張忠霞,邱會(huì)卿,孫美玉,韓冰,王銘維
丹參多酚酸對(duì)慢性束縛應(yīng)激后小鼠認(rèn)知功能障礙的改善作用及相關(guān)機(jī)制
張忠霞,邱會(huì)卿,孫美玉,韓冰,王銘維
目的 探討丹參多酚酸對(duì)慢性束縛應(yīng)激后小鼠認(rèn)知功能障礙的改善作用及相關(guān)機(jī)制。方法 采用3個(gè)月齡健康雄性昆明小鼠,隨機(jī)分為對(duì)照組、應(yīng)激組和丹參多酚酸干預(yù)組(SA組),每組14只小鼠。對(duì)照組和應(yīng)激組小鼠每日腹腔注射生理鹽水,SA組小鼠每日腹腔注射丹參多酚酸注射液;應(yīng)激組和SA組小鼠每日腹腔注射后,束縛制動(dòng)8 h,連續(xù)14 d。采用新異物體識(shí)別試驗(yàn)(NORT)、Morris水迷宮試驗(yàn)檢測(cè)小鼠學(xué)習(xí)記憶能力的改變。采用HE染色觀察海馬神經(jīng)元形態(tài)的改變。分別采用免疫組化法和實(shí)時(shí)熒光定量PCR檢測(cè)海馬腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)蛋白及mRNA的表達(dá)。 結(jié)果 應(yīng)激組小鼠NORT試驗(yàn)識(shí)別期對(duì)新物體的探索時(shí)間及新異物體差異指數(shù)均明顯低于對(duì)照組和SA組(均P<0.05)。應(yīng)激組小鼠Morris水迷宮試驗(yàn)每日逃避潛伏期均明顯長(zhǎng)于對(duì)照組和SA組,第5 d探索平臺(tái)次數(shù)明顯少于對(duì)照組和SA組(均P<0.05)。HE染色結(jié)果顯示,對(duì)照組小鼠海馬神經(jīng)元形態(tài)完整,未見明顯變化;應(yīng)激組小鼠海馬神經(jīng)元細(xì)胞體積縮小,部分神經(jīng)元細(xì)胞呈泡狀改變;SA組可見到核輕度不規(guī)則,細(xì)胞形態(tài)接近于對(duì)照組神經(jīng)元。應(yīng)激組小鼠BDNF蛋白陽(yáng)性細(xì)胞數(shù)和mRNA相對(duì)表達(dá)量均明顯少于對(duì)照組和SA組(均P<0.05)。結(jié)論 丹參多酚酸干預(yù)能明顯預(yù)防慢性束縛應(yīng)激引起的認(rèn)知功能損傷,其可能機(jī)制是能夠抑制慢性應(yīng)激所致海馬BDNF表達(dá)的下降。
慢性束縛應(yīng)激;丹參多酚酸;認(rèn)知功能障礙;腦源性神經(jīng)營(yíng)養(yǎng)因子
應(yīng)激是機(jī)體在各種內(nèi)外環(huán)境因素及社會(huì)、心理因素刺激時(shí)所出現(xiàn)的全身性非特異性適應(yīng)反應(yīng),又稱為應(yīng)激反應(yīng)[1]。長(zhǎng)期慢性應(yīng)激會(huì)導(dǎo)致認(rèn)知功能的損傷,同時(shí)會(huì)引起神經(jīng)內(nèi)分泌系統(tǒng)和大腦蛋白的改變[2]。但是,應(yīng)激影響認(rèn)知的確切機(jī)制尚不清楚,臨床也缺乏有效的預(yù)防和治療藥物。丹參多酚酸具有多種藥理學(xué)作用,如抗炎、抗氧化、改善循環(huán)、清除自由基和神經(jīng)保護(hù)等作用,不良反應(yīng)少,具有良好的臨床應(yīng)用潛力[3-5]。但目前尚未見其用于改善應(yīng)激后認(rèn)知功能障礙的報(bào)道。本實(shí)驗(yàn)采用小鼠慢性束縛應(yīng)激模型,觀察小鼠認(rèn)知功能的改變,并應(yīng)用丹參多酚酸,觀察其對(duì)小鼠認(rèn)知功能的影響,并探討其可能的機(jī)制。
1.1 材料
1.1.1 實(shí)驗(yàn)動(dòng)物 選取3個(gè)月齡雄性、健康、清潔級(jí)昆明種小鼠42只,體質(zhì)量(28±2)g,動(dòng)物合格證號(hào)醫(yī)動(dòng)字第1303025號(hào),購(gòu)于河北醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心,單位許可證號(hào)SCXK冀2008-1-003。
