楊朝武,何光武,趙炳輝
MR彌散加權(quán)成像評估大鼠缺血性腎臟結(jié)構(gòu)及功能損傷的實驗研究
楊朝武1,何光武1,趙炳輝2*
目的與SPECT腎功能成像及病理學(xué)、MRI平掃及增強(qiáng)檢查對照,探討MR彌散加權(quán)成像(diffusion weighted imaging, DWI)評估大鼠缺血性腎臟結(jié)構(gòu)及功能損傷的價值。材料與方法選取24只雄性SD大鼠制作左側(cè)腎動脈狹窄模型,分別行雙腎99Tcm-DTPA腎顯像測量腎小球濾過率(glomerular filtration rate,GFR)及3.0 T磁共振DWI、T1WI、T2WI及MRI增強(qiáng)檢查并進(jìn)行圖像分析。DWI的b值分別采用0、800、1000、1200、1500 s/mm2掃描,并測量表觀彌散系數(shù)值(apparent diffusion coefficient,ADC),分別測量三次取平均值,比較雙側(cè)腎臟實質(zhì)ADC值差異,分析ADC值與SPECT腎顯像 GFR相關(guān)性。統(tǒng)計學(xué)方法分別采用配對樣本t檢驗及非參數(shù)Spearman相關(guān)分析。結(jié)果腎實質(zhì)(ROI包括皮、髓質(zhì)) ADC值與GFR呈正相關(guān)(P=0.001,r=0.584);雙腎皮質(zhì)ADC值比較t=4.626,P=0.001;雙腎髓質(zhì)ADC值比較t=2.699,P=0.019,均有明顯差異性。DWI可顯示腎臟局灶性缺血損傷及重度缺血損傷腎萎縮。結(jié)論MR DWI作為腎臟的無創(chuàng)影像學(xué)檢查方法,對評估腎功能及結(jié)構(gòu)損傷有一定價值,有助于中晚期腎損傷評估,對減少潛在對比劑腎損傷有較大價值。
缺血性腎損傷;腎功能不全;磁共振成像;彌散加權(quán)成像
彌散加權(quán)成像(diffusion weighted imaging,DWI)是目前唯一無創(chuàng)測定活體組織水分子彌散過程的檢查技術(shù),表觀彌散系數(shù)(apparent diffusion coefficient ,ADC)可以在微觀水平反映宏觀組織的結(jié)構(gòu)特點。腎臟由于其特殊的解剖結(jié)構(gòu),為DWI用于腎臟檢查提供了基礎(chǔ),而將其用于評估腎功能損害研究較少。本研究使用西門子3.0 T磁共振掃描儀,采用大鼠腎動脈狹窄模型,評估DWI結(jié)合ADC評價缺血性腎結(jié)構(gòu)及功能損傷的價值。
1.1 實驗對象一般資料
對大鼠的所有處置符合中國相關(guān)法規(guī),并遵守中國實驗動物保護(hù)和安樂死規(guī)定。總計24只雄性SD大鼠,每只重350~450 g,腹腔注射氯胺酮麻醉(100 mg/kg體重,mg/kg),消毒后,腹部左旁縱向切口,游離左腎動脈、腎靜脈、神經(jīng)和結(jié)締組織,選取一根絲線(3-0)環(huán)繞腎動脈注意不要損壞周圍血管,然后用一個針頭(21~23 G)以角度為“L”放在左腎動脈水平,用絲線結(jié)扎腎動脈及針頭,抽出針頭造成左腎動脈輕中度狹窄。右腎和右腎動脈不作處理,依次縫合腹膜、肌肉和皮膚。大鼠蘇醒后,放回籠中繼續(xù)飼養(yǎng)2~4周。在MRI常規(guī)平掃結(jié)束后,立即進(jìn)行DWI,結(jié)束后進(jìn)行MR增強(qiáng)掃描及99Tcm-DTPA SPECT腎顯像檢查。
1.2 影像學(xué)資料
1.2.1 MRI機(jī)器設(shè)備
