周廣龍,楊冬梅,梁佳芮,陳黎,代蕊,張弛,李娜,胡敏*,代解杰*
(1. 云南省第二人民醫(yī)院眼科中心,云南省眼科研究所,昆明 650021;2.中國(guó)醫(yī)學(xué)科學(xué)院醫(yī)學(xué)生物研究所/北京協(xié)和醫(yī)學(xué)院,樹(shù)鼩種質(zhì)資源中心,昆明 650118)
研究報(bào)告
形覺(jué)剝奪樹(shù)鼩視皮質(zhì)17區(qū)的可塑性
周廣龍1,楊冬梅1,梁佳芮1,陳黎1,代蕊1,張弛1,李娜2,胡敏1*,代解杰2*
(1. 云南省第二人民醫(yī)院眼科中心,云南省眼科研究所,昆明 650021;2.中國(guó)醫(yī)學(xué)科學(xué)院醫(yī)學(xué)生物研究所/北京協(xié)和醫(yī)學(xué)院,樹(shù)鼩種質(zhì)資源中心,昆明 650118)
目的 初步探索樹(shù)鼩作為一種新的弱視模型的可行性分析研究;探討形覺(jué)剝奪樹(shù)鼩初級(jí)視皮質(zhì)的可塑性機(jī)制,為進(jìn)一步認(rèn)識(shí)弱視形成及恢復(fù)機(jī)制提供理論依據(jù)。方法 60只出生30 d左右樹(shù)鼩隨機(jī)分為5組(每組12只):右眼縫合1月組;右眼縫合2月組;右眼縫合1月打開(kāi)換縫合左眼1月,即換縫合組;對(duì)照組1, 為A組同齡大小樹(shù)鼩正常環(huán)境飼養(yǎng);對(duì)照組2,為B、C組同齡大小樹(shù)鼩正常環(huán)境飼養(yǎng)。造模完成后進(jìn)行視皮質(zhì)定位取材,觀察不同條件下樹(shù)鼩視皮質(zhì)組織學(xué)、超微結(jié)構(gòu)、神經(jīng)元細(xì)胞凋亡情況以及c-fos 的表達(dá)變化情況。結(jié)果 與對(duì)照組相比各實(shí)驗(yàn)組視皮質(zhì)組織學(xué)及電鏡均出現(xiàn)了不同程度的損害,且縫合2月組損傷更為明顯;凋亡染色顯示實(shí)驗(yàn)組跟對(duì)照組無(wú)差異性;c-fos蛋白及mRNA表達(dá)量在各實(shí)驗(yàn)組均出現(xiàn)了降低,且縫合右眼兩月組表達(dá)量最低,換縫合以后表達(dá)量有一個(gè)小幅度的升高,對(duì)照組間c-fos表達(dá)無(wú)差異性。結(jié)論 不同程度的形覺(jué)剝奪性弱視引起了不同的組織病理學(xué)變化; 弱視引起的神經(jīng)元損傷具有可塑性;樹(shù)鼩可作為形覺(jué)剝奪性弱視的理想動(dòng)物模型。
視皮質(zhì);組織學(xué);可塑性;形覺(jué)剝奪;樹(shù)鼩
弱視是指在視覺(jué)發(fā)育期由于單眼斜視、未矯正的屈光參差、高度屈光不正及形覺(jué)剝奪引起的單眼或雙眼最佳矯正視力低于相應(yīng)年齡的視力,在視覺(jué)關(guān)鍵期內(nèi)經(jīng)過(guò)恰當(dāng)?shù)闹委熀笠暳梢蕴岣呋蚧謴?fù)正常[1]。而形覺(jué)剝奪性弱視是弱視中最嚴(yán)重的一種類(lèi)型[2],治療效果更差。弱視不僅加重國(guó)家及個(gè)人經(jīng)濟(jì)負(fù)擔(dān),還因擇業(yè)受限等影響個(gè)人生活質(zhì)量[3]。
作為弱視神經(jīng)病理學(xué)研究的先驅(qū)Hubel等[4]縫合幼貓的一側(cè)眼瞼,制成弱視動(dòng)物模型,病理觀察發(fā)現(xiàn)接受弱視眼傳入信息的外側(cè)膝狀體相應(yīng)層次的細(xì)胞比接受健眼信息的細(xì)胞數(shù)量減少,體積縮小,同時(shí)大腦皮質(zhì)也同樣是雙眼視細(xì)胞大量減少,甚至只有單眼視細(xì)胞發(fā)育。后期的研究也證實(shí),接受弱視眼信息輸入的外側(cè)膝狀體相應(yīng)層次的細(xì)胞較接受健眼信息的相應(yīng)層細(xì)胞體積縮小18%[5],皮質(zhì)視覺(jué)優(yōu)勢(shì)柱的寬度變小[6],皮質(zhì)神經(jīng)元突觸出現(xiàn)不同程度的退變和萎縮, γ-氨基丁酸 (γ-aminobutyric acid, GABA)能神經(jīng)元減少[7], 當(dāng)打開(kāi)剝奪眼后,盡管其瞳孔反射和視網(wǎng)膜電圖都正常,但剝奪眼仍沒(méi)有視覺(jué),絕大多數(shù)接收剝奪眼視皮質(zhì)細(xì)胞沒(méi)有反應(yīng)。在關(guān)鍵期內(nèi),視覺(jué)剝奪對(duì)視覺(jué)系統(tǒng)發(fā)育造成的影響是不可逆的。然而,在臨床工作中,若在視覺(jué)發(fā)育的關(guān)鍵期對(duì)弱視眼進(jìn)行干預(yù),其視功能可以部分甚至完全恢復(fù)正常。但是弱視發(fā)生和恢復(fù)的病理機(jī)制少有研究。