1.1.2 主要儀器與試劑 新異物體識(shí)別實(shí)驗(yàn)檢測(cè)裝置及ANY-maze圖像追蹤系統(tǒng)購(gòu)于上海欣軟信息科技有限公司,SLY-WMS Morris水迷宮及其分析系統(tǒng)購(gòu)于安徽淮北正華生物儀器有限公司;正置熒光顯微鏡購(gòu)于日本NIKON公司,石蠟切片、展片、烤片機(jī)均購(gòu)于德國(guó)LEICA公司;兔抗小鼠腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)抗體購(gòu)于英國(guó)Abcam公司,SP兔來源免疫組化試劑盒及DAB顯色劑均購(gòu)于北京中杉金橋生物技術(shù)有限公司,RNA提取試劑盒購(gòu)于成都福際生物技術(shù)有限公司,cDNA第一鏈合成試劑盒及熒光定量預(yù)混試劑購(gòu)于天根生化科技有限公司,引物及堿基由生工生物工程上海股份有限公司合成,注射用丹參多酚酸為天津天士力之驕藥業(yè)有限公司提供。
1.2 方法
1.2.1 動(dòng)物分組及處理 所有動(dòng)物于標(biāo)準(zhǔn)條件下飼養(yǎng),室溫(20±2)℃,濕度(50±5)%,所有動(dòng)物在非應(yīng)激期自由攝食和飲水。每12 h交替光照。實(shí)驗(yàn)動(dòng)物在預(yù)適應(yīng)1周后,隨機(jī)分為3組,每組14只小鼠。(1)對(duì)照組:每日腹腔注射0.9%生理鹽水,10 ml/kg,連續(xù)14 d;(2)應(yīng)激組:每日腹腔注射0.9%生理鹽水,10 ml/kg,然后給予8 h(9:00~17:00)束縛應(yīng)激刺激,連續(xù)14 d;(3)丹參多酚酸干預(yù)組(SA組):每日腹腔注射配置濃度為6 mg/ml的丹參多酚酸溶液10 ml/kg,然后給予8 h(9:00~17:00)束縛應(yīng)激刺激,連續(xù)14 d。束縛應(yīng)激刺激方法:使用50 ml離心管,在離心管底壁前端、側(cè)壁和瓶蓋扎數(shù)個(gè)孔,保證空氣通暢,使呼吸、排泄均不受限,而且不會(huì)感到疼痛。小鼠頭部朝向離心管底部鉆入,尾部蓋上管蓋,封閉后的離心管固定于水平地面上,使頭部略高于尾部,以便尿液的排出。
1.2.2 新異物體識(shí)別試驗(yàn)(NORT) 束縛應(yīng)激刺激結(jié)束后,采用NORT檢測(cè)各組小鼠的認(rèn)知功能。測(cè)試裝置為長(zhǎng)寬高均為50 cm的正方體不透明盒子,正上方有照明,以避免明暗光線的差異對(duì)動(dòng)物探索行為造成干擾;用來辨識(shí)的物體A、B為紅色等大長(zhǎng)方體,C為粉色六邊體,固定置于箱底。測(cè)試前首先將小鼠置于空盒內(nèi)適應(yīng)30 min。在熟悉期,于盒子的兩側(cè)放置物體A和B,將小鼠背對(duì)物體放置在物體A、B之間,觀察并記錄5 min內(nèi)小鼠對(duì)每個(gè)物體的探索時(shí)間,之后將動(dòng)物放回原來的鼠籠。間隔1 h后,進(jìn)行識(shí)別期測(cè)試。將物體B更換為新物體C,記錄小鼠在5 min內(nèi)對(duì)物體A和新物體C的探索時(shí)間。每次測(cè)試結(jié)束,測(cè)試物體及測(cè)試箱都分別用75%乙醇進(jìn)行擦拭,以消除氣味對(duì)小鼠探索行為和探索物體時(shí)間產(chǎn)生的影響。采用探索新物體的時(shí)間和新異物體的差異指數(shù)(DR)作為學(xué)習(xí)記憶的檢測(cè)指標(biāo)。DR=探索新物體C的時(shí)間/(探索新物體C的時(shí)間+探索舊物體A的時(shí)間),探索時(shí)間越長(zhǎng),DR越大,說明學(xué)習(xí)記憶能力越好。
1.2.3 Morris水迷宮試驗(yàn) Morris水迷宮由一直徑1.2 m、高0.5 m的圓形水池和安裝于正上方的自動(dòng)攝像系統(tǒng)組成,水池被池壁上4個(gè)等距離點(diǎn)均分為4個(gè)象限。一直徑0.14 m、高0.2 m的透明平臺(tái)置于水下1.5~2 cm處,并保持固定。前4 d進(jìn)行定位航行試驗(yàn),每日將小鼠分別從水迷宮的4個(gè)象限面向池壁放入水中,記錄其從入水到爬上平臺(tái)的時(shí)間,即逃避潛伏期。每次的最大潛伏期設(shè)置為120 s,若在設(shè)置時(shí)間內(nèi)未找到,則記為120 s。將4次的算術(shù)平均值記為當(dāng)日的成績(jī)。第5 d進(jìn)行空間探索試驗(yàn)。將水下的平臺(tái)撤掉,記錄小鼠120 s內(nèi)游過原平臺(tái)位置的次數(shù)。
