馮文莉 張東凱 王朝立 杜慶輝
摘要
隨著隨機(jī)非線性控制的發(fā)展,隨機(jī)非完整系統(tǒng)的控制引起了學(xué)者們的注意.本文首先探討了隨機(jī)非完整控制系統(tǒng)的鎮(zhèn)定問(wèn)題,涉及嚴(yán)反饋鏈?zhǔn)较到y(tǒng)的反饋鎮(zhèn)定和不滿足嚴(yán)反饋的移動(dòng)機(jī)器人鎮(zhèn)定等;其次,介紹了該系統(tǒng)跟蹤控制及現(xiàn)狀;最后,在總結(jié)現(xiàn)有結(jié)果的基礎(chǔ)上,分析了隨機(jī)非完整系統(tǒng)發(fā)展的趨勢(shì),給出了6個(gè)可能的研究方向.關(guān)鍵詞
隨機(jī)非完整系統(tǒng);鎮(zhèn)定;跟蹤
中圖分類號(hào)TP2732
文獻(xiàn)標(biāo)志碼A
0引言
非完整系統(tǒng)控制問(wèn)題的研究已有30余年的歷史,它的主要難點(diǎn)在于不存在連續(xù)的時(shí)不變純狀態(tài)反饋鎮(zhèn)定器[1],故需要新的控制和穩(wěn)定性理論設(shè)計(jì)控制器.基于文獻(xiàn)[1]的結(jié)論,Kolmanovsky等[2]給出了非完整系統(tǒng)能夠轉(zhuǎn)化為鏈?zhǔn)较到y(tǒng)的結(jié)論,文獻(xiàn)[3]探討了非完整系統(tǒng)不連續(xù)反饋控制器的設(shè)計(jì)方法,這些工作為非完整系統(tǒng)的快速發(fā)展打下了堅(jiān)實(shí)的基礎(chǔ).
隨機(jī)控制的概念[4]始于1967年,可是由于隨機(jī)穩(wěn)定性理論和方法的匱乏,其控制問(wèn)題的研究一直是一個(gè)難點(diǎn).基于Backstepping方法,文獻(xiàn)[5]首次設(shè)計(jì)了隨機(jī)嚴(yán)反饋系統(tǒng)的控制器,它為隨機(jī)控制的發(fā)展,特別是為隨機(jī)嚴(yán)反饋系統(tǒng)控制的發(fā)展打下了堅(jiān)實(shí)的基礎(chǔ),至此許多學(xué)者將精力投入到隨機(jī)控制理論的研究中[68].
近10年來(lái),隨機(jī)控制理論的發(fā)展為非完整系統(tǒng)和隨機(jī)控制的結(jié)合起了極大的推動(dòng)作用,才有了隨機(jī)非完整系統(tǒng)控制的可行性,并引起了學(xué)者們的注意[913].
1隨機(jī)非完整系統(tǒng)鎮(zhèn)定問(wèn)題
目前的鎮(zhèn)定問(wèn)題的研究主要為嚴(yán)反饋整鏈?zhǔn)较到y(tǒng)和不滿足嚴(yán)反饋隨機(jī)非完整機(jī)器人的鎮(zhèn)定,涉及反饋鎮(zhèn)定和有限時(shí)間鎮(zhèn)定等問(wèn)題.
11狀態(tài)反饋鎮(zhèn)定控制器設(shè)計(jì)
已有的確定性非完整系統(tǒng)鎮(zhèn)定問(wèn)題的結(jié)論,對(duì)解決隨機(jī)非完整系統(tǒng)鎮(zhèn)定問(wèn)題有很大的指導(dǎo)意義.基于Backstepping方法,Ge等[14]設(shè)計(jì)了帶有強(qiáng)非線性項(xiàng)和不確定參數(shù)的自適應(yīng)狀態(tài)反饋和輸出反饋鎮(zhèn)定控制器,Hong等[15]探討了不確定非完整系統(tǒng)的有限時(shí)間鎮(zhèn)定.
