張婷婷,劉綠葉,張艷海,金 燕
(賽默飛世爾科技(中國)有限公司,上海 201206)
采用柱后抑制器技術(shù)降低流動相中三氟乙酸對質(zhì)譜信號抑制作用的研究
張婷婷,劉綠葉,張艷海,金 燕
(賽默飛世爾科技(中國)有限公司,上海 201206)
研究柱后抑制器(CSRS)技術(shù)有效降低流動相中三氟乙酸(TFA)對質(zhì)譜信號的抑制. 采用雙三元液相系統(tǒng),左泵以反相模式分離細(xì)胞色素C酶解肽段(流動相含0.1 %TFA,流速0.25 mL/min),柱后選擇CSRS作為抑制器.同時右泵提供碳酸氫銨(濃度為0.05 mol/L,流速1.00 mL/min)作為再生液. 碳酸氫銨和三氟乙酸在抑制器CSRS中通過陰離子交換膜進(jìn)行離子交換,降低流動相中TFA離子抑制效應(yīng),提高肽段在質(zhì)譜上的響應(yīng)(S/N提高1~16倍). 采用柱后抑制器技術(shù)對硫酸依替米星主成分及雜質(zhì)進(jìn)行定性分析(0.2 mol/L TFA),流動相經(jīng)過抑制器后由強(qiáng)酸性變成中性,實(shí)現(xiàn)樣品在LC和MS之間無縫連接分析.
抑制器;高效液相色譜;質(zhì)譜;三氟乙酸;多肽;硫酸依替米星
在反相色譜法分離多肽和蛋白質(zhì)的試驗(yàn)中,三氟乙酸 (TFA) 是最常用的離子對試劑,流動相中的三氟乙酸通過與疏水鍵合相和殘留的極性表面以多種模式相互作用,能夠改善峰形、克服峰展寬和拖尾的問題[1-3]. 但由于含有三氟乙酸的流動相對化合物離子化會產(chǎn)生較強(qiáng)的抑制作用,一定程度上降低了液質(zhì)聯(lián)用技術(shù)的靈敏度和分析可靠性[4].
目前常用的方法是降低流動相中TFA濃度, 達(dá)到降低電離抑制作用的目的. 但是TFA屬于強(qiáng)酸,極易電離,一般在流動相中的含量為0.1 %. 如果繼續(xù)降低其含量會造成色譜分析質(zhì)量的降低. 而如果用甲酸代替TFA, 雖然能夠提高電離效率,增加目標(biāo)物的響應(yīng)值[5-6],但是對于多肽等生物樣品的色譜峰形分離度的改善效果不及TFA,會造成色譜分離柱效降低,達(dá)不到理想的分離效果[7-8].
有文獻(xiàn)針對該問題采用TFA-Fix的方法[9],即在色譜柱后加入丙酸. 丙酸的沸點(diǎn)高于TFA,在ESI過程中,TFA先揮發(fā),丙酸和分子離子形成的離子對穩(wěn)定性較差,傾向于形成丙酸根和準(zhǔn)分子離子 ,降低TFA的離子抑制效應(yīng),提高樣品在質(zhì)譜中的靈敏度而不用改變LC的條件和分離效果,但是提高倍數(shù)有限(2-5倍)[10].
基于TFA在流動相中強(qiáng)電離的性質(zhì),采用雙三元液相色譜系統(tǒng)[11-13]和柱后抑制器(CSRS)技術(shù)[14],將兩個泵分別作為流動相的輸液泵和柱后再生液的傳輸泵,通過抑制器將流動相中的TFA和碳酸氫銨進(jìn)行離子交換,顯著降低流動相中TFA的含量,從而降低對質(zhì)譜ESI離子化產(chǎn)生的抑制作用,實(shí)現(xiàn)與質(zhì)譜的兼容. 其抑制原理:柱后抑制器技術(shù)利用了CSRS陰離子交換膜的原理,將再生液中的HCO3-與流動相中的TFA-進(jìn)行離子交換,從根本上降低流動相中TFA-的濃度,而HCO3-與流動相中H+結(jié)合生成水和二氧化碳(如圖1所示). 經(jīng)過pH計(jì)驗(yàn)證,流動相流經(jīng)抑制器CSRS后pH值由酸性迅速升至中性,達(dá)到降低流動相中TFA含量的目的.