使用3.0 T磁共振掃描儀(Verio,西門子醫(yī)療解決方案,德國),小動物專用線圈,25℃室溫掃描, T1WI橫斷面、T2WI冠狀面和橫斷面。冠狀面T2WI:TR 1300 ms,TE 92 ms,層厚2 mm,層間隔0 mm,F(xiàn)OV 250 mm×250 mm,矩陣256×256;橫斷面T2WI:TR 1300 ms,TE 92 ms,層厚2 mm,層間隔0 mm,F(xiàn)OV 180 mm× 180 mm,矩陣 256×256;橫斷面T1WI:TR 140 ms,TE 2.77 ms,層厚2 mm,層間隔0 mm,F(xiàn)OV 180 mm×180 mm,矩陣 256×256。根據(jù)前期預(yù)實驗經(jīng)驗,冠狀面DWI偽影較多,不易控制,因此選擇DWI橫斷面掃描,圖像質(zhì)量較為滿意;既往研究表明,較大b值反映更多的彌散信息,兼顧圖像信噪比,筆者選取多b值掃描。DWI掃描采用平面回波成像(echo planar imaging,EPI)序列,掃描參數(shù):TR 5200 ms,TE 88 ms,F(xiàn)OV 180 mm×180 mm,矩陣80×80,層厚2 mm,層間距0 mm。b值取0、800、1000、1200、1500 s/mm2。
1.2.2 DWI圖像分析及ADC值測量
MRI常規(guī)平掃結(jié)束后,立即進(jìn)行DWI,完成后機(jī)器軟件自動生成ADC圖,數(shù)據(jù)傳輸至工作站,利用機(jī)器自帶軟件VIEW進(jìn)行ADC值測量。選取腎上部、腎門、腎下部三個層面,避開腎竇脂肪、腎盂及壞死灶。先測量腎實質(zhì)(包括腎皮、髓質(zhì)) ADC值,ROI為10 mm×10 mm,大小形狀保持一致;然后分別測量皮質(zhì)、髓質(zhì)ADC值,ROI為5 mm×5mm,形狀大小保持一致,數(shù)據(jù)取平均值后作為后期統(tǒng)計數(shù)據(jù)。
1.2.399Tcm-DTPA腎顯像GFR計算
每只大鼠MR掃描后間隔16~20 h行SPECT掃描,尾靜脈彈丸式注入2 mCi (74 MBq)99Tcm-DTPA (99Tcm噴替酸;Mallinckrodt公司,黑茲爾伍德,美國),然后1.5 ml生理鹽水沖洗導(dǎo)管,連續(xù)掃描15 min。選取冠狀面動態(tài)圖像,窗寬20%、能峰140 keV、矩陣128×28,像素為4.3 mm× 4.3 mm。顯像前,將顯像注射劑置于探頭前方支架上,長徑垂直探頭面計數(shù),用完后同樣條件對用畢注射器再進(jìn)行計數(shù),兩者相減得注入總記數(shù)率。最初1.5 min每3 s采集一幀圖像,后13.5 min每6 s采集一幀圖像,設(shè)備自帶軟件計算GFR。
1.3 統(tǒng)計學(xué)方法
采用SPSS 16.0軟件進(jìn)行統(tǒng)計分析,根據(jù)損傷腎小球和腎小管比率取平均值后分為四度:1度:嚴(yán)重(13只),>50%;2度:中度(8只),≤50%且>10%;3度:輕度(11只),≤10%且>0%;4度:正常(16只),0%?;贏DC圖得出腎實質(zhì)(包括皮、髓質(zhì)) ADC值后,分別計算每組平均ADC值。與GFR相關(guān)性采用Spearman相關(guān)分析;兩腎皮、髓質(zhì)間ADC值比較采用兩配對樣本t檢驗。所有P值均為雙側(cè)檢驗,P<0.05為差異有統(tǒng)計學(xué)意義。
2.1 大鼠腎臟缺血損傷的MRI表現(xiàn)
腎動脈狹窄程度的不同可造成不同程度的腎臟損傷。在輕、中度損傷中,MRI主要表現(xiàn)為腎臟腫脹增大,T1WI、T2WI可顯示皮髓質(zhì)分界不清,DWI信號增高,ADC值減低,增強(qiáng)后延遲強(qiáng)化,部分可出現(xiàn)局灶性壞死;在重度損傷中,腎臟實質(zhì)明顯萎縮,髓質(zhì)損傷明顯,T2WI及DWI可見皮髓質(zhì)彌漫信號增高且分界不清,ADC值減低,增強(qiáng)后可成環(huán)形囊壁樣強(qiáng)化(圖1,2)。