基于視覺(jué)伺服模型,文獻(xiàn)[16]研究了移動(dòng)機(jī)器人的有限時(shí)間鎮(zhèn)定問(wèn)題.基于Backstepping技術(shù),文獻(xiàn)[17]設(shè)計(jì)的自適應(yīng)狀態(tài)反饋鎮(zhèn)定器能使系統(tǒng)狀態(tài)以概率全局收斂.基于帶有不確定參數(shù)的隨機(jī)非完整系統(tǒng),文獻(xiàn)[1821]給出了自適應(yīng)律的設(shè)計(jì)方案.基于文獻(xiàn)[22]的結(jié)論,Du等[23]討論了帶有非線性參數(shù)的高階非線性系統(tǒng)的自適應(yīng)鎮(zhèn)定反饋控制器,且該系統(tǒng)的第一個(gè)方程為隨機(jī)微分方程.對(duì)于帶有馬爾科夫切換的隨機(jī)非完整系統(tǒng),Zhang等[24]和Du等[25]討論了自適應(yīng)鎮(zhèn)定反饋控制器的設(shè)計(jì).文獻(xiàn)[2628]設(shè)計(jì)了隨機(jī)非完整系統(tǒng)的有限時(shí)間鎮(zhèn)定器.文獻(xiàn)[29]給出了隨機(jī)非完整變時(shí)滯系統(tǒng)的鎮(zhèn)定控制器.
12輸出反饋鎮(zhèn)定控制器設(shè)計(jì)
文獻(xiàn)[3031]設(shè)計(jì)了非完整鏈?zhǔn)较到y(tǒng)的輸出反饋控制律,其主要原因是系統(tǒng)狀態(tài)只有部分可測(cè).當(dāng)隨機(jī)非完整系統(tǒng)的第一個(gè)方程為常微分方程時(shí),文獻(xiàn)[32]討論了其輸出反饋鎮(zhèn)定問(wèn)題.如果系統(tǒng)滿足線性增長(zhǎng)條件,文獻(xiàn)[33]給出了高增益觀測(cè)器,設(shè)計(jì)了輸出反饋控制器.Zhang等[34]將文獻(xiàn)[33]的結(jié)果推廣至帶有馬爾可夫切換的情形,設(shè)計(jì)了系統(tǒng)的輸出反饋鎮(zhèn)定控制器.
2隨機(jī)非完整系統(tǒng)跟蹤問(wèn)題
文獻(xiàn)[3540]討論了非完整系統(tǒng)控制的跟蹤問(wèn)題.基于遞歸法,文獻(xiàn)[4142]討論了確定性非完整鏈?zhǔn)较到y(tǒng)跟蹤問(wèn)題.由上面的討論可知,隨機(jī)非完整系統(tǒng)鎮(zhèn)定問(wèn)題研究的結(jié)果較多,但是跟蹤問(wèn)題一直是一個(gè)難點(diǎn),主要的原因在于現(xiàn)存的鎮(zhèn)定控制器的設(shè)計(jì),需要用到狀態(tài)變換[41].Zhang等[43]給出了一類隨機(jī)非完整動(dòng)力學(xué)的模型,設(shè)計(jì)了自適應(yīng)跟蹤控制器,該控制器能使跟蹤誤差任意小,最后給出了一個(gè)實(shí)際的例子.
3機(jī)器人鎮(zhèn)定控制器的設(shè)計(jì)
基于文獻(xiàn)[44]的模型,Wu等[45]將非完整機(jī)器人推廣到隨機(jī)的情形并給出了反饋鎮(zhèn)定控制器設(shè)計(jì)方法,但是此類隨機(jī)非完整機(jī)器人并不滿足嚴(yán)格的下三角結(jié)構(gòu),傳統(tǒng)的Backstepping方法很難用于這類系統(tǒng).在文獻(xiàn)[45]討論的基礎(chǔ)上,Shang等[46]和Gao等[47]分別給出了隨機(jī)非完整機(jī)器人的指數(shù)狀態(tài)反饋控制器和魯棒狀態(tài)反饋鎮(zhèn)定控制器的設(shè)計(jì)方法.Zhang等[48]將基于視覺(jué)伺服的非完整機(jī)器人推廣到隨機(jī)的情形,給出了狀態(tài)反饋鎮(zhèn)定控制器的設(shè)計(jì)方法.Hespanha等[49]將文獻(xiàn)[50]中基于不確定參數(shù)的非完整移動(dòng)機(jī)器人推廣到隨機(jī)情形,設(shè)計(jì)的自適應(yīng)反饋鎮(zhèn)定控制器和切換策略能使閉環(huán)系統(tǒng)鎮(zhèn)定到原點(diǎn).
