国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

隨機微分方程數(shù)值解穩(wěn)定性研究綜述

2017-05-30 10:48:04鄧飛其莫浩藝
南京信息工程大學學報 2017年3期
關鍵詞:仿真穩(wěn)定性

鄧飛其 莫浩藝

摘要

本文回顧了近年來隨機微分方程數(shù)值方法的穩(wěn)定性的研究成果.作為相關話題,收斂性問題也有所涉獵.以經(jīng)典It型隨機微分方程、

中立型隨機泛函微分方程、Markov跳隨機微分方程和Poisson跳隨機微分方程為代表,主要介紹了幾類數(shù)值方法穩(wěn)定性研究的成果.

這些方法包括常見的 EulerMaruyama 方法、Backward EulerMaruyama方法、θ方法、分步方法等.文中

分析了關于穩(wěn)定性等價性定理經(jīng)典論文的學術思路,提出了隨機微分方程數(shù)值計算與仿真所面臨的挑戰(zhàn)及所要解決的問題.關鍵詞隨機微分方程;數(shù)值格式;穩(wěn)定性;仿真

中圖分類號P393

文獻標志碼A

1華南理工大學自動化科學與工程學院,廣州,510640

2廣東工業(yè)大學應用數(shù)學學院,廣州,510006

1典型數(shù)值方法及其收斂性

由于大多數(shù)隨機微分方程解析解的顯式表達式都很難得到,快速高效的數(shù)值算法對于隨機微分方程的應用

顯得格外重要.對于隨機微分方程數(shù)值解的研究,大體來說可以分為兩類:有限時間的收斂性和隨著時間變量

趨于無窮的漸近性.本節(jié)主要是對有限時間的收斂性的相關研究進行回顧.

其中向量n=Yn+f(Yn)Δ+g(Yn)Δ.通過重復運用Taylor展式,對方程f和g展開的階數(shù)越高,所獲得格式的收斂階數(shù)會越高,可以達到15階或20階,但其形式也更復雜,從而影響其廣泛應用.請參見專著[1].

針對不同模型和精度,格式的構造和分析有許多后續(xù)進展,取得了豐富的成果,這里不一一列舉.例如,Liang等[4]研究了一類線性隨機Volterra積分方程,在Lipschitz條件下,證明了EM方法是1階強收斂的;Wang等[5]分析了帶有加性噪聲的半線性隨機偏微分方程隱式Euler方法的弱收斂性.

在眾多數(shù)值算法中,EM型算法由于結構簡單、易于編程等特點受到很多學者的關注[69].它是所有隨機微分方程數(shù)值算法里最簡單的一種.經(jīng)典的Euler型算法,即EM算法,是常微分方程的向前Euler算法的自然推廣.上面提到,在全局Lipschitz條件下,經(jīng)典的EM方法是強05階收斂的,但是當漂移項或擴散項不滿足全局Lipschitz條件時,EM方法將不收斂.Hutzenthaler等[10]對于這種不收斂性(發(fā)散性)給出了嚴格的證明.

那么,針對非Lipschitz方程,各類格式是否也可用?精度又如何?為此,學者們開展了系列的探討.例如,為了處理一類漂移項不滿足全局Lipschitz條件的隨機微分方程,特別是當漂移項滿足多項式增長時,Hutzenthaler等[11]提出了具有05階強收斂性的Tamed(馴服) Euler方法.簡單來說,Tamed Euler方法在經(jīng)典的EM算法基礎上增加了對漂移項的控制,它的格式如下:

同時,該文還利用類似的技巧提出了具有1階強收斂性的Balanced Milstein方法.

我們注意到,上述不同種類Euler型算法雖然結構不同,但是證明思路多是先證明數(shù)值解和解析解的p階矩有界,然后再根據(jù)不同的算法格式證明強收斂性和收斂階.這種證明思路或多或少借鑒了文獻[7].在文獻[7]中,作者給出了在已知Euler型數(shù)值解矩有界時推導收斂性和收斂速率的技巧.

另一種利用數(shù)值解局部收斂性推導全局收斂性的技巧也非常重要.在全局Lipschitz條件以及Khasminskii條件下,數(shù)值解的全局誤差可以由局部誤差推導出的結論,可分別在文獻[20]和文獻[21]中找到.

綜上所述,當我們想構造顯式的Euler型方法來數(shù)值逼近漂移項和擴散項不滿足全局Lipschitz條件的隨機微分方程時,采用的方法主要是在經(jīng)典的EM方法基礎上利用一些約束方式來控制漂移項和擴散項.一個很自然的問題是:以上這些理論上具有05階(或者1階)強收斂性的方法孰優(yōu)孰劣?對于這個開放性問題,也許文獻[22]中關于最優(yōu)強收斂系數(shù)K1的討論是一個思路.

