真菌B. cinerea處理下它們的表型情況。將這些擬南芥的種子用20%消毒劑滅菌,然后播種至0.7%Ager含量的1/2MS培養(yǎng)基表面,在4 ℃保持3 d,然后置于短日照條件下發(fā)芽生長7 d,并移植到滅菌的土壤中,培養(yǎng)在恒溫21 ℃的短日培養(yǎng)室生長至4周齡。選擇生長狀態(tài)一致的幼苗進(jìn)行B. cinerea侵染處理。
用含有tuwen80的SMB培養(yǎng)基懸浮新培養(yǎng)的B. cinerea孢子,并將孢子濃度調(diào)整為5×104個(gè)/mL用于幼苗處理。將孢子均勻地噴灑在植物葉片的表面上,然后置于高濕度和黑暗條件下培養(yǎng)3 d,以觀察葉表面上的菌斑生長情況。從圖5:A可以看出,在相同的處理?xiàng)l件下,與所有WT死亡的情況相比,hda194、hda195、hda196突變體對B. ci
2.5 HDA19功能喪失使抗病相關(guān)基因上調(diào)表達(dá)
為了在分子水平上觀察到表型結(jié)果,檢測了處理植株葉片中βtubulin的表達(dá)量, βtubulin是B. cineara菌絲體生長量的標(biāo)記基因。我們在不同的處理時(shí)間取樣,用未處理的突變體和WT作為對照。從圖6可以看出,hda194、hda195、hda196中的βtubulin表達(dá)水平顯著低于WT,表明菌株菌絲體在WT中快速生長,而在hda194/5/6植物體內(nèi)生長受阻,表明HDA19損失功能突變增強(qiáng)擬南芥對B. cineara的抗性。此外,還測量了下游標(biāo)記基因PDF1.2、Thi2.1、ERF1、VSP2、PR5等的表達(dá),如圖7所示,這些基因在hda194、hda195和hda196中的表達(dá)水平,3個(gè)hda19突變株系中抗性基因的表達(dá)量明顯高于野生型。這進(jìn)一步證實(shí),hda19突變體表現(xiàn)出對真菌B. cineara的抗性比WT更強(qiáng),且暗示HDA19在擬南芥中對病原體脅迫響應(yīng)的負(fù)調(diào)節(jié)作用。
3討論與結(jié)論
在本研究中, HDA19屬于擬南芥的組蛋白脫乙酰酶家族的第二亞家族成員,并且據(jù)報(bào)道它參與到了對細(xì)菌DC300的抗性反應(yīng)中(SunMee et al,2012)。HDA19也參與其他生物或非生物脅迫反應(yīng)以及植物激素JA/SA/ET等的信號轉(zhuǎn)導(dǎo)(Zhou et al,2005),但具體的調(diào)節(jié)機(jī)制尚未闡述清楚。已經(jīng)報(bào)道HDA19確實(shí)參與JA信號轉(zhuǎn)導(dǎo)過程,我們就懷疑HDA19突變體是否有經(jīng)典的JA根長反應(yīng)。本研究使用3個(gè)具有不同插入位點(diǎn)的hda19 TDNA純合突變體作為對象,來觀察當(dāng)用JA處理時(shí)它們根長度的變化,結(jié)果表明在相同的處理?xiàng)l件下,hda194/5/6的根長不顯著短于或長于野生型,根長的統(tǒng)計(jì)學(xué)分析也得到了同樣的結(jié)論。另外,本研究還測試了該突變體株系中的花色素苷的含量,結(jié)果顯示與WT相比,hda194/5/6中的花青素含量沒有顯著變化。同時(shí)還進(jìn)行了JA下游標(biāo)記基因表達(dá)水平的定量分析,以觀察hda194/5/6在分子水平是否會響應(yīng)JA信號?;ㄇ嗨睾铣擅富騏F3GT和DFR的轉(zhuǎn)錄水平與WT在不同處理時(shí)間的轉(zhuǎn)錄水平?jīng)]有顯著差異。本研究中JA合成相關(guān)基因 LOX2和LOX3的表達(dá)水平在hda194/5/6中比WT中高得多,表明hda194/5/6突變體中的JA合成將顯著增加,相應(yīng)的JA信號傳導(dǎo)途徑也被強(qiáng)烈激活引起下游JA相關(guān)通路的轉(zhuǎn)導(dǎo)激活或抑制。 hda194/5/6中JAZ1和VSP2的轉(zhuǎn)錄水平顯著高于WT。這些基因的轉(zhuǎn)錄使我們更加確信植物中的JA信號傳導(dǎo)途徑被激活,并啟動一系列HDA19突變的JA應(yīng)答基因的轉(zhuǎn)錄改變。