4總結(jié)與展望
綜上所述,10余年來(lái),隨機(jī)非完整系統(tǒng)發(fā)展的較為迅速,涌現(xiàn)了一批結(jié)果,主要可分為鎮(zhèn)定和跟蹤兩個(gè)方面.但是關(guān)于鎮(zhèn)定的結(jié)果大都為基于不連續(xù)變換的運(yùn)動(dòng)學(xué)系統(tǒng)的控制器設(shè)計(jì),而實(shí)際系統(tǒng)由于是物理驅(qū)動(dòng)的,多為動(dòng)力學(xué)系統(tǒng),故還存在下列尚未解決的問(wèn)題.
41動(dòng)力學(xué)鏈?zhǔn)较到y(tǒng)鎮(zhèn)定控制器的設(shè)計(jì)
基于文獻(xiàn)[42,5152]的結(jié)果,全部狀態(tài)可測(cè)的滿足下三角結(jié)構(gòu)的隨機(jī)非完整動(dòng)力學(xué)系統(tǒng)可表述為
研究其反饋鎮(zhèn)定問(wèn)題,特別是系統(tǒng)包括不確定該參數(shù)和時(shí)變系數(shù)時(shí)自適應(yīng)控制器的設(shè)計(jì)和穩(wěn)定性分析.
3) 將系統(tǒng)(1)—(4)推廣到含有馬爾科夫切換和任意切換的情形,并討論控制器的設(shè)計(jì).
44有限時(shí)間鎮(zhèn)定和飽和鎮(zhèn)定
參考文獻(xiàn)[2628]的結(jié)論,研究隨機(jī)非完整下三角系統(tǒng)、隨機(jī)前饋系統(tǒng)和隨機(jī)移動(dòng)機(jī)器人系統(tǒng)的自適應(yīng)有限時(shí)間鎮(zhèn)定問(wèn)題.但是關(guān)于此系統(tǒng)飽和鎮(zhèn)定問(wèn)題的研究較少,基于文獻(xiàn)[5761]的結(jié)論,討論上述三類系統(tǒng)的飽和鎮(zhèn)定問(wèn)題,包含不確定的情形.
45隨機(jī)非完整系統(tǒng)的跟蹤控制問(wèn)題
目前只有文獻(xiàn)[43]給出了隨機(jī)非完整系統(tǒng)的跟蹤問(wèn)題,并且第一個(gè)子系統(tǒng)還是確定性的,但是對(duì)于解決隨機(jī)非完整系統(tǒng)的跟蹤問(wèn)題有很大的借鑒意義.那么,基于下三角結(jié)構(gòu)和前饋型隨機(jī)非完整系統(tǒng)的跟蹤問(wèn)題,特別是不確定系統(tǒng)和切換系統(tǒng)的跟蹤問(wèn)題的解決將是下一步工作的重點(diǎn).
46隨機(jī)非完整系統(tǒng)新的控制方法
現(xiàn)存的關(guān)于隨機(jī)非完整系統(tǒng)鎮(zhèn)定問(wèn)題的文獻(xiàn)大都是基于切換策略的,那么能不能找到新的控制方法解決此問(wèn)題?
1)基于文獻(xiàn)[6264]的結(jié)果,利用滑模變結(jié)構(gòu)方法討論上述三類隨機(jī)不確定非完整系統(tǒng)的鎮(zhèn)定問(wèn)題,特別是連續(xù)滑模理論的應(yīng)用.
2)結(jié)合文獻(xiàn)[6567]中光滑時(shí)變鎮(zhèn)定控制器的設(shè)計(jì)方法,設(shè)計(jì)上述三類系統(tǒng)的連續(xù)時(shí)變反饋控制器.