2數(shù)值方法的穩(wěn)定性

我們先來談談微分方程數(shù)值計算格式的穩(wěn)定性的來源.

微分方程的數(shù)值計算格式穩(wěn)定性概念的提出源于計算數(shù)學領域對數(shù)值計算舍入誤差傳播問題的考慮.

眾所周知,由于計算工具限制等各種原因,在數(shù)值計算過程中,舍入誤差在所難免,某一步計算的舍入誤差一定會隨計算格式帶入往后各步,也就是說,舍入誤差將向后傳播.

如果計算格式對該誤差具有敏感性,則該誤差將隨格式進行傳播,被累計、被放大,甚至產(chǎn)生蝴蝶效應.當年,費肯鮑姆就是因為運用數(shù)字計算格式時出現(xiàn)了初值誤差而發(fā)現(xiàn)了混沌現(xiàn)象.如果格式對該誤差不敏感,則該誤差的影響將被逐漸消除,無積累效應,不被嚴重放大.即在一定條件下得到控制,從而被最終屏蔽.基于此考慮,在計算數(shù)學領域提出了微分方程數(shù)值計算格式的穩(wěn)定性概念,用以描述計算格式對舍入誤差的敏感性.如果一個格式對舍入誤差敏感,

則稱格式不穩(wěn)定;否則,稱其穩(wěn)定.所以,微分方程數(shù)值計算格式的穩(wěn)定性,是一個定性概念.

微分方程數(shù)值計算格式穩(wěn)定,意味著計算格式可以自行消化舍入誤差,不在傳播中因累計而放大.

最常見的數(shù)值計算格式穩(wěn)定性概念是絕對穩(wěn)定性,在此不贅述.

本文所述計算格式穩(wěn)定性概念與此相同.在系統(tǒng)與控制科學領域,我們同樣需要考慮格式的收斂性(逼近度)和穩(wěn)定性.我們的目的是:如何將計算格式用于系統(tǒng)仿真,并通過系統(tǒng)仿真分析(原)系統(tǒng)的穩(wěn)定性.

在隨機系統(tǒng)數(shù)值計算方面,數(shù)值方法的收斂性和穩(wěn)定性是學者們主要討論的兩大類內容.由于大部分隨機系統(tǒng)的非線性性和耦合性,很難求出其解析解.所以通過離散化的數(shù)值方法來研究系統(tǒng)的穩(wěn)定性是一種有效的途徑,它是窺探系統(tǒng)內部結構和性態(tài)的一種手段.目前探討的問題主要是:

1)在一定條件下,比照連續(xù)模型與離散格式的穩(wěn)定性,看看離散格式是否復制了連續(xù)模型的穩(wěn)定性質;

2)連續(xù)模型與離散格式的穩(wěn)定性的邏輯互推.

本文將主要討論幾類It隨機微分方程數(shù)值方法的穩(wěn)定性.數(shù)值方法的穩(wěn)定性主要包括:矩意義下的漸近穩(wěn)定、p階矩指數(shù)穩(wěn)定、幾乎必然指數(shù)穩(wěn)定、依概率穩(wěn)定、A穩(wěn)定等[2]

.其研究內容和方法要比確定型常微分系統(tǒng)豐富很多.下面,先介紹本文討論的幾大類穩(wěn)定性定義,其中p>0.

值得指出,對連續(xù)模型解的穩(wěn)定性也有類似于上面的定義,只需要在上述定義中將數(shù)值解Xk換成解析解x(t),k→∞替換為t→∞即可.在這些穩(wěn)定性定義中,p階矩指數(shù)穩(wěn)定可推出漸近穩(wěn)定,而在文獻中,一般同時關注幾乎必然指數(shù)穩(wěn)定與矩指數(shù)穩(wěn)定性,但實際上它們之間并無必然聯(lián)系,因此,都是分開單獨推證得出相關結論.如果附加一定的條件,比如線性增長條件,則由p階矩指數(shù)穩(wěn)定可推出幾乎必然指數(shù)穩(wěn)定[2].一般而言,p階矩指數(shù)穩(wěn)定可以通過估計解的矩E|x(t,x0)|p來得到,這時需要借助某個適當?shù)腖yapunov函數(shù)V(t,x)來估計EV(t,x(t)),因此Lyapunov方法是研究矩穩(wěn)定的一個很有效的方法.與矩指數(shù)穩(wěn)定性不同,幾乎必然指數(shù)穩(wěn)定是一種軌道穩(wěn)定,它依賴于解的軌道估計,通常有下面三種方法可推出幾乎必然指數(shù)穩(wěn)定:1)由解的矩指數(shù)穩(wěn)定,利用Chebyshev不等式推出解的幾乎必然指數(shù)穩(wěn)定;2)利用非負半鞅收斂定理,直接證明解的幾乎必然指數(shù)穩(wěn)定;3)通過指數(shù)鞅不等式和BorelCantelli引理證明解的幾乎必然指數(shù)穩(wěn)定.