我們選取與人類(lèi)視覺(jué)系統(tǒng)發(fā)育較接近的樹(shù)鼩為實(shí)驗(yàn)對(duì)象,首先從視皮質(zhì)17區(qū)研究入手,通過(guò)視皮質(zhì)17區(qū)的組織學(xué)、超微結(jié)構(gòu)觀察形覺(jué)剝奪造成的組織學(xué)改變及神經(jīng)元細(xì)胞的超微結(jié)構(gòu)改變,探討視皮質(zhì)細(xì)胞、組織層面的可塑性及弱視的病理發(fā)生機(jī)制;觀察形覺(jué)剝奪是否造成視皮質(zhì)神經(jīng)元的凋亡而影響神經(jīng)元的可塑性;通過(guò)檢測(cè)c-fos蛋白的表達(dá),探討c-fos基因在形覺(jué)剝奪弱視中可能的作用機(jī)制。
1.1 實(shí)驗(yàn)動(dòng)物
分組:實(shí)驗(yàn)選取出生后30 d樹(shù)鼩60只。由中國(guó)醫(yī)學(xué)科學(xué)院醫(yī)學(xué)生物學(xué)研究所樹(shù)鼩種質(zhì)資源中心提供【SCXK(滇)2013-0001】,隨機(jī)分為5組:右眼形覺(jué)剝奪1月組(A組);右眼形覺(jué)剝奪2月組(B組);換遮蓋組(C 組:右眼縫合1個(gè)月打開(kāi),換縫合左眼1個(gè)月);2個(gè)對(duì)照組(D1:A組對(duì)照;D2:B/C組對(duì)照)。同年齡大小正常環(huán)境飼養(yǎng)。每組又分2個(gè)小組:6只用于HE染色、免疫組化、Nissl染色、TUNEL染色;6只用于RT-PCR、電鏡檢測(cè)。
1.2 方法
1.2.1 模型建立
將出生30 d幼年樹(shù)鼩稱(chēng)重后,按50 mg/kg體重腹腔注射1%戊巴比妥鈉全身麻醉,分別自?xún)?nèi)眥至外眥剪除上下眼瞼瞼緣1.5~2.0 mm,縫合上下眼瞼創(chuàng)緣以封閉術(shù)眼。正常對(duì)照組和單眼形覺(jué)剝奪組共同在同等條件下飼養(yǎng)。(見(jiàn)圖1)
1.2.2 HE染色、Nissl染色、c-fos免疫組化染色和TUNEL染色
造模完成后,灌注固定取材,充分暴露上方皮質(zhì),按樹(shù)鼩視皮質(zhì)解剖[8]切取左側(cè)枕葉大腦皮質(zhì)冠狀面,然后組織脫水、石蠟包埋、切片后分別進(jìn)行HE染色、Nissl染色、TUNEL染色、免疫組化染色。(見(jiàn)圖2)
1.2.3 c-fos mRNA
將每組6只樹(shù)鼩稱(chēng)重后,戊巴比妥鈉全身麻醉后,組織剪迅速剪開(kāi)枕葉顱骨,用血管鉗小心咬開(kāi)顱骨,暴露枕葉視皮質(zhì)區(qū)域,參照樹(shù)鼩腦解剖定位[8],剪取初級(jí)視皮質(zhì)腦組織約200 mg,進(jìn)行RNA的抽提、質(zhì)檢、 計(jì)算。
圖1 形覺(jué)剝奪模型建立Fig.1 Establishment of the tree shrew model of form deprivation
圖2 手術(shù)定位及取材部位Fig.2 Surgical localization and sampling site
1.2.4 透射電鏡
戊巴比妥鈉過(guò)量麻醉,脫頸處死,去除枕葉露骨,暴露視皮質(zhì)17區(qū),挖取左側(cè)枕部后緣組織約2 mm×2 mm大小,進(jìn)行電鏡標(biāo)本的制備、觀察、攝片。
1.3 統(tǒng)計(jì)學(xué)分析
2.1 組織學(xué)結(jié)果
縫合右眼1月組:視皮質(zhì)神經(jīng)元多灶性萎縮,神經(jīng)元細(xì)胞數(shù)量減少,局部膠質(zhì)細(xì)胞增生;縫合右眼2月組:皮質(zhì)神經(jīng)元多灶性萎縮,神經(jīng)元細(xì)胞數(shù)量減少,皮質(zhì)局部膠質(zhì)細(xì)胞增生,小灶狀海綿狀變性,部分錐體細(xì)胞變性、水腫;縫合右眼1月打開(kāi)換縫合左眼1月:主要病理變化為視皮質(zhì)神經(jīng)元多灶性萎縮,神經(jīng)元數(shù)量減少,膠質(zhì)細(xì)胞增生。(見(jiàn)圖3)
神經(jīng)元數(shù)量的變化:神經(jīng)元數(shù)量在對(duì)照組1、對(duì)照組2最多,差異無(wú)顯著性(P>0.05)。各實(shí)驗(yàn)組的神經(jīng)元數(shù)量均低于對(duì)照組(P<0.01),各實(shí)驗(yàn)組間神經(jīng)元數(shù)量差異無(wú)顯著性(P>0.05)。(見(jiàn)表1)
