吳維達(dá) 解競(jìng)靜 朱麗媛 張宏福
(中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100193)
飼糧纖維影響豬腸道健康的研究進(jìn)展
吳維達(dá) 解競(jìng)靜 朱麗媛 張宏福*
(中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100193)
腸道健康包括有效的營(yíng)養(yǎng)物質(zhì)吸收、穩(wěn)定的腸道微生物群落及健全的免疫功能等多個(gè)方面。腸道的健康狀況決定了動(dòng)物的健康狀況。腸道健康取決于飼糧、腸道黏膜和腸道微生物群落3個(gè)主要方面。飼糧纖維是由纖維素、半纖維素、果膠和木質(zhì)素等組成的成分和結(jié)構(gòu)復(fù)雜的混合物,具有改善腸道營(yíng)養(yǎng)物質(zhì)吸收、降低腸道環(huán)境pH、改變有益菌與潛在致病菌比例、優(yōu)化腸道微生物群落組成及加強(qiáng)黏膜屏障作用等功能。來(lái)源不同和理化性質(zhì)相異的飼糧纖維對(duì)腸道健康的影響及作用機(jī)理并不一致。本文就飼糧纖維的分類、理化性質(zhì)及其對(duì)腸道健康影響的研究進(jìn)展進(jìn)行綜述,以促進(jìn)飼糧纖維在豬飼糧生產(chǎn)上的進(jìn)一步廣泛合理利用。
飼糧纖維;豬;腸道健康;短鏈脂肪酸;腸道微生物
腸道整合了營(yíng)養(yǎng)代謝和免疫兩大重要功能,被譽(yù)為動(dòng)物體內(nèi)的“第二大腦”。腸道的健康情況不僅決定了營(yíng)養(yǎng)物質(zhì)的消化吸收狀況,也決定了機(jī)體能否有效地抵抗與清除致病微生物,對(duì)動(dòng)物的生長(zhǎng)發(fā)育影響重大。傳統(tǒng)的用于維持腸道健康的抗生素等物質(zhì)在增強(qiáng)細(xì)菌耐藥性、畜禽產(chǎn)品藥殘等方面上的問題日益凸顯[1-2],尋找其替代物成為確保我國(guó)生豬產(chǎn)業(yè)可持續(xù)發(fā)展的必經(jīng)之路。
飼糧纖維(dietary fiber,DF)是由多糖類碳水化合物和其他非碳水化合物組分相結(jié)合構(gòu)成的復(fù)雜化合物,它不能被動(dòng)物自身分泌的消化酶消化,但可以被腸道微生物利用產(chǎn)生揮發(fā)性脂肪酸等代謝產(chǎn)物[3]。盡管在人的營(yíng)養(yǎng)研究中飼糧纖維已經(jīng)被視為七大營(yíng)養(yǎng)素之一,但是其并沒有包含在豬的營(yíng)養(yǎng)推薦標(biāo)準(zhǔn)之中[4]。傳統(tǒng)觀點(diǎn)認(rèn)為,動(dòng)物飼糧中的粗纖維會(huì)降低消化率、稀釋飼糧營(yíng)養(yǎng)物質(zhì)濃度并且降低動(dòng)物的生產(chǎn)性能。動(dòng)物營(yíng)養(yǎng)學(xué)中沿用的粗纖維指標(biāo)是化學(xué)方法(酸和堿水解后)的殘留量,該化學(xué)方法測(cè)出的粗纖維主要成分為纖維素、半纖維素和木質(zhì)素,但植物細(xì)胞壁基礎(chǔ)組分差異較大,因此粗纖維與飼糧纖維之間并無(wú)固定的比例關(guān)系。而近期研究顯示,飼糧纖維本身及其代謝產(chǎn)物具有調(diào)節(jié)腸道營(yíng)養(yǎng)吸收、加強(qiáng)免疫功能等作用[5-7]。本文從飼糧纖維的分類、性質(zhì)及其維護(hù)豬腸道健康的功效方面進(jìn)行綜述,以促進(jìn)其在科研生產(chǎn)領(lǐng)域進(jìn)一步研究利用。