圖1 柱后抑制器CSRS的抑制原理圖Fig.1 Schematic diagram of CSRS
1.1 儀器與試劑
Dionex Ultimate 3000系統(tǒng)(美國,賽默飛世爾科技);雙三元液相色譜泵:DGP-3600SD、自動進(jìn)樣器:WPS-3000TSL、柱溫箱:TCC-3000SD、檢測器:Thermo TSQ Vantage、色譜軟件:Chromeleon Chromatography Data System 7.2和Xcalibur;色譜柱:Acclaim C18,2.1 mm×150 mm,3 μm(P/N 059130,S/N 002486);Sartorius BS21S型電子天平(德國,賽多利斯公司),所有用水均為純水機(jī)(美國,賽默飛世爾科技)產(chǎn)生的純水(電阻率18.2 MΩ·cm). 乙腈,HPLC級(批號為131445,賽默飛世爾科技(中國)有限公司);三氟乙酸,HPLC級(批號7A01K090,安譜分析儀器有限公司);碳酸氫銨,分析純AR(批號20120327,國藥集團(tuán)化學(xué)試劑有限公司);細(xì)胞色素C的酶解片段(P/N 161089,賽默飛世爾科技(中國)有限公司);硫酸依替米星氯化鈉注射液,批準(zhǔn)文號:國藥準(zhǔn)字H20051632,寧波天衡藥業(yè)股份有限公司.
1.2 試驗(yàn)方法
1.2.1 色譜條件及儀器裝置圖
色譜條件:以Acclaim C18為色譜柱;溫度:35 ℃;右泵:A通道為95%超純水/5%乙腈/0.1% TFA,B通道為5%超純水/95%乙腈/0.1% TFA;流速為0.25 mL/min;左泵:0.05 mol/L NH4HCO3, 流速1 mL/min;抑制器: CSRS Ultra II, 2 mm,化學(xué)抑制模式;TSQ Vantage質(zhì)譜檢測器參數(shù):離子化方式:ESI,正模式;電壓: 3 000 V;毛細(xì)管溫度: 350.0 ℃;噴霧溫度:400.0 ℃;鞘氣壓力:4 MPa;離子吹掃壓力:0 MPa;輔助氣壓力: 12 MPa;掃描范圍: 200~1 200 m/z;質(zhì)譜掃描參數(shù):掃描時間 0.286 s. 儀器連接如圖2所示.
圖2 柱后抑制器技術(shù)的HPLC-MS/MS系統(tǒng)結(jié)構(gòu)圖Fig.2 Configuration of HPLC-MS/MS with CSRS
1.2.2 對照品溶液和供試品溶液制備
細(xì)胞色素C酶解肽段的溶液配制:將1.6 nmol的固體樣品溶解于200 μL右泵的流動相A溶液中,得到8 pmol/L的待測樣品溶液,具體樣品分子結(jié)構(gòu)及分子量如表1所列.
硫酸依替米星溶液配制:每100 ml超純水中含100 mg依替米星與0.9 g氯化鈉,用0.45 μm濾膜過濾后直接進(jìn)樣分析.
表1 細(xì)胞色素C酶解多肽片斷的信息Table 1 Information of Cytochrome C digest
2.1 抑制器技術(shù)對對靈敏度的影響
比較直接進(jìn)MS/MS和經(jīng)過抑制器后再進(jìn)MS/MS的多肽樣品靈敏度,由表2可知,經(jīng)過抑制器抑制后大部分多肽的響應(yīng)值顯著提高,最高的可達(dá)到16倍.
其中部分多肽樣品S-10和S12抑制前后的靈敏度反而降低(表2),可能原因:(1)與多肽本身結(jié)構(gòu)有關(guān),因?yàn)榛陉庪x子交換膜原理,可能有些多肽為離子態(tài)被交換到再生液中而降低其響應(yīng)值;(2)梯度條件中乙腈含量越來越高,而CSRS的離子交換膜對有機(jī)試劑的耐受性不好,因此會影響高濃度乙腈條件下出峰的多肽樣品靈敏度.
表2 柱后抑制器技術(shù)對多肽質(zhì)譜靈敏度影響Table 2 Effect of CSRS on MS/MS sensitivity
2.2 抑制器中再生液NH4HCO3濃度對靈敏度的影響
比較柱后抑制器CSRS中再生液濃度對多肽樣品靈敏度的影響,當(dāng)NH4HCO3濃度為0.05 mol/L時,多肽在質(zhì)譜上的靈敏度比0.1 mol/L和0.025 mol/L的NH4HCO3更高,如表3所列. 由表3可見,在此濃度條件下,HCO3-能夠最大程度地將TFA-交換到再生液中,從而更好降低TFA對質(zhì)譜的影響.
表3 再生液NH4HCO3濃度對多肽質(zhì)譜靈敏度影響Table 3 Effect of NH4HCO3 on MS/MS sensitivity
*:提高比例為該再生液濃度條件下,質(zhì)譜峰的信噪比(S/N)與無再生液條件下質(zhì)譜峰的信噪比(S/N)的比值.