1.2.4 HE染色 行為學(xué)測(cè)試結(jié)束后,腹腔給予各組小鼠水合氯醛(0.3 ml/100 g)進(jìn)行麻醉,4%體積分?jǐn)?shù)的多聚甲醛灌注固定,脫水、透明、浸蠟、包埋,制作石蠟切片。切片脫蠟后經(jīng)HE染色,梯度乙醇脫水,二甲苯透明處理后,用中性樹膠封片。光鏡下觀察海馬神經(jīng)元形態(tài)的改變。
1.2.5 免疫組化染色及圖像分析 取材和組織處理同1.2.4,石蠟切片經(jīng)二甲苯和梯度乙醇進(jìn)行脫蠟和水化處理,微波修復(fù),加兔抗小鼠BDNF抗體(1∶100),進(jìn)行常規(guī)免疫組織化學(xué)染色,DAB染色后,進(jìn)行蘇木素復(fù)染,最后經(jīng)梯度乙醇脫水干燥,二甲苯透明,用中性樹膠封片,采集圖像并保存。以海馬區(qū)神經(jīng)元胞漿出現(xiàn)棕色顆粒為陽(yáng)性反應(yīng),計(jì)數(shù)BDNF染色陽(yáng)性的細(xì)胞。每只小鼠取5張切片,每張切片在高倍視野下計(jì)數(shù)海馬區(qū)每個(gè)不重復(fù)視野陽(yáng)性細(xì)胞數(shù),得出5張切片的平均值為1只小鼠的細(xì)胞數(shù)。各組小鼠選擇切片的部位相同。
1.2.6 實(shí)時(shí)熒光定量PCR 行為學(xué)測(cè)試結(jié)束后取材,在冰臺(tái)上迅速剝離出新鮮海馬組織,按試劑盒說明提取海馬總RNA,進(jìn)行RNA純度和濃度鑒定。以提取的總RNA為模板,按試劑盒的說明反轉(zhuǎn)錄成cDNA。實(shí)時(shí)熒光定量PCR所用引物及堿基為:BDNF:F 5′-AGC TGA GCG TGT GTG ACA GT-3′,R 5′-ACC CAT GGG ATT ACA CTT GG-3′;GAPDH:F 5′-CCC CAA TGT ATC CGT TGTG-3′,R 5′-CTC AGT GTA GCC CAG GAT GC-3′。PCR反應(yīng)體系(20 μl體系):2×SuperReal PreMix Plus 10 μl;正向引物(10 μM) 0.6 μl;反向引物(10 μM) 0.6 μl;cDNA模板1 μl;50×ROX Reference DyeΔ 0.4 μl;RNase-free ddH2O 7.4 μl。PCR反應(yīng)程序:95℃ 15 min預(yù)變性→40個(gè)循環(huán)→95℃ 10 s變性→60℃ 32 s退火/延伸,采集熒光。實(shí)驗(yàn)數(shù)據(jù)根據(jù)目的基因和參考基因各自的Ct值,采用2-ΔΔCt法計(jì)算出各樣品中目的基因的相對(duì)表達(dá)量。
2.1 各組小鼠認(rèn)知功能的比較 見表1、表2。在NORT試驗(yàn)中,各組小鼠熟悉期探索時(shí)間差異均無統(tǒng)計(jì)學(xué)意義(均P>0.05);應(yīng)激組小鼠識(shí)別期對(duì)物體C的探索時(shí)間及DR均明顯低于對(duì)照組和SA組(均P<0.05)。在Morris水迷宮試驗(yàn)中,應(yīng)激組小鼠每日逃避潛伏期均明顯長(zhǎng)于對(duì)照組和SA組,第5 d探索平臺(tái)次數(shù)明顯少于對(duì)照組和SA組(均P<0.05)。
表1 各組小鼠NORT試驗(yàn)成績(jī)的比較(x±s,n=14)組別熟悉期探索時(shí)間(s)物體A物體B識(shí)別期探索時(shí)間(s)物體A物體CDR對(duì)照組18.3±3.319.1±3.017.3±2.220.1±2.40.56±0.15應(yīng)激組20.3±2.619.5±2.116.6±3.412.4±3.7*0.41±0.17*SA組17.5±3.217.8±3.315.5±2.317.6±2.3△0.57±0.16△ 注:與對(duì)照組比較*P<0.05;與應(yīng)激組比較△P<0.05