2.2 MR DWI與SPECT腎顯像相關(guān)性分析結(jié)果
如表1所示,將腎損害程度分為四級(嚴(yán)重、中度、輕度、正常),MR DWI ADC值與SPECT腎顯像GFR顯著相關(guān),相關(guān)系數(shù)r=0.584,ADC值在一定程度上可以反映腎損害程度。
2.3 雙腎皮質(zhì)、髓質(zhì)MR DWI ADC值比較結(jié)果
如表2所示,將雙腎皮、髓質(zhì)ADC值分別比較,差異均有統(tǒng)計學(xué)意義,患腎皮、髓質(zhì)ADC值較右側(cè)對照腎臟均減低。
3.1 DWI用于腎臟檢查研究現(xiàn)狀及在腎動脈狹窄性腎病(renal arterial stenosis,RAS)中潛在價值
圖1 為一只大鼠圖像,其左腎腎小球和腎小管損傷比率小于10%,屬于輕度損傷。對照側(cè)右腎圖像(A、B)皮、髓質(zhì)顯示清楚。左腎圖像(C、D)冠狀面腎門層面T2WI (C)顯示左腎皮髓質(zhì)分界不清;T1WI增強(qiáng)(D)顯示低強(qiáng)化(箭頭),提示灶性缺血損傷圖2 為另一只大鼠圖像,其左腎腎小球和腎小管損傷比率大于50%,屬于重度損傷。對照側(cè)右腎圖像(A、B)皮、髓質(zhì)顯示清楚。左腎圖像(C、D)冠狀面腎門層面T2WI (C)顯示左腎皮質(zhì)明顯萎縮,髓質(zhì)結(jié)構(gòu)不清,信號增高;T1WI增強(qiáng)(D)顯示皮質(zhì)重度萎縮,髓質(zhì)未見強(qiáng)化,提示髓質(zhì)廣泛損傷Fig. 1 The ratio of the injury of the left glomerular and the left renal tubular is smaller than 10%, which is the mild injury. The cortex and the medulla of the right kidney, which is the contrast (A, B), is clear. The boundaries of the cortex and the medulla of the left kidney are unclear at the coronal axis of the left renal hilum with the signal T2WI (C). The low signal, which is signed by the arrow, shows low intensif i cation at T1WI (D). That indicates focal ischemic injury.Fig. 2 The ratio of the injury of the left glomerular and the left renal tubular is more than 50%, which is the severe injury. The cortex and the medulla of the right kidney, which is the contrast (A, B), is clear. The renal cortex of the left kidney is atrophy at the coronal axis of the left renal hilum with the signal T2WI (C). The tissue of the renal medulla is unclear and signal is enhancement. The cortex is severe atrophy and the signal of the medullar is not enhancement, which indicates the renal medullar is widely injury (D).