文獻中,對隨機微分方程數(shù)值解穩(wěn)定性的研究,一般采用直接的推證方法,很少套用Lyapunov穩(wěn)定性定理,但其中

同樣含有Lyapunov函數(shù)或者泛函的思想方法.

下面,從模型推廣與方法創(chuàng)新的角度,分別介紹幾類It型隨機微分方程數(shù)值方法穩(wěn)定性研究所取得的進展.

21中立型隨機泛函微分方程

經(jīng)典的It隨機微分方程(SDE)已經(jīng)被許多學者研究[24,2630].隨著科學技術的高速發(fā)展,實踐中的許多領域,如生物工程、機械工程等都涉及到時間滯后的現(xiàn)象.由于時滯帶的存在,系統(tǒng)狀態(tài)的變化不僅與當前的時間狀態(tài)相關,而且還與過去的歷史狀態(tài)有關.從而,誕生了描述這類系統(tǒng)的隨機時滯微分方程:

中提出,其意義是將確定中立型泛函微分方程推廣到隨機中立型泛函微分方程.后來,Mao[3233]分別討論了中立型泛函型隨機微分方程解析解的均方指數(shù)穩(wěn)定性以及運用

Razumikhin技術證明解的指數(shù)穩(wěn)定性.其后,相關學者開展一系列出色的研究工作,如Liao等[34]研究了中立型隨機時滯微分方程解析解的幾乎必然指數(shù)穩(wěn)定性;Luo等[35]為了克服文獻[36]中要求函數(shù)滿足線性增長條件和

時滯為常數(shù),提出局部Lipschitz條件,建立了相應的穩(wěn)定性定理,證明了中立型時滯微分方程解析解的指數(shù)均方穩(wěn)定性;

如果隨機θ方法滿足假設1和假設2.那么,研究θ方法的p階矩指數(shù)穩(wěn)定性可以得到方程(27)解的p階矩指數(shù)穩(wěn)定性.這類結果揭示了:數(shù)值格式的穩(wěn)定性與連續(xù)模型穩(wěn)定性在邏輯上可以互推.因此,這是目前數(shù)值研究中不多見的一種研究思路,

其進一步的研究,也相當具有挑戰(zhàn)性.

4對逼近度方法學術思路的分析

從終極目標看,我們的研究目的是提供可靠的理論保障,使我們能從系統(tǒng)仿真結果推斷系統(tǒng)的漸近性態(tài),如穩(wěn)定性.因此,需要先確定系統(tǒng)解析解與數(shù)值解穩(wěn)定性可以從邏輯上互推的性質,提供嚴密的理論依據(jù).顯然,為實現(xiàn)這類互推,需要建立兩種解之間的關聯(lián),否則,不可能存在互推.而這種關聯(lián),用逼近度描述正好合適,其原因在于:1)我們設計方程求解的數(shù)值格式,分析其逼近度是最主要的一項基礎工作,對我們的需要來說,是順手的事;2)符合互推穩(wěn)定性的需要.所以,在毛學榮教授及其合作者的系列論文中,提出了這類假設,即數(shù)值格式具有高于零階的逼近度,其實就是局部截斷誤差、收斂性[9596].當然,我們也注意到,這類假設直接涉及方程的解析解和數(shù)值解本身,而問題是:我們并不具體知道它們.正是因為方程難以求解,我們才借助數(shù)值計算與仿真.所以,其實這類條件本身是不能直接驗證的.因此,需要采用其他條件對此予以保證,例如Lipschitz條件.在Mao[98]提出一般理論之前,以前的相關文獻直接采用Lipschitz條件,高于零階的逼近度是其自然推論.從這個角度來看,采用Lipschitz條件而不是采用逼近度的假設,更加符合研究結果的描述與驗證.但是,如果有Lipschitz條件,則當然有了高于零階的逼近度,所以,逼近度條件其實更弱.這里,為清晰和比較起見,我們不妨稱逼近度方法所得結果為命題,而采用Lipschitz條件的結果為判據(jù).

5隨機微分方程數(shù)值計算與仿真所面臨的的挑戰(zhàn)

51關于等價性結論與數(shù)值仿真結果的意義與運用

通過數(shù)值仿真真的可以確定系統(tǒng)解析解的穩(wěn)定性嗎? 難!