表1 各組樹(shù)鼩視皮質(zhì)神經(jīng)元數(shù)量變化對(duì)比分析Tab.1 Comparative analysis of changes in the number of neurons in visual cortex in the tree shrew groups
注:對(duì)照組1與對(duì)照組2、實(shí)驗(yàn)組間比較,P>0.05; 實(shí)驗(yàn)組與對(duì)照組比較,P<0.05。
Note. The control group 2 compared with the control group 1 and between experimental groups,P>0.05; Comparison between the experimental and control groups,P<0.05.
注: a. D1組,正常對(duì)照; b. A組 紅圈為膠質(zhì)細(xì)胞增生,箭頭為神經(jīng)元萎縮; c. D2組,正常對(duì)照; d. B組 紅色箭頭示海綿狀變性; e. B組 紅圈示錐體細(xì)胞變性; f. B組 紅圈示海綿狀變性; g. D2組,正常對(duì)照; h. C組 紅圈示膠質(zhì)細(xì)胞增生; i. C組 紅圈示膠質(zhì)細(xì)胞增生; j. C組,紅色箭頭示神經(jīng)元萎縮。圖3 各組光鏡下視皮質(zhì)神經(jīng)元的變化情況(HE×10)Note. a. Group D1, the control group; b. Group A, the red circle shows glial cell proliferation, the arrow indicates neuronal atrophy; c. Group D2, the control group; d. Group B, the red arrows indicate cavernous degeneration; e. Group B, the red circle shows degeneration of pyramidal cells; f. Group B, the red circles show cavernous degeneration; g. Group D2, the control group; h. Group C, the red circle indicates glial cell proliferation; i. Group C, the red circle indicates glial cell proliferation; j. Group C, the red arrows show neuronal atrophy.Fig.3 Microscopic changes of visual cortical neurons in each group
2.2 電鏡觀察神經(jīng)元細(xì)胞超微結(jié)構(gòu)改變
注:a、b.正常神經(jīng)元; c. A組 神經(jīng)元萎縮,異染色質(zhì)增多(紅圈); d. A組,線粒體腫脹(紅箭頭); e. 線粒體腫脹(紅箭頭); f. B組 神經(jīng)元皺縮、內(nèi)質(zhì)網(wǎng)池形成(紅圈); g. B組髓鞘分離(紅箭頭); h. C組 神經(jīng)元萎縮,內(nèi)質(zhì)網(wǎng)池形成(紅圈); i. C組 神經(jīng)氈水腫(紅箭頭)。圖4 各組電鏡下視皮質(zhì)神經(jīng)元的變化情況Note. a,b. Normal neurons; c. Group A, the red circle indicates neuronal atrophy and abundant heterochromatin;d. Group A, the red arrows indicate mitochondrial swelling;e. Group A, the red arrows indicate mitochondrial swelling;f. Group B, the red circle shows neuron shrinkage, endoplasmic reticulum pool formation;g. Group B, the red arrows show myelin sheath separation;h. Group C, the red circle indicates neuron shrinkage and endoplasmic reticulum pool formation;i. Group C, the red arrows indicate neuropil edema.Fig.4 Ultrastructural changes of visual cortical neurons in the tree shrews of each group