早在2005年就有HDA19能由JA信號誘導(dǎo)表達(dá)的報(bào)道(Zhou et al,2005)。據(jù)報(bào)道,HDA19參與植物對細(xì)菌Pst. DC3000的防御功能的調(diào)控,我們懷疑其是否參與植物對真菌的抗性過程。在4周齡的hda194/5/6和WT幼苗上均勻噴灑新培養(yǎng)的B.cineara的孢子(Song et al,2005; Chen & Wu,2010;Choi et al,2012),并在黑暗和潮濕的環(huán)境中處理3 d后觀察葉片表面菌斑的生長情況。
本研究在相同的處理?xiàng)l件下,WT植物的所有葉片均已死亡,且只有hda194/5/6的葉片表面沒有或只有少量的菌斑。與WT對照組相比,hda194/5/6葉片上斑塊的數(shù)量和大小顯著減少,這些突變體中的B. cineara菌絲的生長受到嚴(yán)重抑制。在這些處理的植物中βtubulin的轉(zhuǎn)錄水平的定量分析顯示,與WT相比hda194/5/6突變體內(nèi)的βtubulin的轉(zhuǎn)錄水平顯著降低。 HDA19的功能缺失突變增強(qiáng)擬南芥對真菌B.cineara的抗性。為了觀察HDA19突變體中分子水平的表達(dá)變化,我們在不同的MeJA處理時(shí)間點(diǎn)對JA和抗病性相關(guān)的下游標(biāo)記基因進(jìn)行了qRTPCR分析。與WT相比,hda194/5/6突變體中Thi2.1,PDF1.2,VSP2,ERF1和PR5的轉(zhuǎn)錄水平顯著提高。這些標(biāo)記基因的定量結(jié)果還顯示了HDA19在分子水平上在植物對真菌感染的抗性的負(fù)調(diào)節(jié)中的作用。基于上述的研究結(jié)果,本研究推測HDA19通過JA信號來負(fù)調(diào)控?cái)M南芥對真菌B. cineara的抗性反應(yīng)。
參考文獻(xiàn):
ALINSUG M, YU CW, WU K, 2009. Phylogenetic analysis, subcellular locali zation, and expression patterns of RPD3/HDA1 family histone deacetylases in plants [J]. BMC Plant Biol, 9:37.
ALINSUG MV, CHEN FF, LUO M, et al, 2012. Subcellular localization of Class Ⅱ HDAs in Arabidopsis thaliana: nucleocytoplasmic shuttling of HDA15 is driven by light [J]. PLoS ONE, 7:e30846.
ALLFREY VG, FAULKNER R, MIRSKY AE,1964. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis [J]. Proc Natl Acad Sci USA, 51:786-794.
ANTICO CJ,COLON C, BANKS T, et al, 2012. Insights into the role of jasmonic acidmediated defenses against necrotrophic and biotrophic fungal pathogens [J]. Front Biol, 7: 48-56.
BERGER SL, 2007. The complex language of chromatin regulation during transcription [J]. Nature, 447: 407-412.
BERTOS NR, WANG AH, YANG XJ, 2001. Class Ⅱ histone deacetylases: structure, function, and regulation [J]. Biochem Cell Biol, 79:243-252.
BOLLER T, HE SY, 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens [J]. Science, 324: 742-744.