目前臨床常用腎功能檢測方法存在各種局限性,臨床更需要無創(chuàng)的、無放射性損害的、敏感性強(qiáng)的、可重復(fù)的新的腎功能檢測方法。DWI可對水分子彌散運動進(jìn)行測量,反映機(jī)體微觀結(jié)構(gòu)信息,得到其他檢查方法不能得到的功能信息。ADC是DWI掃描得到的定量參數(shù),反映水分子的彌散程度。既往的研究表明,對腎臟進(jìn)行DWI檢查并測量腎臟ADC值具有很好的可信度及可重復(fù)性[1]。近年來有研究表明,DWI結(jié)合ADC值在評價某些疾病腎功能異常及腎組織損害方面是可行的[2]。有研究發(fā)現(xiàn)ADC值與肌酐清除率明顯正相關(guān),認(rèn)為DWI可作為有前景的非侵入性工具評估腎功能[3]。Xu等[4]對腎功能損害患者在1.5T MRI相關(guān)研究也表明,DWI測量的腎臟ADC值與99Tcm-DTPA腎動態(tài)顯像測定GFR之間存在較好的正相關(guān)性(r=0.709),濾過功能受損者的腎臟ADC值低于正常腎臟者。其他相關(guān)研究也認(rèn)為腎損傷GFR下降時、ADC值也下降[5]。Thoeny等[6]研究發(fā)現(xiàn),由于磁共振成像單元和序列技術(shù)的改進(jìn),人們對無創(chuàng)性且無對比劑成像技術(shù)需求進(jìn)一步加大,特別是腎功能不全患者,DWI成像技術(shù)滿足了這一需求。ADC值提供了量化的彌散和灌注信息,可用于急性或慢性腎功能衰竭患者腎功能的評價,腎功能損害導(dǎo)致ADC值降低。急性輸尿管梗阻、腎動脈狹窄均可導(dǎo)致ADC值降低。對于腎盂腎炎患者,可表現(xiàn)為彌漫性或局灶性信號強(qiáng)度的變化,在高b值圖像中,DWI信號強(qiáng)度增加對應(yīng)ADC圖信號減低。對腎移植患者DWI的可重復(fù)性和可行性已經(jīng)得到證實,認(rèn)為是有前途的腎功能評價方式。通過對文獻(xiàn)的復(fù)習(xí),筆者發(fā)現(xiàn)將DWI用于RAS腎功能損傷評估相關(guān)研究報道較少見,具備潛在價值。
表1 MR DWI ADC值與SPECT腎顯像GFR相關(guān)性分析Tab. 1 The analysis of the correlation between ADC of DWI and GFR in99Tcm-DTPA SPECT
表2 雙腎皮、髓質(zhì)ADC值比較Tab. 2 The comparison of the ADC of cortex and medulla
3.2 DWI及ADC值分析
DWI結(jié)合ADC值可定量反映微血管灌注及細(xì)胞外間隙水分子彌散,較大的b值具有較大的彌散權(quán)重,對水分子的彌散運動更敏感,并引起較大的信號下降,但b值越大,圖像信噪比也相應(yīng)下降,ADC值除與b值的選擇有關(guān)外,肢體的移動、脈搏的搏動、組織的顫動、呼吸以及微循環(huán)的灌注均可引起ADC值的改變,優(yōu)化采樣b值,可以提高DWI和ADC值的準(zhǔn)確性[7-8]。以往的研究表明,DWI檢查采用較低b值(10~300) s/mm2時,其 ADC易受局部血流和尿液流動的影響[9],為了最小化腎小球毛細(xì)血管灌注和腎小管尿液流動ADC值測量產(chǎn)生的影響,同時兼顧圖像質(zhì)量。本研究以大鼠單側(cè)腎動脈狹窄模型作為研究對象,采用多b值(b值分別為800,1000,1200,1500 s/mm2)來計算ADC值,圖像質(zhì)量較為滿意。結(jié)果顯示,3.0 T MR DWI序列ADC值與SPECT 腎顯像GFR有明顯的相關(guān)性,相關(guān)系數(shù)r=0.584,認(rèn)為ADC值可作為評估大鼠腎功能損傷的有潛力無創(chuàng)影像學(xué)指標(biāo),且ADC值下降的程度與腎功能損傷的程度一致。Yildirim等[10]對人腎動脈狹窄患者和正常對照者對比后發(fā)現(xiàn)腎動脈狹窄的患者腎臟ADC值均低于正常對照者,認(rèn)為DWI可幫助判斷腎動脈狹窄患者腎臟功能損害,與本研究結(jié)果觀點一致,但其未對ADC值與GFR相關(guān)性進(jìn)行比較。同時,筆者發(fā)現(xiàn)作為對照的右側(cè)24只腎臟中,病理學(xué)檢查腎小球及腎小管損害比率為0%的有16只,另外8只腎臟輕度損害的有7只(損害比率≤10%),中度損害1只(10%<損害比率≤50%),原因可能跟筆者制定的正常標(biāo)準(zhǔn)(損害比率0%)比較高有關(guān),另外MRI檢查對比劑及SPECT腎顯像示蹤劑的使用或其他未知因素也可能造成腎臟的損害。