表2 各組小鼠Morris水迷宮試驗(yàn)成績(jī)的比較(x±s,n=14)組別第1d逃避潛伏期(s)第2d逃避潛伏期(s)第3d逃避潛伏期(s)第4d逃避潛伏期(s)第5d探索平臺(tái)次數(shù)(次)對(duì)照組21.6±5.317.9±6.011.3±4.26.1±2.37.6±2.7應(yīng)激組28.3±6.4*24.5±7.1*17.6±5.4*13.8±3.7*4.4±2.4*SA組23.5±7.2△19.5±5.8△13.5±5.3△9.6±3.3△6.7±1.8△ 注:與對(duì)照組比較*P<0.05;與應(yīng)激組比較△P<0.05
2.2 各組小鼠海馬神經(jīng)元形態(tài)的比較 見圖1。HE染色結(jié)果顯示,對(duì)照組小鼠海馬區(qū)細(xì)胞排列整齊有序,細(xì)胞核呈圓形或橢圓形,形態(tài)完整,核染色質(zhì)均勻未見明顯變化;應(yīng)激組小鼠海馬神經(jīng)元細(xì)胞體積縮小,部分神經(jīng)元細(xì)胞呈泡狀改變;SA組可見到核輕度不規(guī)則,細(xì)胞形態(tài)接近于對(duì)照組神經(jīng)元。
2.3 各組小鼠海馬BDNF蛋白表達(dá)的比較 見圖2、表3。應(yīng)激組小鼠BDNF蛋白陽(yáng)性細(xì)胞數(shù)明顯少于對(duì)照組和SA組(均P<0.05)。
2.4 各組小鼠海馬BDNF mRNA表達(dá)的比較 見表3。應(yīng)激組小鼠BDNF mRNA相對(duì)表達(dá)量明顯少于對(duì)照組和SA組(均P<0.05)。
圖1 各組小鼠海馬神經(jīng)元HE染色。A:對(duì)照組; B:應(yīng)激組; C:SA組(×400) 圖2 各組小鼠海馬BDNF蛋白免疫組化染色。A:對(duì)照組; B:應(yīng)激組; C:SA組(×400 )
丹參多酚酸是由中藥丹參的水溶性酚酸類化合物制成的凍干粉針劑,具有抗凝、抗炎、抗氧化、清除自由基、抑制內(nèi)皮素釋放等作用[3-5]。目前的報(bào)道[6-7]主要集中于臨床,對(duì)抑制冠心病患者血小板的聚集和活化、抗腦缺血損傷具有顯著作用。而其對(duì)慢性應(yīng)激所致的認(rèn)知損傷是否具有干預(yù)作用,其作用機(jī)制如何,尚未見報(bào)道。
目前被廣泛認(rèn)可的應(yīng)激模型包括慢性不可預(yù)知性溫和應(yīng)激模型、交流箱模型、慢性束縛應(yīng)激模型等[8]。已有研究[9]證實(shí),慢性束縛應(yīng)激與人類心身疾病的過程具有相似性,不僅能夠引起心理病理改變,而且可對(duì)記憶產(chǎn)生影響。同時(shí)考慮到前兩種應(yīng)激模式的刺激強(qiáng)度過大[10],故本實(shí)驗(yàn)應(yīng)用慢性束縛應(yīng)激模型進(jìn)行實(shí)驗(yàn)。Morris水迷宮是檢測(cè)動(dòng)物空間學(xué)習(xí)記憶的經(jīng)典試驗(yàn),NORT試驗(yàn)可有效地檢測(cè)再認(rèn)記憶,其理論依據(jù)是嚙齒類動(dòng)物對(duì)于新異物體具有選擇偏愛性,二者考查的認(rèn)知功能均與海馬區(qū)密切相關(guān)[11]。
本實(shí)驗(yàn)結(jié)果顯示,應(yīng)激組在定位航行試驗(yàn)中找到平臺(tái)的逃避潛伏期顯著增長(zhǎng),在撤掉平臺(tái)的空間探索試驗(yàn)中穿越原平臺(tái)所在位置的次數(shù)明顯減少,在NORT識(shí)別期對(duì)于新物體的識(shí)別程度明顯降低,說明慢性束縛應(yīng)激損傷了小鼠的空間學(xué)習(xí)和情景再認(rèn)記憶。而SA組的各項(xiàng)學(xué)習(xí)成績(jī)比單純應(yīng)激組小鼠均有了顯著改善,說明丹參多酚酸可以明顯改善上述認(rèn)知損傷。