實際上,當我們在一定條件下建立了解析解與數(shù)值解之間的穩(wěn)定性等價性定理,我們所得的是系統(tǒng)穩(wěn)定性之間的等價性,是系統(tǒng)與系統(tǒng)之間的互推關系,是集合與集合之間的互推關系,而不是兩個系統(tǒng)個別解之間的互推關系.原理上,我們的仿真一次只確定一個解的漸近性態(tài),而一般地,基于一個解的漸近性態(tài),例如就是指數(shù)漸近穩(wěn)定性,我們還是不足以推斷整個數(shù)值格式的穩(wěn)定性,更不能推斷關于解析解的任何性質,哪怕我們就是想推斷一個解的性質,那也不能,因為沒有依據(jù).那么,我們如何從仿真結果確定數(shù)值格式以及原系統(tǒng)解析解系統(tǒng)的穩(wěn)定性呢? 首先,我們需要有等價性結論作基礎; 其次,我們需要確證數(shù)值格式穩(wěn)定.在假設第一個問題已有結論的前提下,我們來看第二個問題,即確定數(shù)值格式穩(wěn)定的難度.為討論方便,我們先放下隨機微分方程,回到確定型方程.簡單說,這個問題其實就是差分格式通解的構成問題.如果差分格式的通解可以由若干互不相關的特解構成,例如就是線性組合,而我們又能確定若干互不相關的特解的漸近性態(tài),那問題就解決了.所以,如果我們的格式是n階常系數(shù)線性差分格式,則需要n個互不相關的特解的漸近性態(tài),也就是說:我們需要n個初值線性無關的特解的仿真結果.當然,如果n=1,一個仿真結果就夠了.但是,如果方程再略微復雜,則難以有如此明確的結論,問題的難度也陡增.例如,如果我們的格式是非線性格式、隨機格式,因為一般不存在關于通解構成的基礎理論,我們就不完全知道需要用多少個特解來確定通解(即便是存在所謂的通解).因此,也就不知道需要用多少個仿真來確定格式的穩(wěn)定性.我們認為:可以用多少個、用什么樣的仿真結果確定數(shù)值格式的穩(wěn)定性從而可以推斷原系統(tǒng)解析解的穩(wěn)定性是一個具有挑戰(zhàn)性的問題.

52面向漸近穩(wěn)定性的等價性結論

因為推導的需要,目前的等價性結論都是面向指數(shù)穩(wěn)定性的.但是,實際上,數(shù)字計算與仿真提供的是具有直觀屬性的數(shù)字與圖形.一般地,從一個仿真結果很難看出一個數(shù)值解是否真的就是指數(shù)穩(wěn)定,只能看出是否是漸近穩(wěn)定.只有面向漸近穩(wěn)定性的等價性結論才有實用價值.因此,我們需要建立面向漸近穩(wěn)定性的等價性結論,而這,其論證難度陡增,也是今后可以考慮但具有相當難度的一個挑戰(zhàn)課題.

結束語與致謝:

由于時間、篇幅和水平所限,本文所綜述的工作只是相關工作中的一點點,難免掛一漏萬,敬請諒解.

在本文寫作過程中,吳付科教授、宋明輝教授、宗小峰博士、劉暐博士、付余老師、楊慧子博士及趙桂華老師等給予了大力指導、支持與協(xié)助.在此,向為本文寫作給予了支持的所有師生表示衷心的感謝.

參考文獻

References

[1]Kloeden P E,Platen E.Numerical solution of stochastic differential equations[M].Springer Verlag Berlin,Germany Google Scholar,1992

[2]Mao X.Stochastic differential equations and applications[M].Elsevier,2007

[3]Kloeden P E,Platen E.Higherorder implicit strong numerical schemes for stochastic differential equations[J].Journal of Statistical Physics,1992,66(1/2):283314

[4]Liang H,Yang Z,Gao J.Strong superconvergence of the EulerMaruyama method for linear stochastic Volterra integral equations[J].Journal of Computational and Applied Mathematics,2017,317:447457

[5]Wang X,Gan S.Weak convergence analysis of the linear implicit euler method for semilinear stochastic partial differential equations with additive noise[J].Journal of Mathematical Analysis and Applications,2013,398(1):151169

[6]Higham D J.Stochastic ordinary differential equations in applied and computational mathematics[J].IMA Journal of Applied Mathematics,2011,76:449474

[7]Higham D J,Mao X,Stuart A M.Strong convergence of Eulertype methods for nonlinear stochastic differential equations[J].SIAM Journal on Numerical Analysis,2002,40(3):10411063

[8]Yu Z.Almost sure and mean square exponential stability of numerical solutions for neutral stochastic functional differential equations[J].International Journal of Computer Mathematics,2015,92(1):132150

[9]Pang S,Deng F,Mao X.Almost sure and moment exponential stability of EulerMaruyama discretizations for hybrid stochastic differential equations[J].Journal of Computational and Applied Mathematics,2008,213(1):127141

[10]Hutzenthaler M,Jentzen A,Kloeden P E.Strong and weak divergence in finite time of Eulers method for stochastic differential equations with nonglobally lipschitz continuous coefficients[J].Proceedings of the Royal Society A Mathematical,Physical and Engineering Sciences,2009,467(2130):15631576