本研究還對大鼠雙腎皮、髓質(zhì)ADC值分別進(jìn)行了測量,對比后發(fā)現(xiàn)皮、髓質(zhì)ADC值差異均有統(tǒng)計學(xué)意義(雙腎皮質(zhì)比較,t=4.626,P=0.001;雙腎髓質(zhì)比較t=2.699,P=0.019)。分析腎實質(zhì)缺血可同時導(dǎo)致腎皮、髓質(zhì)損傷,造成組織水分子彌散功能下降,DWI呈高信號,ADC值減低。有研究表明,腎功能損害腎臟間質(zhì)纖維化時,包括成纖維細(xì)胞在內(nèi)的細(xì)胞數(shù)目會增多,可造成ADC值下降,認(rèn)為ADC值也可作為一個敏感的、無創(chuàng)的腎間質(zhì)纖維化潛在檢測指標(biāo)[11]。本研究中大鼠腎發(fā)生缺血損傷后,腎單位變性、纖維化也可能是造成ADC值下降的一個原因。另有研究表明,許多其他腎臟疾病也可以改變組織ADC值,諸如腎臟良、惡性腫瘤、囊腫等[12-14]。本研究還將不同程度缺血性腎臟損傷大鼠的常規(guī)T2WI、DWI、T1WI增強(qiáng)圖像進(jìn)行了對照(圖1,2),發(fā)現(xiàn)DWI在顯示腎組織局灶性壞死方面較敏感,有一定價值。另外DWI序列腎臟皮、髓質(zhì)分界消失,整個腎臟呈現(xiàn)彌漫大片高信號可能提示腎功能損害嚴(yán)重。
3.3 相較其他方法DWI評價腎功能優(yōu)缺點
目前腎功能主要影像學(xué)檢查方法SPECT腎顯像,需要使用放射性示蹤劑99Tcm-DTPA,其潛在機(jī)體放射損害特別是腎功能損傷受到較多關(guān)注,其反復(fù)腎功能跟蹤檢測受到限制。而以IVP、CTU為代表的X線檢查,不僅存在患者受電離輻射的缺點,對比劑潛在腎損傷也越來越受到重視。MRI增強(qiáng)掃描雖然不存在電離輻射,但也需使用對比劑,常用的低劑量的Gd-DTPA腎損害風(fēng)險雖然很小,但不使用對比劑的影像學(xué)檢查方法是目前研究的重點,其對腎臟結(jié)構(gòu)及功能的評估受到越來越多的重視。DWI作為MR功能成像的一種,無需使用對比劑,不存在對比劑潛在腎損害,無放射性損害,可重復(fù)多次檢查,相較SPECT 腎顯像及其他使用對比劑的檢查方法具有優(yōu)勢,特別適合腎功能重度受損患者檢查,另外對腎移植患者腎功能隨訪也有一定價值。有研究將腎移植患者術(shù)后以肌酐清除率大小進(jìn)行分組,行DWI檢查并測量ADC值,發(fā)現(xiàn)ADC值與肌酐清除率明顯正相關(guān),認(rèn)為DWI作為非侵入性工具評估腎功能很有前景,ADC值≥2.1×10-3mm2/s可作為預(yù)測移植腎功能基本正常的閾值,且DWI可重復(fù)檢查,可作為遠(yuǎn)期隨訪有價值的影像學(xué)方法[15]。
當(dāng)然,DWI也存在諸多局限性,其圖像分辨率不夠高,易受呼吸運動、血管搏動及胃腸蠕動影響,通常需要將DWI結(jié)合MRI其他序列圖像共同觀察才能得出診斷。其他MR功能成像方法也在研究中,BOLD、DTI、PWI等MR功能成像方法用于評估腎功能相關(guān)研究近年來也取得了一定進(jìn)展[16-18]。腎動脈狹窄所致腎缺血缺氧損傷可導(dǎo)致慢性腎病(chronic kidney disease,CKD),而CKD的最后共同病理學(xué)改變是腎間質(zhì)纖維化,DWI用于評估腎間質(zhì)纖維化的研究有少量報道[19-21]。
總之,DWI作為無創(chuàng)傷性評估缺血性腎損傷的手段,其價值受到更多重視,筆者認(rèn)為,多b值DWI及ADC測定是定量評估缺血性腎損傷的有前景的重要手段,其有待更進(jìn)一步的后續(xù)研究。
[References]
[1] Cutajar M, Clayden JD, Clark CA, et al. Test-retest reliability and repeatability of renal diffusion tensor MRI in healthy subjects. Eur J Radiol, 2011, 80(3): 263-268.
[2] Kocyi?ita A, Bayrama R, Yükselb S, et al. Diffusion weighted magnetic resonance imaging of kidneys in children with vesicoureteral ref l ux. Eur J Radiol, 2014, 83(1): 56- 60.