BOTER M, RUZRIVERO O, ABDEEN A, et al, 2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis [J]. Genes Dev, 18: 1577-1591.
BOURQUE S, DUTARTRE A, HAMMOUDI V, et al, 2011. Type2 histone deacetylases as new regulators of elicitorinduced cell death in plants [J]. New phytol, 192:127-139.
BUSCONI M, REGGI S, FOGHER C, et al, 2009. Evidence of a sirtuin gene family in grapevine (Vitis vinifera L.) [J]. Plant Physiol Biochem, 47:650-652.
CALIL IP, FONTES EP, 2016. Plant immunity against viruses: antiviral immune receptors in focus [J]. Ann Bot, doi: 10.1093/aob/mcw200 [Epub ahead of print].
CAMPOS ML, KANG JH, HOWE GA, 2014. Jasmonatetriggered plant immunity [J]. J Chem Ecol, 40: 657-675.
CHEN LT, WU K, 2010. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response [J]. Plant Sign Behav, 5: 1318-1320.
CHEN LT, LUO M, WANG YY, et al, 2010. Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response [J]. J Exp Bot, 61: 3345-3353.
CHEN ZJ, TIAN L, 2007. Roles of dynamic and reversible histone acetylation in plant development and polyploidy [J]. Biochem Biophys Acta Gene Struct Expr, 1769: 295-307.
CHENG H, SONG S, XIAO L, et al, 2009. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis [J]. PLoS Genet, 5: e1000440.
CHINI A, FONSECA S, FERNNDEZ G, et al, 2007. The JAZ family of repressors is the missing link in jasmonate signalling [J]. Nature, 448: 666-671.
CHOI SM, SONG HR, HAN SK, et al, 2012. HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acidmediated defense responses in Arabidopsis [J]. Plant J, 71(1):135-146.
DEMETRIOU K, KAPAZOGLOU A, TONDELLI A, et al, 2009. Epigenetic chromatin modifiers in barley: I. Cloning, mapping and expression analysis of the plant specific HD2 family of histone deacetylases from barley, during seed development and after hormonal treatment [J]. Physiol Plant, 136:358-368.
DOMBRECHT B, XUE GP, SPRAGUE SJ, et al, 2007. MYC2 differentially modulates diverse jasmonate dependent functions in Arabidopsis [J]. Plant Cell, 19: 2225-2245.
ERB M, MELDAU S, HOWE GA, 2012. Role of phytohormones in insectspecifc plant reactions [J]. Trends Plant Sci, 17: 250-259.
FERNNDEZCALVO P, ANDREA C, GEMMA FERNNDEZ B, et al, 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses [J]. Plant Cell, 23: 701-715.
FEYS B, BENEDETTI CE, PENFOLD, et al, 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen [J]. Plant Cell, 6: 751-759.
FINKEMEIER I, LAXA M, MIGUET L, et al, 2011. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis [J]. Plant Physiol, 155:1779-1790 .
FONG PM, TIAN L, CHEN ZJ, 2006. Arabidopsis thaliana histone deacetylase 1 (AtHD1) is localized in euchromatic regions and demonstrates histone deacetylase activity in vitro [J]. Cell Res, 16: 479-488.
FRANCESCHI VR, GRIMES HD, 1991. Induction of soybean vegetative storage proteins and anthocyanins by lowlevel atmospheric methyl jasmonate [J]. Proc Natl Acad Sci USA, 88: 6745-6749.
FU W, WU K, DUAN J, 2007. Sequence and expression analysis of histone deacetylases in rice [J]. Biochem Biophys Res Commun, 356:843-850.
FU W, WU K, DUAN J, 2007. Sequence and expression analysis of histone deacetylases in rice [J]. Biochem Biophys Res Comm, 356: 843-850.
FUCHS J, DEMIDOV D, HOUBEN A, et al, 2006. Chromosomal histone modification patternsfrom conservation to diversity [J]. Trends Plant Sci, 11:199-208.
GALLWITZ D, 1971. Organ specificity of histone acetyltranferases [J]. FEBS Letters, 13: 306-308.