各實(shí)驗(yàn)組均發(fā)現(xiàn)神經(jīng)元細(xì)胞胞核固縮、體積縮小、異染色質(zhì)增多、核不規(guī)則、內(nèi)質(zhì)網(wǎng)池形成,線粒體腫脹,血管周?chē)窠?jīng)氈水腫、淤血,局部髓鞘分離。部分可見(jiàn)早期凋亡細(xì)胞:核染色質(zhì)邊集濃縮。而正常神經(jīng)元細(xì)胞胞核圓潤(rùn)、飽滿,核膜完整,染色質(zhì)均勻,線粒體嵴規(guī)則、無(wú)皺縮。(見(jiàn)圖4)
2.3 TUNEL染色檢測(cè)視皮質(zhì)神經(jīng)元凋亡情況
光鏡下,TUNEL染色陽(yáng)性細(xì)胞為細(xì)胞核中有棕黃色顆粒為陽(yáng)性細(xì)胞,而在各實(shí)驗(yàn)組及對(duì)照組中僅見(jiàn)視皮質(zhì)個(gè)別(1~2)神經(jīng)元細(xì)胞染色陽(yáng)性,各組間未見(jiàn)明顯差異。(見(jiàn)圖5)
2.4 免疫組化染色觀察c-fos蛋白水平表達(dá)變化
光鏡下,c-fos蛋白免疫陽(yáng)性細(xì)胞發(fā)生在神經(jīng)元的細(xì)胞核,呈棕黃色,視皮質(zhì)各層均可見(jiàn)陽(yáng)性細(xì)胞且萎縮的神經(jīng)元細(xì)胞均無(wú)染色,以第III、IV層多見(jiàn)。c-fos陽(yáng)性細(xì)胞在對(duì)照組1、對(duì)照組2表達(dá)最強(qiáng),差異無(wú)顯著性(P>0.05)。各實(shí)驗(yàn)組的表達(dá)均低于對(duì)照組,其中右眼縫合2月組(B組)表達(dá)量最低,換縫合組(C組)表達(dá)量高于A、B組。其平均光密度值在A組為(0.4767±0.02201),B組為(0.4033±0.01498),C組為(0.5400±0.1238),跟正常組相比差異均有顯著性(P<0.01)。實(shí)驗(yàn)組各組間表達(dá)差異有顯著性(P<0.01)。(見(jiàn)圖6、7)
2.5 實(shí)時(shí)熒光定量PCR(RT-PCR)檢測(cè)c-fos mRNA表達(dá)變化
c-fos mRNA 在各組視皮質(zhì)中均有表達(dá)。c-fos mRNA在右眼縫合1月組(A組)的相對(duì)表達(dá)量為(0.4543±0.02682),右眼縫合2月組(B組)為(0.3078±0.02864),換縫合組(C組)為(0.6080±0.01564),對(duì)照組1(D1組)為(1.1287±0.05852),對(duì)照組2(D2組)為(1.1377±0.05078)。單因素方差分析各實(shí)驗(yàn)組跟對(duì)照組相比c-fos mRNA的表達(dá)量均有顯著下降(P<0.05)。其中B組較A組下降明顯(P<0.05),C組較A組有明顯升高(P<0.05),C組較B組有明顯升高(P<0.01)。對(duì)照組間差異無(wú)顯著性(P=0.873>0.05)。(見(jiàn)圖8)
3.1 樹(shù)鼩形覺(jué)剝奪性弱視模型可行性
本研究的研究對(duì)象選取的是跟人類(lèi)血緣關(guān)系較密切的樹(shù)鼩為實(shí)驗(yàn)對(duì)象,其研究結(jié)果用于人類(lèi)的可信度大大增加。我們的研究結(jié)果表明:樹(shù)鼩視皮質(zhì)V1區(qū)在形覺(jué)剝奪模型中出現(xiàn)了明顯的形態(tài)學(xué)改變,傳統(tǒng)弱視的研究模型大多選用貓、大鼠為研究對(duì)象,而貓和大鼠的視覺(jué)系統(tǒng)跟人差距較大,其研究結(jié)果的可信度大大降低;猴雖然跟人類(lèi)視覺(jué)系統(tǒng)較接近,研究結(jié)果的可信度也較高,但其價(jià)格昂貴,研究成本高,且受到倫理的限制;而樹(shù)鼩與靈長(zhǎng)類(lèi)相比,其上丘相對(duì)較大,而且分層明確,已有研究表明:樹(shù)鼩上丘參與了弱視的發(fā)病機(jī)制[9]。初級(jí)視皮層上錐體細(xì)胞的分支類(lèi)型與靈長(zhǎng)類(lèi)動(dòng)物類(lèi)似,其分支和棘突比嬰猴和獼猴多。樹(shù)鼩的初級(jí)視覺(jué)皮層也含有順序排列的朝向性選擇柱,與靈長(zhǎng)類(lèi)相似,但是大鼠沒(méi)有類(lèi)似結(jié)構(gòu)及形態(tài)分布。