[3] Palmucci S, Mauro LA, Veroux P, et al. Magnetic resonance with diffusion-weighted imaging in the evaluation of transplanted kidneys: preliminary fi ndings. Transplant Proc, 2011, 43(4): 960-966.
[4] Xu Y, Wang X, Jiang X. Relationship between the renal apparent diffusion coefficient andglomerular filtration rate: preliminary experience. J Magn Reson Imaging, 2007, 26(3): 678-681.
[5] Toya R, Naganawa S, Kawai H, et al. Correlation between estimated glomerular filtration (eGFR) and apparent diffusion coefficient (ADC) values of the kidneys. Magn Reson Med Sci, 2010, 9(2): 59-64.
[6] Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology, 2011, 259 (1): 25-38.
[7] Wittsack HJ, Lanzman RS, Quentin M. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle investigative. Radiology, 2012, 47(4): 226-230.
[8] Zhang JL, Sigmund EE, Rusinek H, et al. Optimization of b-value sampling for diffusion-weighted imaging of the kidney. Magn Reson Med, 2012, 67(1): 89-97.
[9] Yamada I, Aung W, Himeno Y, et al. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology, 1999, 210(3): 617-623.
[10] Yildirim E, Kirbas I, Teksam M, et al. Diffusion-weighted MR imaging of kidneys in renal artery stenosis. Eur J Radiol, 2008, 65(1): 148-153.
[11] Togao O, Doi S, Kuro-o M, et al. Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology, 2010, 255(3): 772-780.
[12] Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol, 2006, 187(6): 1521-1530.
[13] Taouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrastenhanced MR imaging. Radiology, 2009, 251(5): 398-407.
[14] Zhang J, Tehrani YM, Wang L, et al. Renal masses: characterization with diffusion-weighted MR imaging: a preliminary experience. Radiology, 2008, 247(2): 458-464.
[15] Palmucci S, Mauro LA, Veroux P, et al. Magnetic resonance with diffusion-weighted imaging in the evaluation of transplanted kidneys: preliminary fi ndings. Transplant Proc, 2011, 43(4): 960-966.
[16] Hueper K, Hartung D, Gutberlet M, et al. Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy. Invest Radiol, 2012, 47(7): 430-437.