[11]Hutzenthaler M,Jentzen A,Kloeden P E.Strong convergence of an explicit numerical method for SDEs with nonglobally lipschitz continuous coefficients[J].The Annals of Applied Probability,2012:16111641

[12]Hutzenthaler M,Jentzen A.Numerical approximations of stochastic differential equations with nonglobally Lipschitz continuous coefficients[M].American Mathematical Society,2015

[13]Wang X,Gan S.The tamed Milstein method for commutative stochastic differential equations with nonglobally Lipschitz continuous coefficients[J].Journal of Difference Equations and Applications,2013,19(3):466490

[14]Zong X,Wu F,Huang C.Convergence and stability of the semitamed Euler scheme for stochastic differential equations with nonLipschitz continuous coefficients[J].Applied Mathematics and Computation,2014,228:240250

[15]Mao X.The truncated EulerMaruyama method for stochastic differential equations[J].Journal of Computational and Applied Mathematics,2015,290:370384

[16]Mao X.Convergence rates of the truncated EulerMaruyama method for stochastic differential equations[J].Journal of Computational and Applied Mathematics,2016,296:362375

[17]Guo Q,Liu W,Mao X,et al.The partially trumcated EulerMaruyama method and its stability and bounded ness[J].Applied Numerical Mathematics,2017,115:235251

[18]Guo Q,Liu W,Mao X,et al.The truncated milstein method for stochastic differential equations[J].arXiv:1704.04135[math.NA],2017

[19]Zhang Z,Ma H.Orderpreserving strong schemes for SDEs with locally Lipschitz coefficients[J].Applied Numerical Mathematics,2017,112:116

[20]Milstein G N,Tretyakov M V.Stochastic numerics for mathematical physics[M].Springer Science & Business Media,2013

[21]Tretyakov M V,Zhang Z.A fundamental meansquare convergence theorem for SDEs with locally Lipschitz coefficients and its applications[J].SIAM Journal on Numerical Analysis,2013,51(6):31353162

[22]MüllerGronbach T.The optimal uniform approximation of systems of stochastic differential equations[J].The Annals of Applied Probability,2002,12(2):664690

[23]Wang W,Chen Y.Meansquare stability of semiimplicit Euler method for nonlinear neutral stochastic delay differential equations[J].Applied Numerical Mathematics,2011,61(5):696701

[24]Zong X,Wu F,Choice of θ and meansquare exponential stability in the stochastic theta method of stochastic differential equations[J].Journal of Computational and Applied Mathematics,2014,255:837847

[25]Zhou S,Xie S,F(xiàn)ang Z.Almost sure exponential stability of the backward EulerMaruyama discretization for highly nonlinear stochastic functional differential equation[J].Applied Mathematics and Computation,2014,236:150160

[26]Zong X,Wu F,Huang C.Preserving exponential mean square stability and decay rates in two classes of theta approximations of stochastic differential equations[J].Journal of Difference Equations and Applications,2014,20(7):10911111

[27]Huang C.Exponential mean square stability of numerical methods for systems of stochastic differential equations[J].Journal of Computational and Applied Mathematics,2012,236(16):40164026

[28]王小捷.隨機微分方程數(shù)值算法研究[D].長沙:中南大學,2012

WANG Xiaojie.Numerical study of stochastic differential equations[D].Changsha:Central South University,2012

[29]李燕.隨機系統(tǒng)的穩(wěn)定性與數(shù)值策略的研究[D].武漢:華中科技大學,2014

LI Yan.Research on stability and numerical strategy of stochastic systems[D].Wuhan:Huazhong University of Science and Technology,2014

[30]王冠軍.幾類隨機非線性系統(tǒng)的動力學分析[D].南京:東南大學,2009

WANG Guanjun.Dynamical analysis for several classes of stochastic nonlinear systems[D].Nanjing:Southeast University,2016

[31]Kolmanovsky V,Nosov V.Stability of neutraltype functional differential equations[J].Nonlinear Analysis:Theory,Methods & Applications,1982,6(9):873910

[32]Mao X.Exponential stability in mean square of neutral stochastic differential functional equations[J].Systems & Control Letters,1995,26(4):245251

[33]Mao X.Razumikhintype theorems on exponential stability of neutral stochastic differential equations[J].SIAM Journal on Mathematical Analysis,1997,28(2):389401

[34]Liao X,Mao X.Almost sure exponential stability of neutral stochastic differential difference equations[J].Journal of Mathematical Analysis and Applications,1997,212(2):554570

[35]Luo Q,Mao X,Shen Y.New criteria on exponential stability of neutral stochastic differential delay equations[J].Systems & Control Letters,2006,55(10):826834