樹(shù)鼩為晝行性動(dòng)物,視網(wǎng)膜以錐體細(xì)胞為主(占96%),顏色識(shí)別能力較強(qiáng),一些研究表明:樹(shù)鼩已初步具有雙眼視覺(jué)或立體視覺(jué)[10]。Petry等[11]用顯微分光光度測(cè)定法發(fā)現(xiàn)樹(shù)鼩存在兩種視錐細(xì)胞,即長(zhǎng)波長(zhǎng)敏感視錐細(xì)胞(long-wavelength sensitive cones, LWS),占97.05%;短波長(zhǎng)敏感視錐細(xì)胞(short-wavelength sensitive cones, SWS),占2.95%。近年來(lái),有學(xué)者[12]對(duì)樹(shù)鼩進(jìn)行了全基因組的測(cè)序,發(fā)現(xiàn)樹(shù)鼩在神經(jīng)及免疫系統(tǒng)與人類(lèi)有較高的同源性。因此,樹(shù)鼩的視覺(jué)系統(tǒng)與靈長(zhǎng)類(lèi)接近,是研究人類(lèi)視覺(jué)相關(guān)行為的較好的模式動(dòng)物。
3.2 單眼形覺(jué)剝奪樹(shù)鼩視皮質(zhì)17區(qū)組織學(xué)及超微結(jié)構(gòu)
有研究表明:在弱視眼的視網(wǎng)膜上并沒(méi)有解剖和生理上的顯著區(qū)別[13],類(lèi)似的,人們發(fā)現(xiàn)在外側(cè)膝狀體神經(jīng)元細(xì)胞反應(yīng)基本正常[14],然而,外側(cè)膝狀體上細(xì)胞形態(tài)的改變顯著:在接受縫合眼輸入的外膝體層次,細(xì)胞胞體只有正常的一半[15],但這些形態(tài)的改變不足以解釋在動(dòng)物和人類(lèi)弱視中生理功能的改變。人們普遍認(rèn)為:弱視眼早期功能和解剖的異常所導(dǎo)致的行為缺失,主要發(fā)生在皮質(zhì)的V1區(qū)[16]以及后來(lái)的研究工作[17、18],都說(shuō)明了異常的視覺(jué)經(jīng)驗(yàn)導(dǎo)致了V1區(qū)功能特征和解剖結(jié)構(gòu)的變化。并且這種改變?cè)谠缙谛斡X(jué)剝奪性弱視動(dòng)物模型比屈光參差或斜視性弱視模型中更加嚴(yán)重。
本研究發(fā)現(xiàn)單眼形覺(jué)剝奪造成了樹(shù)鼩雙側(cè)視皮質(zhì)不同程度的組織學(xué)損害,主要表現(xiàn)為:視皮質(zhì)神經(jīng)元多灶性萎縮,神經(jīng)元細(xì)胞數(shù)量減少,伴膠質(zhì)細(xì)胞增生。而神經(jīng)膠質(zhì)細(xì)胞分布在神經(jīng)元和神經(jīng)纖維束之間,其作用是支持營(yíng)養(yǎng)神經(jīng)元,推測(cè)膠質(zhì)細(xì)胞增生是弱視形成一種代償機(jī)制。在縫合右眼2月組除上述變化外還出現(xiàn)了小灶狀海綿狀變性及部分錐體細(xì)胞變性、水腫;推測(cè)其可能為重度弱視的病理學(xué)基礎(chǔ)。縫合右眼1月打開(kāi)換縫合左眼1月:主要病理變化為膠質(zhì)細(xì)胞增生、神經(jīng)元細(xì)胞萎縮,未見(jiàn)小灶狀海綿狀變性及錐體細(xì)胞變性、水腫,提示反轉(zhuǎn)縫合在一定程度上抑制了形覺(jué)剝奪引起的進(jìn)一步損害。
圖5 各組視皮質(zhì)神經(jīng)元的凋亡情況 (TUNEL染色,×40)Fig.5 Apoptosis in cortical neurons in the tree shrews of each group
圖6 各組視皮質(zhì)神經(jīng)元c-fos蛋白免疫組化染色情況(HE×40)Fig.6 Expression of c-fos protein in cortical neurons of the tree shrews of each group. Immunohistochemical staining.
圖7 各組 c-fos 蛋白平均光密度值比較Fig.7 Comparison of average optical density of c-fos protein in each group.A.Control 1.B.Control 2.C.The right cye sutured for 1 month.D.The right cye sutured for 2 months.E.The alternate suture group.
圖8 各組c-fos mRNA相對(duì)含量Fig.8 Relative content of mRNA c-fos in each group A,B,C,D,E.The same as in the Fig.7.