GOOSSENS J, FERNNDEZCALVO P, SCHWEIZER F, et al, 2016. Jasmonates: signal transduction components and their roles in environmental stress responses [J]. Plant Mole Biol, 91: 673-689.
HOLLENDER C, LIU Z, 2008. Histone deacetylase genes in Arabidopsis development [J]. J Integr Plant Biol, 50: 875-885.
HOWE GA, JANDER G, 2008. Plant immunity to insect herbivores [J]. Ann Rev Plant Biol, 59: 41-66.
HU Y, QIN F, HUANG L,et al, 2009. Rice histone deacetylase genes display specific expression patterns and developmental functions [J]. Biochem Biophys Res Comm, 388:266-271.
IRITI M, VARONI EM, 2015. Chitosaninduced antiviral activity and innate immunity in plants [J]. Environ Sci Poll Res Int, 22: 2935-2944.
JONES JD, DANGL JL, 2006. The plant immune system [J]. Nature, 444:323-329.
KAZAN K, 2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance [J]. Trends Plant Sci, 20: 219-229.
KIM KC, LAI Z, FAN B, et al, 2008. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense [J]. Plant Cell, 20:2357-2371.
KORNER CJ, KLAUSER D, NIEHL A, et al, 2013. The immunity regulator BAK1 contributes to resistance against diverse RNA viruses [J]. Mol Plant Microbe Interact, 26:1271-1280.
LAGACE M, CHANTHA SC, MAJOR G, et al, 2003. Fertilization induces strong accumulation of a histone deacetylase (HD2) and of other chromatinremodeling proteins in restricted areas of the ovules [J]. Plant Mol Biol, 53:759-769.
LONG JA, OHNO C, SMITH ZR, et al, 2006. TOPLESS regulates apical embryonic fate in Arabidopsis [J]. Science, 312: 1520-1523.
LORENZO O,CHICO JM, SNCHEZ SERRANO JJ, et al, 2004. JASMONATEINSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonateregulated defense responses in Arabidopsis [J]. Plant Cell, 16: 1938-1950.
LU J, ROBERT CA, RIEMANN M, et al, 2015. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance [J]. Plant Physiol, 167:1100-1116.
LUSSER A, KOLLE D, LOIDL P, 2001. Histone acetylation: lessons from the plant kingdom [J]. Trends Plant Sci, 6:59-65.
MCCONN M, BROWSE J, 1996. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant [J]. Plant Cell, 8: 403-416.
NAKAHARA KS, MASUTA C, 2014. Interaction between viral RNA silencing suppressors and host factors in plant immunity [J]. Curr Opin Plant Biol, 20:88-95.
NICAISE V, 2014. Crop immunity against viruses: outcomes and future challenges [J]. Front Plant Sci, 5: 660.
NICAISE V, CANDRESSE T, 2016. Plum pox virus capsid protein suppresses plant pathogenassociated molecular pattern (PAMP)triggered immunity [J]. Mol Plant Pathol, doi: 10.1111/mpp.12447 [Epub ahead of print].
NIEHL A, WYRSCH I, BOLLER T, et al, 2016. Doublestranded RNAs induce a patterntriggered immune signaling pathway in plants [J]. New Phytol, 211:1008-1019.
PAUWELS L, et al, 2010. NINJA connects the corepressor TOPLESS to jasmonate signalling [J]. Nature, 464: 788-791.
PROBST AV, FAGARD M, PROUX F, et al, 2004. Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats [J]. Plant Cell, 16:1021-1034.
ROSSI V, HARTINGS H, MOTTO M, 1998. Identification and characterisation of an RDP3 homologue from maize (Zea mays L.) that is able to complement an rpd3 null mutant of Saccharomyces cerevisiae [J]. Mole Gene Genom, 258: 288-296.
SANDERS PM, LEE, et al, 2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway [J]. Plant Cell, 12: 1041-1061.
SCHOMMER C, PALATNIK JF, AGGARWAL P, et al, 2008. Control of jasmonate biosynthesis and senescence by miR319 targets [J]. PLoS Biol, 6: e230.