[36]Mao X.Asymptotic properties of neutral stochastic differential delay equations[J].Stochastics:An International Journal of Probability and Stochastic Processes,2000,68(3/4):273295

[37]胡榮.中立型隨機泛函微分方程解的漸近性質[D].武漢:華中科技大學,2009

HU Rong.Asymptotic properties of solutions of neutral stochastic functional differential equations[D].Wuhan:Huazhong University of Science and Technology,2009

[38]Huang C.Mean square stability and dissipativity of two classes of theta methods for systems of stochastic delay differential equations[J].Journal of Computational and Applied Mathematics,2014,259:7786

[39]Liu L,Zhu Q.Mean square stability of two classes of theta method for neutral stochastic differential delay equations[J].Journal of Computational and Applied Mathematics,2016,305:5567

[40]Zong X,Wu F,Huang C.Exponential mean square stability of the theta approximations for neutral stochastic differential delay equations[J].Journal of Computational and Applied Mathematics,2015,286:172185

[41]Zhou S.Exponential stability of numerical solution to neutral stochastic functional differential equation[J].Applied Mathematics and Computation,2015,266:441461

[42]Zhou S,Hu C.Numerical approximation of stochastic differential delay equation with coefficients of polynomial growth[J].Calcolo,2016:122

[43]李啟勇.幾類隨機延遲微分方程數(shù)值方法的穩(wěn)定性分析[D].長沙:中南大學,2012

LI Qiyong.Stability analysis of numerical methods for several classes of stochastic delay differential equations[D].Changsha:Central South Unirersity,2012

[44]馬強.幾類隨機微分方程的保結構數(shù)值方法[D].哈爾濱:哈爾濱工業(yè)大學,2012

MA Qiang.Structurepreserving numerical methods for several classes of stochastic differential equations[D].Harbin:Harbin Institute of Technology,2012

[45]吳瑞華.幾類隨機種群模型漸近性質的研究[D].哈爾濱:哈爾濱工業(yè)大學,2014

WU Ruihua.Research on asymptotic properties of several stochastic population systems[D].Harbin:Harbin Institute of Technology,2014

[46]Yu Z,Liu M.Almost surely asymptotic stability of numerical solutions for neutral stochastic delay differential equations[J].Discrete Dynamics in Nature and Society,2011,Doi:10.1155/2011/217672

[47]Yu Z.The improved stability analysis of the backward Euler method for neutral stochastic delay differential equations[J].International Journal of Computer Mathematics,2013,90(7):14891494

[48]Zong X,Wu F.Exponential stability of the exact and numerical solutions for neutral stochastic delay differential equations[J].Applied Mathematical Modelling,2016,40(1):1930

[49]Wu F,Mao X.Numerical solutions of neutral stochastic functional differential equations[J].SIAM Journal on Numerical Analysis,2008,46(4):18211841

[50]Wu F,Hu S,Huang C.Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay[J].Systems & Control Letters,2010,59(3):195202

[51]Jankovic S,Jovanovic M.The pth moment exponential stability of neutral stochastic functional differential equations[J].Filomat,2006,20(1):5972

[52]Kats I I,Krasovskii N.On the stability of systems with random parameters[J].Journal of Applied Mathematics and Mechanics,1960,24(5):12251246

[53]Krasovskii N,Lidskii E.Analytical design of controllers in systems with random attributes[J].Automation and Remote Control,1961,22(1/2/3):10211025

[54]Milshtein G N,Repin Y M.The action of a Markov process on a system of differential equations[J].Differentsialnye Uravneniya,1969,5(8):13711384

[55]Yuan C,Mao X.Convergence of the EulerMaruyama method for stochastic differential equations with Markovian switching[J].Mathematics and Computers in Simulation,2004,64(2):223235

[56]Wang L,Xue H.Convergence of numerical solutions to stochastic differential delay equations with Poisson jump and Markovian switching[J].Applied Mathematics and Computation,2007,188(2):11611172

[57]王振東.基于可控馬爾科夫鏈的跳躍系統(tǒng)控制問題研究[D].合肥:中國科學技術大學 ,2014

WANG Zhendong.Control of Markovian jump systems with controllable Markov chain[D].Hefei:University of Science and Technology of China,2014

[58]Li R,Meng H,Dai Y.Convergence of numerical solutions to stochastic delay differential equations with jumps[J].Applied Mathematics and Computation,2006,172(1):584602

[59]Mao X,Yuan C,Yin G.Numerical method for stationary distribution of stochastic differential equations with Markovian switching[J].Journal of Computational and Applied Mathematics,2005,174(1):127

[60]Mao X,Shen Y,Yuan C.Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching[J].Stochastic Processes and their Applications,2008,118(8):13851406

[61]Zhou S,Wu F.Convergence of numerical solutions to neutral stochastic delay differential equations with Markovian switching[J].Journal of Computational and Applied Mathematics,2009,229(1):8596