[17] Lu L, Sedor JR, Gulani V, et al. Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol, 2011, 34(5): 476-482.
[18] Shi H, Duan RP, Sun YP, et al. The value of MR perfusion weighted imaging in normal and abnormal kidneys. Chin J Radiol, 2008, 42(10): 1064-1068.史浩, 段瑞萍, 孫永平. MR灌注成像在正常腎和腎臟疾病中的應(yīng)用價值. 中華放射學(xué)雜志, 2008, 42(10): 1064-1068.
[19] Barnes JL, Glass WF. Renal interstitial fibrosis: a critical evaluation of the origin of myof i broblasts. Contrib Nephrol, 2011(3), 169: 73-93.
[20] Togao O, Doi S, Kuro-o M, et al. Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology, 2010, 255(3): 772-780.
[21] Thoeny HC, Grenier N. Science to practice: can diffusion-weighted MR imaging findings be used as biomarkers to monitor the progression of renal fi brosis? Radiology, 2010, 255(3): 667-668.
Experimental study on DWI in identifying ischemic renal impairment and dysfunction in rats
YANG Chao-wu1, HE Guang-wu1, ZHAO Bing-hui2*
1Department of Radiology, Baoshan Branch of Shanghai First People's Hospital, Shanghai 200940, China
2Department of Radiology, Shanghai Tenth People's Hospital, Shanghai 200072, China
*Correspondence to: Zhao BH, E-mail: binghuizhao@163.com
ACKNOWLEDGMENTSThis research is supported by the Baoshan District healthy youth medical talents training program in Shanghai (No. bswsyq-2016a05).
Objective:To investigate diffusion weighted imaging (DWI) in evaluating renal impairment and dysfunction in rats due to unilateral renal arterial stenosis (RAS), contrast to99Tcm-DTPA SPECT Renograhy and pathology.Materials and Methods:The model of the unilateral left RAS was created in twenty-four rats according to the approved protocol. The renal impairment and dysfunction were subsequently measured by99Tcm-DTPA SPECT based on the glomerular fi ltration rate (GFR), DWI based on the apparent diffusion coeff i cient (ADC) value after two, three and four weeks. The b value of DWI was scanned under the 0 s/mm2, 800 s/mm2, 1200 s/mm2and 1500 s/mm2respectively. As well the average values of ADC of the renal medulla and cortex parenchyma were calculated respectively and compared. The relationship between GFR and the imaging based on99Tcm-DTPA SPECT were detected. TheSpearman's correlation test and the paired-samplesttest were adopted in statistics.Results:The values of ADC of renal parenchyma (ROI including medulla and cortex) had a signif i cant positive correlation with GFR (P=0.001,r=0.584). The values of ADC of the cortical and medulla were signif i cant different between the two kidneys (cortex:t=4.626,P=0.001; medulla:t=2.699,P=0.019).Conclusions:The DWI based on ADC is significant to evaluate the renal impairment and dysfunction, which is helpful to detect the late period of renal ischemic injury and reduce the renal injury caused by contrast agent.
Ischemic renal injury; Renal insuff i ciency; Magnetic resonance imaging
上海市寶山區(qū)衛(wèi)生青年醫(yī)學(xué)人才培養(yǎng)計劃項目(編號:bswsyq-2016a05)
1. 上海市第一人民醫(yī)院寶山分院放射科,上海 200940
2. 上海市第十人民醫(yī)院放射科,上海200072
趙炳輝,E-mail:binghuizhao@163. com
2016-10-10
接受日期:2017-01-08
R445.2;R692
A
10.12015/issn.1674-8034.2017.03.012
楊朝武, 何光武, 趙炳輝. MR彌散加權(quán)成像評估大鼠缺血性腎臟結(jié)構(gòu)及功能損傷的實驗研究. 磁共振成像, 2017, 8(3): 223-227.
Received 10 Oct 2016, Accepted 8 Jan 2017