視皮質(zhì)電鏡表現(xiàn)為:實(shí)驗(yàn)組各組均出現(xiàn)了神經(jīng)元細(xì)胞胞核固縮、體積縮小、異染色質(zhì)增多、核不規(guī)則、內(nèi)質(zhì)網(wǎng)池形成,線粒體腫脹,血管周?chē)窠?jīng)氈水腫、淤血,局部髓鞘分離。神經(jīng)組織電鏡特點(diǎn)顯示神經(jīng)元的損害是一種退行性改變,當(dāng)損害因素去除后神經(jīng)元細(xì)胞可以恢復(fù)正常,具有可塑性。右眼縫合2月較縫合1月神經(jīng)元損傷的程度加重。邵立功等[19]研究弱視貓三級(jí)神經(jīng)元及其突觸的超微結(jié)構(gòu)也發(fā)現(xiàn):視皮質(zhì)17區(qū)神經(jīng)元超微結(jié)構(gòu)特征表明神經(jīng)元的損害具有可逆性。近年來(lái)也有研究通過(guò)給予弱視貓多巴胺甲酯可以使受損的神經(jīng)元恢復(fù)正常[20]。
實(shí)驗(yàn)組組織學(xué)及電鏡發(fā)現(xiàn)在換縫合以后仍然出現(xiàn)了神經(jīng)元的損害,其原因是遮蓋右眼是引起的神經(jīng)元未恢復(fù)還是遮蓋左眼引起了新的神經(jīng)元損害?或者二者同時(shí)存在?還需要進(jìn)一步的研究加以證實(shí)。樹(shù)鼩嬰兒期的范圍是從出生到生后30 d,最早從第35天精子發(fā)生的開(kāi)始,到第90天完成精子的發(fā)生[21];而我們開(kāi)始反轉(zhuǎn)縫合的時(shí)間是在樹(shù)鼩生后第60天,大概是在兒童期;因此,出生60 d的樹(shù)鼩仍有可能對(duì)形覺(jué)剝奪敏感,可能是反轉(zhuǎn)縫合引起了新的損害,或者并未引起新的損害,而是舊的損害未恢復(fù),或者新舊損害同時(shí)存在。究竟是什么原因所致,還需要后期實(shí)驗(yàn)加以證實(shí)。
3.3 凋亡
有研究[22]發(fā)現(xiàn)形覺(jué)剝奪引起了外膝體細(xì)胞的凋亡,從而導(dǎo)致外膝體細(xì)胞數(shù)量的急劇減少。我們的HE結(jié)果也顯示了視皮質(zhì)17區(qū)神經(jīng)元數(shù)量的減少,但是視皮質(zhì)凋亡染色在實(shí)驗(yàn)組跟對(duì)照組均出現(xiàn)了散在凋亡細(xì)胞(1~2個(gè)),無(wú)明顯差異性,推測(cè)為與形覺(jué)剝奪無(wú)關(guān)的神經(jīng)元細(xì)胞的正常程序性死亡,考慮可能是形覺(jué)剝奪抑制了神經(jīng)元數(shù)量的增加而引起視皮質(zhì)神經(jīng)元數(shù)量的相對(duì)減少,并非為視皮質(zhì)神經(jīng)元凋亡所引起,這也是神經(jīng)元細(xì)胞可塑性的前提。
3.4 視皮質(zhì)c-fos蛋白及c-fos mRNA的表達(dá)變化
有研究[23]對(duì)樹(shù)鼩進(jìn)行不同顏色的光刺激,用免疫組織化學(xué)方法檢測(cè)發(fā)現(xiàn)不同顏色的光刺激引起了視皮質(zhì)V1區(qū)c-fos蛋白表達(dá)量的不同,推測(cè)c-fos蛋白水平的免疫組化檢測(cè)可作為中樞神經(jīng)系統(tǒng)神經(jīng)元形態(tài)功能、神經(jīng)元活動(dòng)標(biāo)志的有利工具。另有學(xué)者[24]研究發(fā)現(xiàn)不同發(fā)育階段的大鼠其c-fos的表達(dá)也存在差異:其中從出生到生后16 d,c-fos mRNA處于一個(gè)較高水平的表達(dá),表達(dá)最高的是在胚胎期第18天的腦膜和生后第30天的大腦皮質(zhì)和小腦,而整個(gè)大腦的表達(dá)水平在生后30 d趨于穩(wěn)定,并能維持一年半左右,而在出生后第50天有一個(gè)短暫的降低,可能跟青春期的開(kāi)始有關(guān)。
本實(shí)驗(yàn)免疫組化方法及RT-PCR方法檢測(cè)發(fā)現(xiàn):c-fos蛋白表達(dá)量及mRNA相對(duì)定量在實(shí)驗(yàn)組各組較對(duì)照組均下降,縫合右眼兩月組下降更明顯,換縫合組表達(dá)量較縫合1月組及縫合2月組表達(dá)量均明顯上升,且實(shí)驗(yàn)組萎縮神經(jīng)元細(xì)胞表達(dá)均陰性,提示c-fos蛋白參與了弱視的形成及恢復(fù),并揭示了弱視具有可塑性。正常對(duì)照組之間c-fos的表達(dá)無(wú)顯著差異,說(shuō)明c-fos蛋白在出生后2個(gè)月與出生后3個(gè)月階段的表達(dá)較恒定。
綜上所述,本實(shí)驗(yàn)通過(guò)樹(shù)鼩單眼形覺(jué)剝奪模型的建立,闡述了弱視損傷及恢復(fù)相應(yīng)的組織學(xué)及超微結(jié)構(gòu)變化,推測(cè)弱視發(fā)生及恢復(fù)可能的病理機(jī)制,這些組織學(xué)及超微結(jié)構(gòu)的特征提示我們形覺(jué)剝奪引起的神經(jīng)元損傷具有可恢復(fù)性,也就是神經(jīng)元具有可塑性;凋亡檢測(cè)并未發(fā)現(xiàn)神經(jīng)元明顯的凋亡現(xiàn)象,是神經(jīng)元可塑性的前提;樹(shù)鼩的進(jìn)化地位、視皮質(zhì)的解剖特點(diǎn)及我們的實(shí)驗(yàn)結(jié)果顯示形覺(jué)剝奪引起了視皮質(zhì)的明顯損害都說(shuō)明了樹(shù)鼩可以作為良好的形覺(jué)剝奪弱視模型,并揭示c-fos基因和蛋白可能參與了形覺(jué)剝奪視皮質(zhì)神經(jīng)元的損傷及可塑性,為臨床治療弱視提供理論依據(jù)和新的治療思路,也為今后進(jìn)一步研究樹(shù)鼩視錐細(xì)胞可塑性及視皮質(zhì)可塑性關(guān)系問(wèn)題做鋪墊。