[62]Mao X.Stability of stochastic differential equations with Markovian switching[J].Stochastic Processes and Their Applications,1999,79(1):4567

[63]Mao X,Yuan C.Stochastic differential equations with Markovian switching[M].World Scientific,2006

[64]Higham D J,Mao X,Yuan C.Preserving exponential meansquare stability in the simulation of hybrid stochastic differential equations[J].Numerische Mathematik,2007,108(2):295325

[65]Mao X,Shen Y,Gray A.Almost sure exponential stability of backward EulerMaruyama discretizations for hybrid stochastic differential equations[J].Journal of Computational and Applied Mathematics,2011,235(5):12131226

[66]Mao X,Szpruch L.Strong convergence rates for backward EulerMaruyama method for nonlinear dissipativetype stochastic differential equations with superlinear diffusion coeffcients[J].Stochastics:An International Journal of Probability and Stochastic Processes,2013,85(1):144171

[67]Higham D J,Kloeden P E.Strong convergence rates for backward Euler on a class of nonlinear jumpdiffusion problems[J].Journal of Computational and Applied Mathematics,2007,205(2):949956

[68]Wang X,Gan S.The improved splitstep backward Euler method for stochastic differential delay equations[J].International Journal of Computer Mathematics,2011,88(11):23592378

[69]Mao X,Yuan C,Yin G.Approximations of EulerMaruyama type for stochastic differential equations with Markovian switching,under nonlipschitz conditions[J].Journal of Computational and Applied Mathematics,2007,205(2):936948

[70]Li R,Meng H,Chang Q.Exponential stability of numerical solutions to SDDEs with Markovian switching[J].Applied Mathematics and Computation,2006,174(2):13021313

[71]Mao X,Matasov A,Piunovskiy A B,et al.Stochastic differential delay equations with Markovian switching[J].Bernoulli,2000,6(1):7390

[72]Higham D J,Kloeden P E.Numerical methods for nonlinear stochastic differential equations with jumps[J].Numerische Mathematik,2005,101(1):101119

[73]Higham D J,Kloeden P E.Convergence and stability of implicit methods for jumpdiffusion systems[J].International Journal of Numerical Analysis and Modeling,2006,3(2):125140

[74]Song M,Yang H,Liu M,et al.Strong convergence of the tamed Euler method for stochastic differential equations with piecewise continuous arguments and Poisson jumps under nonglobally Lipschitz continuous coefficients[J].Filomat,accepted

[75]Wang L,Mei C,Xue H.The semiimplicit Euler method for stochastic differential delay equation with jumps[J].Applied Mathematics and Computation,2007,192(2):567578

[76]Chalmers G D,Higham D J.Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes[J].Discrete and Continuous Dynamical Systems Series B,2008,9(1):4764

[77]趙桂華.幾類帶跳隨機微分方程數(shù)值解的收斂性和穩(wěn)定性[D].哈爾濱:哈爾濱工業(yè)大學,2009

ZHAO Guihua.Convergence and stability of numerical solutions for several classes of stochastic differential equations with jumps[D].Harbin:Harbin Institute of Technology,2009

[78]Fu Y,Zhao W,Zhou T.Multistep schemes for forward backward stochastic differential equations with jumps[J].Journal of Scientific Computing,2016,69(2):651672

[79]Wang X,Gan S.Compensated stochastic theta methods for stochastic differential equations with jumps[J].Applied Numerical Mathematics,2010,60(9):877887

[80]Hu L,Gan S.Convergence and stability of the balanced methods for stochastic differential equations with jumps[J].International Journal of Computer Mathematics,2011,88(10):2089 2108

[81]Li Q,Gan S.Almost sure exponential stability of numerical solutions for stochastic delay differential equations with jumps[J].Journal of Applied Mathematics and Computing,2011,37(1/2):541557

[82]Wu F,Mao X,Szpruch L.Almost sure exponential stability of numerical solutions for stochastic delay differential equations[J].Numerische Mathematik,2010,115(4):681697

[83]Tan J,Wang H.Meansquare stability of the EulerMaruyama method for stochastic differential delay equations with jumps[J].International Journal of Computer Mathematics,2011,88(2):421429

[84]Li Q,Gan S,Wang X.Compensated stochastic theta methods for stochastic differential delay equations with jumps[J].International Journal of Computer Mathematics,2013,90(5):10571071

[85]Jacob N,Wang Y,Yuan C.Stochastic differential delay equations with jumps,under nonlinear growth condition[J].Stochastics:An International Journal of Probability and Stochastics Processes,2009,81(6):571588

[86]Jacob N,Wang Y,Yuan C.Numerical solutions of stochastic differential delay equations with jumps[J].Stochastic Analysis and Applications,2009,27(4):825853