參考文獻(xiàn)
References
[1]Brockett R W.Asymptotic stability and feedback stabilization[C]∥Differential Geometric Control Theory,Boston:Birkhauser,1983:181191
[2]Kolmanovsky I,Mcclamroch N.Developments in nonholonomic control problems[J].IEEE Control Systems,1995,15(6):2036
[3]Astolfi A.Discontinuous control of nonholonomic systems[J].Systems & Control Letters,1996,27(1):3745
[4]Kushner H J.Stochastic stability and control[M].New York:Academic Press,1967
[5]Pan Z G,Baar T.Backstepping controller design for nonlinear stochastic systems under a risksensitive cost criterion[J].SIAM Journal of Control and Optimization,1999,37(3):957995
[6]Deng H,Krstic M.Outputfeedback stochastic nonlinear stabilization[J].IEEE Transactions on Automatic Control,1999,44(2):328333
[7]Wu Z J,Yang J,Shi P.Adaptive tracking for stochastic nonlinear systems with Markovian switching[J].IEEE Transactions on Automatic Control,2010,55(9):21352141
[8]Liu L,Xie X J.State feedback stabilization for stochastic feedforward nonlinear systems with timevarying delay[J].Automatica,2013,49(4):936942
[9]Moshchuk N K,Sinitsyn I N.On stochastic nonholonomic systems[J].Journal of Applied Mathematics and Mechanics,1990,54(2):174182
[10]Shang M,Guo Y X.The meansquare exponential stability and instability of stochastic nonholonomic systems[J].Chinese Physics,2001,10(6):480485
[11]Liu S J,Krstic M.Stochastic source seeking for nonholonomic unicycle[J].Automatica,2010,46(9):14431453
[12]張東凱.隨機(jī)非完整系統(tǒng)鎮(zhèn)定問(wèn)題研究[D].上海:上海理工大學(xué)管理學(xué)院,2013
ZHANG Dongkai.The satabilization of stochastic nonholonomic systems[D].Shanghai:Business School,University of Shanghai for Science and Technology,2013
[13]Do K D.Global inverse optimal stabilization of stochastic nonholonomic systems[J].Systems & Control Letters,2015,75:4155
[14]Ge S S,Wang Z,Lee T H.Adaptive stabilization of uncertain nonholonomic systems by state and output feedback[J].Automatica,2003,39(8):14511460
[15]Hong Y G,Wang J K,Xi Z R.Stabilization of uncertain chained form systems within finite settling time[J].IEEE Transactions on Automatic Control,2005,50(9):13791384
[16]Chen H,Ding S R,Chen X,et al.Global finitetime stabilization for nonholonomic mobile robots based on visual servoing[J].International Journal of Advanced Robotic Systems,2014,11:113
[17]Wang J,Gao H Q,Li H Y.Adaptive robust control of nonholonomic systems with stochastic disturbances[J].Science in China Series F(Information Sciences),2006,49(2):189207
[18]Zhang D K,Wang C L,Chen H,et al.Adaptive stabilization of stochastic nonholonomic systems with nonhomogeneous uncertainties[J].Transactions of the Institute of Measurement and Control,2013,35(5):648663
[19]Wang C L,Wei G L,Zhang H J.Adaptive stabilization of stochastic nonholonomic systems with uncertain parameters and timevarying coefficients[C]∥IFAC Proceedings Volumes,2014,47(3):57345739
[20]Gao F Z,Yuan F S,Yao H J.Adaptive stabilization for a class of stochastic nonholonomic systems with nonlinear parameterization[C]∥24th Chinese Control and Decision Conference,2012,23(1):13771382
[21]Gao F Z,Yuan F S,Wu Y Q.Adaptive stabilization for a class of stochastic nonlinearly parameterized nonholonomic systems with unknown control coefficients[J].Asian Journal of Control,2014,16(6):18291838
[22]Zhao Y,Yu J B,Wu Y Q.Statefeedback stabilization for a class of more general high order stochastic nonholonomic systems[J].International Journal of Adaptive Control and Signal Processing,2011,25(8):687706
[23]Du Q H,Wang C L,Wang G.Adaptive statefeedback stabilization of stochastic highorder nonholonomic systems with nonlinear parameterization[J].Transactions of the Institute of Measurement and Control,2015,37(4):536549