[1] 李鳳明,謝立信. 中華眼科學(xué) [M]. 北京:人民衛(wèi)生出版社. 第三版,2014.3007、3024.
[2] McKee SP, Levi DM, Movshon JA. The pattern of visual deficits in amblyopia [ J ]. Vis. 2003(3): 380-405.
[3] van de Graaf ES, van der Sterre GW, Polling JR, et al. Amblyopia & Strabismus Questionnaire: Design and initial validation [J]. Strabismus. 2004,12: 181-193.
[4] Hubel DH, Wiesel TN. Receptive field, binocular interaction and functional architecture in the cat’s visual cortex [J]. J Physiol 1962, 160: 106-154.
[5] Norcia AM, Hale J, Pettet MW, et al. Disparity tuning of binocular facilitation and suppression after normal versus abnormal visual development [J]. Invest Ophthalmol Vis Sci. 2009,50: 1168-1175.
[6] Bi H, Zhang B, Tao X, et al. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia [J]. Cereb Cortex. 2011(21): 2033-2045.
[7] 邵立功, 章應(yīng)華. 弱視貓外側(cè)膝狀體γ-氨基丁酸能神經(jīng)元變化的免疫細(xì)胞化學(xué)研究 [J]. 中華眼科雜志 1994, 30(6): 437-440.
[8] Wong P, Kaas JH. Architectonic subdivisions of neocortex in the tree shrew(Tupaiabelangeri) [J]. Anat Rec, 2009, 292: 994-1027.
[9] Shi XF, Xu LM, Li Y, et al. Fixational saccadic eye movements are altered in anisometropic amblyopia [J]. Restor Neurol Neurosci, 2012, 30(6): 445-462.
[10] 鄭永唐,姚永剛,徐林. 樹(shù)鼩基礎(chǔ)生物學(xué)與疾病模型 [M]. 云南:云南科技出版社. 第1版. 2014,(59、151).
[11] Petry HM, Harosi FI. Visual pigments of the tree shrew and greater galago: a microspectrophotometric investigation [J]. Vision Res, 1990, 30(6): 839-851.
[12] Fan Y, Huang ZY, Cao CC, et al. Genome of the Chinese tree shrew [J]. Nature Communications, 2013, 4: 1426.(Dio : 10.1038/ncomms2416).
[13] Szigeti A, Tatrai E, Szamosi A, et al. A morphological study of retinal changes in unilateral amblyopia using optical coherence tomography image segmentation [J]. PLoS One, 2014, 9 e88363.
[14] Zele AJ, Wood JM, Girgenti CC. Magnocellular and parvocellular pathway mediated luminance contrast discrimination in amblyopia [J]. Vision Res. 2010, 50: 969-976.
[15] Wiesel TN, Hubel DH. Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body [J]. J Neurophysiol. 1963, 26: 978-993.