[87]Tan J,Wang H,Guo Y.Existence and uniqueness of solutions to neutral stochastic functional differential equations with Poisson jumps[J].Abstract and Applied Analysis,2012(3):509512

[88]Liu D,Yang G,Zhang W.The stability of neutral stochastic delay differential equations with Poisson jumps by fixed points[J].Journal of Computational and Applied Mathematics,2011,235(10):31153120

[89]Tan J,Wang H,Guo Y,et al.Numerical solutions to neutral stochastic delay differential equations with Poisson jumps under local Lipschitz condition[J].Mathematical Problems in Engineering,2014(1):111

[90]胡琳.幾類帶泊松跳隨機微分方程數(shù)值方法的收斂性與穩(wěn)定性[D].長沙:中南大學,2012

HU Lin.Convergence and stability of numerical methods several classes of stochastic differential equations with Poissondriven jumps[D].Changsha:Central South University,2012

[91]Mo H,Zhao X,Deng F.Exponential meansquare stability of the θmethod for neutral stochastic delay differential equations with jumps[J].International Journal of Systems Science,2017,48(3):462470

[92]Song M,Yang H,Liu M.Convergence and stability of impulsive stochastic differential equations[J].International Journal of Computer Mathematics,2016:19

[93]宗小峰.隨機微分方程的數(shù)值分析及隨機穩(wěn)定化[D].武漢:華中科技大學,2014

ZONG Xiaofeng.Numerical analysis of stochastic differential equations and stochastic stabilization[D].Wuhan:Huazhong University of Science and Technology,2014

[94]Fu Y,Zhao W.An explicit secondorder numerical scheme to solve decoupled forward backward stochastic equations[J].East Asian Journal on Applied Mathematics,2014,4(4):368385

[95]Higham D J,Mao X,Stuart A M.Exponential meansquare stability of numerical solutions to stochastic differential equations[J].LMS Journal of Computation and Mathematics,2003,6:297313

[96]Mao X.,Exponential stability of equidistant EulerMaruyama approximations of stochastic differential delay equations[J].Journal of Computational and Applied Mathematics,2007,200(1):297316

[97]Miloevic′ M.The EulerMaruyama approximation of solutions to stochastic differential equations with piecewise constant arguments[J].Journal of Computational and Applied Mathematics,2016,298:112

[98]Mao X.Almost sure exponential stability in the numerical simulation of stochastic differential equations[J].SIAM Journal on Numerical Analysis,2015,53(1):370389

Abstract

In this paper,a survey is given for the investigation on the stability of numerical schemes of stochastic differential equations in the past years.As a related topic,the convergence of the schemes is involved.The paper introduces the achieved results by literatures for the classical It stochastic differential equations,stochastic functional differential equations of the neutral type, and the stochastic differential equations with Markov or Poisson jumps.The involved numerical schemes include the EulerMaruyama scheme,the Backward EulerMaruyama scheme,the θ scheme,and the splitstep scheme,etc.The paper analyzes the academic thoughts in some classical literatures on the stability equivalence theorems and proposes some problems and challenges for further investigations on the numerical computations and simulations of stochastic differential equations at the end of the paper.

Key wordsstochastic differential equations;numerical schemes;stability;simulations

猜你喜歡
仿真穩(wěn)定性
一類k-Hessian方程解的存在性和漸近穩(wěn)定性
SBR改性瀝青的穩(wěn)定性評價
石油瀝青(2021年4期)2021-10-14 08:50:44
非線性中立型變延遲微分方程的長時間穩(wěn)定性
半動力系統(tǒng)中閉集的穩(wěn)定性和極限集映射的連續(xù)性
一種幫助幼兒車內脫險應急裝置的仿真分析
科技資訊(2016年18期)2016-11-15 20:09:22
Buck開關變換器的基本參數(shù)設計及仿真分析
試析PLC控制下的自動化立體倉庫仿真情況分析
基于MADYMO的航空座椅約束系統(tǒng)優(yōu)化設計
科技視界(2016年18期)2016-11-03 21:44:44
中國體態(tài)假人模型與FAA Hybrid Ⅲ 型假人模型沖擊差異性分析
科技視界(2016年18期)2016-11-03 20:31:49
機械加工仿真技術研究
平定县| 奉节县| 天水市| 山丹县| 曲阜市| 肥乡县| 宜昌市| 忻城县| 金门县| 随州市| 嘉峪关市| 黄山市| 泗水县| 金川县| 监利县| 庆云县| 南陵县| 杨浦区| 宁德市| 呼和浩特市| 德兴市| 历史| 吴旗县| 沁阳市| 阳泉市| 炎陵县| 靖边县| 锡林郭勒盟| 兴义市| 邯郸市| 蓬莱市| 眉山市| 娱乐| 莲花县| 泸定县| 丹东市| 靖安县| 三明市| 积石山| 小金县| 大关县|