[24]Zhang D K,Wang C L,Qiu J Q.Statefeedback stabilization for stochastic nonholonomic systems with Markovian switching[J].International Journal of Modelling,Identification and Control,2012,16(3):221228
[25]Du Q H,Wang C L,Wang G,et al.Statefeedback stabilization for stochastic highorder nonholonomic systems with Markovian switching[J].Nonlinear Analysis(Hybrid Systems),2015,18:114
[26]Gao F Z,Yuan F S.Finitetime stabilization of stochastic nonholonomic systems and its application to mobile robot[J].Abstract and Applied Analysis,2012(4):118
[27]Gao F Z,Yuan F S,Yao H J.Finitetime stabilization of stochastic nonholonomic systems[C]∥The 31st Chinese Control Conference,2012(4):812817
[28]Gao F Z,Yuan F S,Zhang J,et al.Further result on finitetime stabilization of stochastic nonholonomic systems[J].Abstract and Applied Analysis,2013(5):551552
[29]Gao F Z,Yuan F S,Wu Y Q.Statefeedback stabilisation for stochastic nonholonomic systems with timevarying delays[J].IET Control Theory & Applications,2012,6 (17):25932600
[30]Xi Z R,F(xiàn)eng G,Jiang Z P,et al.Output feedback exponential stabilization of uncertain chained systems[J].Journal of the Franklin Institute,2007,344(1):3657
[31]Zheng X Y,Wu Y Q.Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts[J].Nonlinear Analysis,2009,70(2):904920
[32]Zheng X Y,Wu Y Q.Output feedback stabilization of stochastic nonholonomic systems[C]∥World Congress on Intelligent Control and Automation,2010:20912096
[33]Liu Y L,Wu Y Q.Output feedback control for stochastic nonholonomic systems with growth rate restriction[J].Asian Journal of Control,2011,13(1):177185
[34]Zhang D K,Wang C L,Wei G L,et al.Output feedback stabilization for stochastic nonholonomic systems with nonlinear drifts and Markovian switching[J].Asian Journal of Control,2014,16(6):16791692
[35]Do K D,Jiang Z P,Pan J.Simultaneous tracking and stabilization of mobile robots:an adaptive approach[J].IEEE Transactions on Automatic Control,2004,49(7):11471152
[36]Ma B L,Tso S K.Unified controller for both trajectory tracking and point regulation of secondorder nonholonomic chained systems[J].Robotics and Autonomous Systems,2008,56(4):317323
[37]Tian Y P,Cao K C.An LMI design of tracking controllers for nonholonomic chainedform system[C]∥American Control Conference,2007:45124517
[38]董文杰,霍偉.鏈?zhǔn)较到y(tǒng)的軌跡跟蹤控制[J].自動(dòng)化學(xué)報(bào),2000,26(13):310316
DONG Wenjie,HUO Wei.Trajectory tracking control of chained systems[J].Acta Automatica Sinica,2000,26(13):310316
[39]Park B S,Yoo S J,Jin B P,et al.A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots[J].IEEE Transactions on Control Systems Technology,2010,18(5):11991206
[40]Li Q X,Hu Y M,Pei H L,et al.Robust output tracking for mobile robot[J].Control Theory and Applications,1998,15(4):515524
[41]Jiang Z p,Nijmeijer H.Tracking control of mobile robots:A case study in backstepping[J].Automatica,1997,33(7):13931399
[42]Jiang Z P,Nijmeijer H.A recursive technique for tracking control of nonholonomic systems in chained form[J].IEEE Transactions on Automatic Control,1999,44(2):265279
[43]Zhang Z C,Wu Y Q.Modeling and adaptive tracking for stochastic nonholonomic constrained mechanical systems[J].Nonlinear Analysis(Modelling and Control),2016,21(2):166184
[44]Astolfi A.Exponential stabilization of a wheeled mobile robot via discontinuous control[J].Journal of Dynamic Systems(Measurement and Control),1999,121(1):121126
[45]Wu Z J,Liu Y H.Stochastic stabilization of nonholonomic mobile robot with headingangledependent disturbance[J].Mathematical Problems in Engineering,2012,DOI:101155/2012/870498
[46]Shang Y L,Meng H.Exponential stabilization of nonholonomic mobile robots subject to stochastic disturbance[J].Journal of Information & Computational Science,2012,9(9):26352642