[16] Wiesel TN, Hubel DH. Single-cell responses in striate cortex of kittens deprived of vision in one eye [J]. J Neurophysiol. 1963, 26: 1003-1017.
[17] Hubel DH, Wiesel TN, LeVay S. Plasticity of ocular dominance columns in monkey striate cortex [J]. Philos Trans R Soc Lond B Biol Sci. 1977, 278: 377-409.
[18] Wiesel TN. Postnatal development of the visual cortex and the influence of environment [J].Nature. 1982, 299: 583-591.
[19] 邵立功,章應(yīng)華,張東杲. 弱視貓視覺(jué)系統(tǒng)三級(jí)神經(jīng)元及其突觸的超微結(jié)構(gòu)研究 [J]. 中華眼科雜志,1994,30(1): 53-56.
[20] Li R, Liang T, Chen ZN, et al. L-Dopa methyl ester attenuates amblyopia-induced neuronal injury in visual cortex of amblyopic cat [J]. Gene, 2013, 527: 115-122.
[21] Collins PM, Tsang WN. Growth and reproductive development in the male tree shrew (Tupaia belangeri) from birth to sexual maturity [J]. Biol Reprod, 1987, 37: 261-267.
[22] Nucci C, Morrone L, Rombola L, et al. Multifaceted roles of nitric oxide in the lateral geniculate nucleus: from visual signal transduction to neuronal apoptosis [J]. Toxicol Lett, 2003, 139: 163-173.
[23] Poveda A, Kretz P. c-fos expression in the visual system of the tree shrew (Tupaiabelangeri) [J]. J Chem Neuroanat, 2009, 37: 214-228.
[24] Herrere DG, Robertson HA. Activation of c-fos in the brain [J]. Progr Neurobiol, 1996, 50(2-3): 83-107.
Plasticity of the visual cortex area 17 after form deprivation in tree shrews
ZHOU Guang-long1,YANG Dong-mei1,LIANG Jia-rui1,CHEN Li1,DAI Rui1,ZHANG Chi1,LI Na2,HU Min1*,DAI Jie-jie2*
(1. Department of Ophthalmology, the Second People’s Hospital of Yunnan Province & the Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021,China;2. Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tree Shrew Germplasm Resource Center, Kunming 650018)
Objective To preliminarily explore the feasibility of tree shrew as a new kind of animal model in research of amblyopia, to discuss the primary visual cortex plasticity mechanism of form deprivation in tree shrew, and to provide a theoretical basis for further understanding the mechanism of amblyopia formation and recovery. Methods Sixty 30-days old tree shrews were divided into five groups, 12 in each group: the group A had the right eye sutured for 1 month; the group B had the right eye sutured for 2 months; the group C had the left eye sutured for 1 month and then opened and the righ eye was sutured for 1 month, in other words, the group C was performed by alternating suture; the tree shrews of control group 1 (D1) were in the same age as the the group A, but fed in normal breeding environment; the tree shrews of control group 2 (D2) were at the same age of groups B and C, but fed with a normal diet. Samples of the visual cortex were taken after the completion of modeling, and were processed to observe the histology and ultrastructure of the visual cortex, the neuron apoptosis, and the c-fos protein expression in the tree shrews of different groups. Results Damages to different degrees were found by histological and electron microscopic examination of the visual cortex in each experimental group, and they were more obvious in the group sutured for 2 months. TUNEL staining showed that there were no significant differences between the apoptosis in the experimental and control groups. The expression of c-fos mRNA and protein in the experimental groups was decreased, and it was the lowest in the group sutured for 2 months. There was a small increase in the c-fos expression after the alternate suture, and no significant difference of c-fos expression was found in the control groups. Conclusions Different degrees of deprivation amblyopia lead to different histopathological changes. There is a plasticity in the neurons affected by amblyopia. Tree shrew can be used as an ideal animal model for the studies of form deprivation amblyopia.
Visual cortex; Plasticity, neurons; Form deprivation; Amblyopia; Histology; Ultrastructure; Tree shrew
HU Min, E-mail: fudanhumin@sina.com;DAI Jie-jie, E-mail: 278206145@qq.com
國(guó)家科技支撐計(jì)劃項(xiàng)目 (2014BAI01B01);云南省聯(lián)合支持國(guó)家計(jì)劃項(xiàng)目(2015GA009);國(guó)家自然科學(xué)基金(81560168);云南省科技計(jì)劃項(xiàng)目(2014FA017)。
周廣龍 (1985 - ),男, 碩士研究生, 研究方向: 斜視弱視小兒眼病。E-mail: 1127564996@qq.com
胡敏。E-mail: fudanhumin@sina.com;代解杰。E-mail: 278206145@qq.com
Q95-33
A
1005-4847(2017) 02-0123-09
10.3969/j.issn.1005-4847.2017.02.003
2016-12-08