長(zhǎng)期應(yīng)激會(huì)損傷鼠的海馬部位。Sapolsky等[12-13]報(bào)告慢性應(yīng)激可以導(dǎo)致海馬錐體神經(jīng)元缺失及認(rèn)知功能的下降。BDNF作為腦組織中含量最豐富的神經(jīng)營(yíng)養(yǎng)因子,廣泛分布于皮質(zhì)、海馬、下丘腦等部位,對(duì)于神經(jīng)的發(fā)生、存活及增殖有重要的作用,并可增強(qiáng)突觸聯(lián)系,影響神經(jīng)元的可塑性和神經(jīng)遞質(zhì)的合成[14]。已有研究[12,15]報(bào)道,BDNF能夠增強(qiáng)正常人的記憶能力以及長(zhǎng)時(shí)程增強(qiáng)(LTP),阻斷酪氨酸激酶B受體(TrkB,BDNF受體)或者應(yīng)用BDNF抗體能夠抑制海馬腦片的LTP[15]。本實(shí)驗(yàn)結(jié)果顯示,慢性束縛應(yīng)激模型小鼠海馬神經(jīng)元發(fā)生損傷,海馬區(qū)BDNF mRNA和蛋白的表達(dá)均降低,這與Aleisa等[16]和Gersner等[17]的研究一致。而提前給予丹參多酚酸后,海馬神經(jīng)元形態(tài)未受到顯著影響,BDNF在基因與蛋白水平的表達(dá)未出現(xiàn)顯著下降,說明丹參多酚酸能夠預(yù)防慢性應(yīng)激后海馬神經(jīng)元的損傷,可以有效阻止BDNF的下調(diào),從而發(fā)揮改善認(rèn)知的功能,這些將為丹參多酚酸用于臨床治療認(rèn)知功能障礙提供理論依據(jù);而丹參多酚酸是如何上調(diào)BDNF的表達(dá)的,有待于進(jìn)一步實(shí)驗(yàn)研究。
[1]Miller MW, Sadeh N. Traumatic stress,oxidative stress and post-traumatic stress disorder:neurodegeneration and the accelerated-aging hypothesis[J]. Mol Psychiatry, 2014, 19: 1156.
[2]Croft W, Dobson KL, Bellamy TC. Plasticity of Neuron-Glial transmission: equipping Glia for Long-Term integration of network activity[J]. Neural Plast, 2015, 8: 765.
[3]Ho JH, Hong CY. Salvianolic acids: small compounds with multiple mechanisms for cardiovascular protection[J]. J Biomed Sci, 2011, 18: 30.
[4]Guan L, Zhang YL, Li ZY, et al. Salvianolic acids attenuate rat hippocampal injury after acute CO poisoning by improving blood flow properties[J]. Biomed Res Int, 2015, 2015: 526483.
[5]Orgah JO, Zhang M, Orgah EA, et al. Effective dose of the combination of salvianolic acids and tanshinones against inflammatory injury in human umbilical vein endothelial cells injured by thrombin [J]. Chin J Integr Med, 2015. doi:10.1007/s11655-014-1956-6.
[6]Fan HY, Fu FH, Yang MY, et al. Antiplatelet and antithrombotic activities of salvianolic acid A[J]. Thromb Res, 2010, 126: e17.
[7]Zhu HB, Zou LB, Tian JW, et al. SMND-309, a novel derivative of salvianolic acid B, protects rat brains ischemia and reperfusion injury by targeting the JAK2/STAT3 pathway[J]. Eur J Pharmacol, 2013, 714: 23.
[8]Hill MN, Hellemans KG, Verma P, et al. Neurobiology of chronic mild stress:parallels to major depression[J]. Neurosci Biobehav Rev, 2012, 36: 2085.