2.3 抑制器中再生液流速對靈敏度的影響
比較了柱后抑制器的再生液流速對靈敏度的影響. 在0.5~3.0 mL/min 流速范圍內(nèi),隨著流速的增加,靈敏度先增加后降低,所以一般推薦1 mL/min 作為最佳再生液的流速(圖3). 根據(jù)CSRS抑制器的工作原理,隨著流速的增加,再生液在單位時間內(nèi)提供的HCO3-離子數(shù)量增加,通過CSRS的陰離子交換膜與分析流動相中TFA-離子進(jìn)行充分的離子交換,使更多的TFA-離子交換到再生液流路中,顯著降低TFA對多肽樣品的抑制作用. 因此在流速0.5~1.0 mL/min 流速范圍內(nèi),隨著流速的增加,多肽樣品的靈敏度顯著增加,當(dāng)再生液流速為1.0 mL/min時,達(dá)到最佳離子交換值. 繼續(xù)增加再生液流速,多肽樣品的靈敏度反而降低,可能是流速太快,導(dǎo)致HCO3-和TFA-離子不能得到充分交換,從而影響多肽樣品的靈敏度.
圖3 柱后抑制器CSRS中再生液流速對多肽的MS靈敏度影響Fig.3 Effect of flow rate of NH4HCO3 on MS/MS sensitivity
2.4 實(shí)際應(yīng)用案例
氨基糖苷類抗生素(硫酸依替米星)的LC-MSMS快速分析:參考2015版藥典的方法對硫酸依替米星中的主成分和雜質(zhì)進(jìn)行分離分析. 由于流動相中TFA含量約為1 %(0.2 mol/L),濃度非常高,如果直接進(jìn)質(zhì)譜對化合物進(jìn)行定性分析非常困難. 高含量的TFA完全抑制了硫酸依替米星中各化合物在ESI上的電離,靈敏度非常低,如圖4(a)所示. 因此考慮采用柱后加抑制器CSRS的方法,通過加入合適濃度和流速的再生液(0. 1 mol/L的NH4HCO3),置換流動相中的TFA,顯著降低流動相中TFA的抑制作用. 按照圖1進(jìn)行系統(tǒng)連接,通過雙三元液相色譜系統(tǒng)實(shí)現(xiàn)質(zhì)譜前端快速直接除去TFA的目的,TSQ可便捷高效地對硫酸依替米星主成分及雜質(zhì)進(jìn)行定性分析,如圖4(b)所示,對應(yīng)的色譜和質(zhì)譜結(jié)果如表4所列,與文獻(xiàn)的報道一致[15-16].
比較通過CSRS抑制前后硫酸依替米星的LC/MSMS試驗(yàn)結(jié)果,認(rèn)為柱后陽離子抑制器(CSRS)能夠快速高效實(shí)現(xiàn)LC與MS/MS的在線連接,大大提高了液質(zhì)聯(lián)用的工作效率.
圖4 硫酸依替米星直接進(jìn)TSQ/經(jīng)過CSRS抑制后進(jìn)TSQ譜圖Fig.4 Mass chromatograms of etimicin sulfate with and without CSRS(a)Without CSRS,(b)With CSRS
名稱保留時間/min正離子模式分子量雜質(zhì)18.89350.20 [M+H]+349雜質(zhì)210.92450.03 [M+H]+449雜質(zhì)312.50464.10 [M+H]+463硫酸依替米星13.47478.10 [M+H]+477雜質(zhì)415.86492.17 [M+H]+491
采用柱后NH4HCO3再生液通過CSRS陽離子抑制器,在不改變分析流動相TFA含量的條件下,待測樣品直接進(jìn)ESI離子源的質(zhì)譜儀進(jìn)行定性分析,充分利用雙泵的功能,同時進(jìn)行樣品分析和柱后再生液添加,通過CSRS陰離子交換膜降低流動相中TFA的含量,從而大大提高多肽樣品在質(zhì)譜上的靈敏度.
以中國2015版藥典中的藥品硫酸依替米星分析為例,高效便捷實(shí)現(xiàn)液相和質(zhì)譜的在線連接,顯著提高硫酸依替米星主成分及雜質(zhì)定性分析結(jié)果的可靠性.
[1] Matthew E, Goodwin L. Bioanalytical approaches to analyzing peptides and proteins by LC-MS/MS [J]. Bioanalysis, 2011, 12(3):1379-1397.
[2] Giuseppe P, Oceania D, Filomena T, et al. Evaluation of mobile phase, ion pairing, and temperature influence on an HILIC-MS/MS method for L-arginine and its dimethylated derivatives detection[J].Journal of Separation Science,2008,31(13):2424-2429.
[3] Thomas M, Annesley. Ion suppression in mass spectrometry[J].Clinical Chemistry, 2003, 49(7):1041-1044.
[4] Thomas M. Methanol-associated matrix effects in electrospray ionization tandem mass spectrometry [J]. Clinical Chemistry, 2007, 53(10): 1827-1834.