[47]Gao F Z,Shang Y L.Robust state feedback stabilization for nonholonomic mobile robots with stochastic disturbances[J].International Journal of Applied Mathematics and Statistics,3013,40(10):259268
[48]Zhang D K,Wang C L,Wei G,et al.Statefeedback stabilization for stochastic nonholonomic mobile robots with uncertain visual servoing parameters[J].International Journal of Systems Science,2014,45(7):14511460
[49]Hespanha J,Liberzon D,Morse A S.Towards the supervisory control of uncertain nonholonomic systems[C]∥American Control Conference,1999,5:35203524
[50]Feng W L,Sun Q L,Cao Z J,et al.Adaptive statefeedback stabilization for stochastic nonholonomic mobile robots with unknown parameters[J].Discrete Dynamics in Nature and Society,2013(4):19
[51]Dong W J,Xu Y S,Huo W.On stabilization of uncertain dynamic nonholonomic systems[J].International Journal of Control,2000,73(4):349359
[52]Dong W J,Huo W.Adaptive stabilization of uncertain dynamic nonholonomic systems[J].International Journal of Control,1999,72(18):16891700
[53]Fang Y,Wang C L.Adaptive stabilization for uncertain nonholonomic dynamic mobile robots based on visual serving feedback[J].Acta Automatic Sinica,2011,37(7):857864
[54]Gao F Z,Wu Y Q,Zhang Z C.Finitetime stabilization of uncertain nonholonomic systems in feedforwardlike form by output feedback[J].ISA Transactions,2015,59:125132
[55]Wu Y Q,Gao F Z,Zhang Z C.Saturated finitetime stabilization of uncertain nonholonomic systems in feedforwardlike form and its application[J].Nonlinear Dynamics,2016,84(3):16091622
[56]Gao F Z,Yuan Y,Wu Y Q.Finitetime stabilization for a class of nonholonomic feedforward systems subject to inputs saturation[J].ISA Transactions,2016,64:193201
[57]Gao F Z,Wu Y Q.Finitetime output feedback stabilisation for a class of feedforward nonlinear systems with input saturation[J].International Journal of Systems Science,2017,48(6):12541265
[58]Bloch A,Drakunov S.Stabilization of a nonholonomic system via sliding models[C]∥IEEE Conference of Decision and Control,1995,3:29612963
[59]Jiang Z P,Lefeber E,Nijmeijer H.Saturated stabilization and tracking of a nonholonomic mobile robot[J].Systems & Control Letters,2001,42(5):327332
[60]Wang C L.Semiglobal practical stabilization of nonholonomic wheeled mobile robots with saturated inputs[J].Automatica,2008,44(3):816822
[61]Chen H,Wang C L,Liang Z Y,et al.Robust practical stabilization of nonholonomic mobile robots based on visual servoing feedback with inputs saturation[J].Asian Journal of Control,2014,16(3):692702.
[62]王朝立,霍偉.用滑動(dòng)模態(tài)實(shí)現(xiàn)一類非完整動(dòng)力學(xué)系統(tǒng)的指數(shù)鎮(zhèn)定[J].自動(dòng)化學(xué)報(bào),2000,26(2):254257
WANG Chaoli,HUO Wei.Exponential stabilization of a nonholonomic dynamic system via sliding modes[J].Acta Automatica Sinica,2000,26(2):254257
[63]Hu Y,Ge S S,Su C Y.Stabilization of uncertain nonholonomic systems via timevarying sliding mode control[J].IEEE Transactions on Automatic Control,2004,49(5):757763
[64]Ferrara A,Giacomimi L,Vecchio C.Control of nonholonomic systems with uncertainties via secondorder sliding modes[J].International Journal of Robust and Nonlinear Control,2008,18(4/5):515528
[65]Tian Y P,Li S.Exponential stabilization of nonholonomic dynamic systems by smooth timevarying control[J].Automatica,2002,38(7):11391146
[66]馬保離,霍偉.非完整鏈?zhǔn)较到y(tǒng)的時(shí)變光滑指數(shù)鎮(zhèn)定[J].自動(dòng)化學(xué)報(bào),2003,29(2):301305
MA Baoli,HUO Wei.Smooth timevarying exponential stabilization of nonholonomic chained systems[J].Acta Automatica Sinica,2003,29(2):301305
[67]Samson C.Timevarying feedback stabilization of a carlike wheeled mobile robots[J].International Journal of Robotics Research,1993,12(1):5566