[9]Sadeghi M, Radahmadi M, Reisi P. Effects of repeated treatment with cholecystokinin sulfated octapeptide on passive avoidance memory under chronic restraint stress in male rats[J]. Adv Biomed Res, 2015, 4: 150.
[10]Shansky RM, Rubinow K, Brennan A, et al. The effects of sex and hormonal status on restraint-stress-induced working memory impairment[J]. Behav Brain Funet, 2006, 2: 8.
[11]Lyon L, Saksida LM, Bussey TJ. Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models[J]. Psychopharmacology (Berl), 2012, 220: 647.
[12]Sapolsky RM. A mechanism for glucocorticoid toxicity in the hippocampus:increased neuronal vulnerability to metabolic insults[J]. Neurosci, 1985, 5: 1228.
[13]Sapolsky RM, Krey LC, Mcewen BS. The neuroendocrinology of stress and aging:the glucocorticoid cascade hypothesis[J]. Endocr Rev, 1986, 7: 284.
[14]Murua VS, Gomez RA, Andrea ME, et al. Shuttle-box deficits induced by chronic vairable stress:reversal by imipramine administration[J]. Pharmacol Biochem Behav, 1991, 38: 125.
[15]Figurov A, Pozzo-Miller LD, Olafsson P, et al. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus[J]. Nature, 1996, 381: 706.
[16]Aleisa AM, Alzoubi KH, Gerges NZ, et al. Chronic psychosocial stress-induced impairment of hippocampal LTP: Possible role of BDNF[J]. Neurobiol Dis, 2006, 22: 453.
[17]Gersner R, Toth E, Isserles M, et al. Site-speci c antidepressant effects of repeated subconvulsive electrical stimulation:potential role of brain-derived neurotrophic factor[J]. Biol Psychiatry, 2010, 67: 125.
Improving effect of salvianolic acids on cognitive dysfunction caused by chronic restrain stress and its mechanism in mice
ZHANGZhong-xia,QiuHui-qing,SUNMei-yu,etal.
DepartmentofNeurology,theFirstHospitalofHebeiMedicalUniversity,BrainAgingandCognitiveNeuroscienceLaboratoryofHebeiProvince,Shijiazhuang050031,China
Objective To investigate the improving effect of salvianolic acids on cognitive dysfunction caused by chronic restraint stress and its mechanism in mice. Methods Healthy male Kunming mouse of 3-month aged were randomly divided into control group, stress group and salvianolic acids treating group (SA group), with 14 mouse in each group. Daily intraperitoneal injection of saline were given to the control group and stress group, while salvianolic acids were given to the SA group. Stress group and SA group were restrained for 8 h after injection every day for 14 d continually. Changes of learning and memory ability were tested by novel-object recognition task (NORT) and Morris water maze test. The hippocampal neuronal damage was observed by the HE staining. Protein and its mRNA expression of brain derived neurotrophic factor (BDNF) were detected by immunohistochemistry and real-time fluorescence quantitative PCR respectively. Results The exploring time for the novel object and the difference index in NORT recognition unit of stress group were significantly lower than the control group and SA group (allP<0.05). Daily escape latency in Morris water maze test of stress group were significantly longer than control group and SA group, while the exploring time for platform was significantly less than control group and SA group (allP<0.05). HE staining showed that the hippocampal neurons morphology of control group was complet, and there was no obvious changes. The volum of hippocampal neurons was reduced, and part of them had vesicular changes in stress group. Slightly irregular of cell nuclear could be seen in SA group, close to the neurons of control group. The number of BDNF positive cells and relative expression of mRNA in stress group were significantly less than those in control group and SA group (allP<0.05). Conclusions Salvonolic acids can significantly improve cognitive dysfunction caused by chronic restraint stress. Its possible mechanism is that it can inhibit the decrease of BDNF expression in hippocampus cauced by chronic stress.
chronic restraint stress;salvonolic acids;cognitive dysfunction;brain derived neurotrophic factor
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(2010CB535005);河北省醫(yī)學(xué)科學(xué)研究重點(diǎn)課題計(jì)劃(20160202)
050031 石家莊,河北醫(yī)科大學(xué)第一醫(yī)院神經(jīng)內(nèi)科,河北省腦老化與認(rèn)知神經(jīng)科學(xué)實(shí)驗(yàn)室
王銘維
R749.1
A
1004-1648(2017)02-0111-05
2016-08-10
2016-09-02)