SHAHBAZIAN MD, GRUNSTEIN M, 2007. Functions of sitespecific histone acetylation and deacetylation [J]. Ann Rev Biochem, 76:75-100.
SHAN X, WANG J, CHU A, et al, 2011. The role of Arabidopsis Rubisco activase in jasmonateinduced leaf senescence [J]. Plant Physiol, 155: 751-764.
SHAN X, ZHANG Y, PENG W, et al, 2009. Molecular mechanism for jasmonateinduction of anthocyanin accumulation in Arabidopsis [J]. Exp Bot, 60: 3849-3860.
SHEARD LB, XU T, HAIBIN M, et al, 2010. Jasmonate perception by inositolphosphatepotentiated COI1JAZ coreceptor [J]. Nature, 468: 400-405.
SONG CP, AGARWAL M, OHTA M,et al, 2005. Role of an Arabidopsis AP2/EREBPtype transcriptional repressor in abscisic acid and drought stress responses [J]. Plant Cell, 17: 2384-2396.
STASWICK PE, SU WP, HOWELL SH, et al, 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant [J]. Proc Natl Acad Sci USA, 89: 6837-6840.
STINTZI A, BROWSE J, 2000. The Arabidopsis malesterile mutant,opr3, lacks the 12oxophytodienoic acid reductase required for jasmonate synthesis [J]. Proc Natl Acad Sci USA, 97: 10625-10630.
TANAKA M, KIKUCHI A, KAMADA H, 2008. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination [J]. Plant Physiol, 146: 149-161.
THINES B, KATSIR L, MELOTTO, et al, 2007. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling [J]. Nature, 448: 661-665.
TRAN HT, NIMICK M, UHRIG G, et al, 2012. Arabidopsis thaliana histone deacetylase 14 (hda14) is an alphatubulin deacetylase that associates with Pp2a and enriches in the microtubule fraction with the putative histone acetyltransferase Elp3 [J]. Plant J, 71(2):263-272.
UEDA J, KATO J, 1980. Isolation and identification of a senescencepromoting substance from wormwood (Artemisia absinthium L.) [J]. Plant Physiol, 66: 246-249.
VERLAAN MG, HUTTON SF, IBRAHEM RM, et al, 2013. The tomato yellow leaf curl virus resistance genes Ty1 and Ty3 are allelic and code for DFDGDclass RNAdependent RNA polymerases [J]. PLoS Genet, 9:e1003399.
WASTERNACK C, HAUSE B, 2013. Jasmonates: biosynthesis, perception,signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany [J]. Ann Bot, 111: 1021-1058.
WASTERNACK C, STRNAD M, 2016. Jasmonate signaling in plant stress responses and developmentactive and inactive compounds [J]. New Biotechnol, 33: 604-613.
WU K, TIAN L, ZHOU C, et al, 2000. Repression of gene expression by Arabidopsis HD2 histone deacetylases [J]. Plant J, 34:241-247.
WU X, OH MH, SCHWARZ EM, et al, 2011. Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis [J]. Plant Physiol, 155:1769-1778.
XU L, LIU F, LECHNER E, et al, 2002. The SCF(COI1) ubiquitinligase complexes are required for jasmonate response in Arabidopsis [J]. Plant Cell, 14: 1919-1935.
MA XJ, L SB, ZHANG C, et al, 2013. Histone deacetylases and their functions in plants [J]. Plant Cell Rep, 32:465-478.
YAN C, XIE D, 2015. Jasmonate in plant defence: sentinel or double agent? [J]. Plant Biotechnol J, 13:1233-1240.
YAN J, ZHANG C, GU M, et al, 2009. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor [J]. Plant Cell, 21: 2220-2236.
ZHOU C, ZHANG L, DUAN J, et al, 2005. HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis [J]. Plant Cell, 17:1196-1204.
ZHOU JM, CHAI J, 2008. Plant pathogenic bacterial type Ⅲ effectors subdue host responses [J]. Curr Opin Microbiol, 11: 179-185.