[5] Asish B C, Scott J B. Use of an integrated MS - multiplexed MS/MS data acquisition strategy for high-coverage peptide mapping studies [J]. Rapid Communications in Mass Spectrometry, 2007, 21(5): 730-744.
[6] Ackermann B L, Berna M J. Coupling immunoaffinity techniques with MS for quantitative analysis of low-abundance protein biomarkers[J]. Expert Review of Proteomics, 2014, 4(2): 175-186.
[7] Stao Y, Nagata M, Tetsuka K, et al. Optimized methods for targeted peptide-based quantification of human uridine 5′-diphosphate-glucuronosyl transferases in biological specimens using liquid chromatography-tandem mass spectrometry[J]. Drug Metabolism & Disposition, 2014, 42(5): 885-889.
[8] Junichi K, Sumio O, Ryo I, et al. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria[J]. Pharmaceutiacal Research, 2008, 25(6):1469-1483.
[9] Ang L, Joseph T, Chad E W. Investigation of an on-line two-dimensional chromatographic approach for peptide analysis in plasma by LC-MS-MS [J]. Journal of Chromatography B, 2009, 877(20-21): 1873-1881.
[10] Wilson Z S, Wang N D. Simple means to alleviate sensitivity loss by trifluoroacetic acid (TFA) mobile phases in the hydrophilic interaction chromatography-electrospray tandem mass spectrometric (HILIC-ESI/MS/MS) bioanalysis of basic compounds [J]. Journal of Chromatography B, 2005, 825(55):186-192.
[11] Cheng X L, Guo L P, Li Z Q, et al. A HPLC method for simultaneous determination of 5-aminoimidazole- 4-carboxamide riboside and its active metabolite 5-aminoimidazole-4-carboxamide ribotide in tumor-bearing nude mice plasma and its application to pharmacokinetics study [J]. Journal of Chromatography B, 2013, 915-916: 64-70.
[12] Zeng M F, Zhang J, Yang Y F, et al. An automated dual-gradient liquid chromatography-MS/MS method for the simultaneous determination of ferulic acid, ligustrazine andligustilide in rat plasma and its application to a pharmacokinetic study[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014,88(32):354-363.
[13] 黃超群,劉綠葉,呂春華,等. 柱后補(bǔ)償-液相色譜-電噴霧式檢測器測定飲料中的三氯蔗糖[J] .分析化學(xué),2014,42(12):1869-1870.
[14] Paul R H, Peter E J, Matthew J S. Developments in suppressor technology for inorganic ion analysis by ion chromatography using conductivity detection [J]. Journal of Chromatography B, 2003, 1000(1-2):725-742.
[15] Yuan Y Z, Zhang M, Qian W, et al. Determination of methacycline and its related substances in the bulk material of methacycline hydrochloride and its preparations by HPLC[J]. Journal of Pharmaceutical and Biomedical Aanlysis, 2012, 70(5): 212-213.
[16] 吳宇寧,趙衛(wèi),朱曉玥,等. 硫酸依替米星含量測定及有關(guān)物質(zhì)反相高效液相色譜-脈沖安培電化學(xué)法的建立[J] . 中國藥學(xué)雜志,2015,50(20):1797-1806.
Enhancement of Sensitivity for Bioanalysis by Liquid Chromatography-Electrospray Mass Spectrometry with Trifluoroacetic Acid in Mobile Phase Using a Suppressor
ZHANG Ting-ting, LIU Lv-ye, ZHANG Yan-hai, JIN Yan
(ShanghaiApplicationLab,ThermofisherScientific,Shanghai201206,China)
A method is described to improve the sensitivity of biological samples in LC-MS which contains trifluoroacetic acid(TFA) in the mobile phase by adding a suppressor (CSRS Ultra II) after the column. The method is developed on dual-gradient liquid chromatographic(DGLC) systems. And one peptide sample hydrolyzed by cytochrome C was analyzed on the left pump by the reversed phase model where the mobile phase contained 0.1 % TFA and the flow rate was 0.25 mL/min. 0.05 mol/L ammonium bicarbonate solution was delivered by the right pump with a flow rate of 1.00 mL/min. The two mobile phases converged in the post-column suppressor after which the concentration of TFA was reduced. As a result, the signal of peptide analyzed by MS improved about 1-fold to 16-fold. Using this method, the qualitative analysis of impurities in etimicin sulfate drug was perfectly achieved without any additional operations between LC and MS.
suppressor;HPLC;MS;TFA;peptides;etimicin sulfate
分析測試新成果(018~023)
2017-01-06;
2017-02-20.
張婷婷(1982 -),碩士,主要研究方向?yàn)楦咝б合嗌V系統(tǒng)在生物制藥領(lǐng)域的應(yīng)用,Tel:13818636877,E-mail:tingting.zhang@thermofisher.com.
O657.3
B
1006-3757(2017)01-0018-06
10.16495/j.1006-3757.2017.01.004