1.1 定義分類
飼糧纖維主要來(lái)源于植物源飼料原料的細(xì)胞壁,植物細(xì)胞壁由多種多聚糖及與之結(jié)合的蛋白質(zhì)與酚類復(fù)合物組成[8]。20世紀(jì)70年代,Trowell[9]首次定義了飼糧纖維,他認(rèn)為飼糧纖維是“不被人類消化酶消化吸收的多糖類碳水化合物和木質(zhì)素”。2007年,歐洲食品安全委員會(huì)定義飼糧纖維為不能被動(dòng)物內(nèi)源消化酶分解、小腸無(wú)法消化吸收的所有碳水化合物的總稱,可分為4類:1)非淀粉多糖(non-starch polysaccharides,NSP);2)抗性低聚糖(resistant oigosaccharides,RO);3)抗性淀粉(resistant starch,RS);4)木質(zhì)素(lignin)。
針對(duì)飼糧纖維在動(dòng)物營(yíng)養(yǎng)研究領(lǐng)域的應(yīng)用,盧德勛[10]認(rèn)為其定義應(yīng)包含以下4層含義:第一,飼糧纖維是飼糧內(nèi)一種具有特殊營(yíng)養(yǎng)生理作用的復(fù)合成分,而不是一種化學(xué)組成相當(dāng)一致的飼料和飼糧成分,飼糧內(nèi)組成纖維的單個(gè)成分的營(yíng)養(yǎng)作用并不等于是飼糧纖維整體的營(yíng)養(yǎng)生理作用。第二,飼糧纖維組成應(yīng)包含結(jié)構(gòu)性與非結(jié)構(gòu)性2個(gè)部分(表1)。第三,利用可利用指標(biāo)取代原來(lái)的粗指標(biāo),并對(duì)于單胃動(dòng)物和反芻家畜的可利用飼糧纖維指標(biāo)加以區(qū)分。第四,飼糧纖維的分析方法應(yīng)以全面體現(xiàn)上述3層含義為原則,并具有操作簡(jiǎn)便、易行、迅速、可重復(fù)性好等特點(diǎn)。
表1 飼糧纖維組成
1.2 理化性質(zhì)及分類
飼糧纖維的分類方式有很多種,如依據(jù)飼糧纖維的來(lái)源、多聚糖的種類、在人工模擬裝置中的發(fā)酵程度及消化部位等[11]。而在動(dòng)物營(yíng)養(yǎng)的研究當(dāng)中,通常根據(jù)水合作用、黏性、發(fā)酵性這3種性質(zhì),將纖維分為不同的種類[12]。
1.2.1 水合作用
水合能力由水溶性、潤(rùn)濕性、吸水性和持水性4方面組成,對(duì)于飼糧纖維在動(dòng)物體內(nèi)的消化代謝至關(guān)重要。水溶性是對(duì)纖維進(jìn)行分類的一個(gè)重要依據(jù),它并不是指飼糧纖維溶于水的能力,而是指其與水結(jié)合形成膠態(tài)懸浮體的能力[13]。水溶性主要取決于構(gòu)成纖維的多聚糖的種類及分子之間的連接方式[14]。如:不溶的纖維素主要成分為β-1,4-糖苷鍵,而可溶的β-葡聚糖主要成分為β-1,6-糖苷鍵。根據(jù)水溶性的不同可將纖維分為可溶性纖維與不可溶性纖維2種,不可溶性纖維主要包括纖維素、部分半纖維素和木質(zhì)素等,而可溶性纖維包括果膠、部分半纖維素、瓜爾膠、阿拉伯木聚糖和葡聚糖等[15-16]。
1.2.2 黏性
黏性是影響纖維生理功能的另一項(xiàng)重要的理化性質(zhì)[17]。通常情況下,可溶性纖維的黏性高于不可溶性纖維[18]。多糖分子隨著纖維濃度的增加而互相作用形成網(wǎng)狀結(jié)構(gòu),長(zhǎng)鏈纖維比短鏈纖維更容易糾纏形成網(wǎng)狀結(jié)構(gòu),因此長(zhǎng)鏈纖維的黏性高于短鏈纖維。
1.2.3 發(fā)酵性
飼糧纖維發(fā)酵的程度種間差異很大,從幾乎不發(fā)酵的木質(zhì)素到接近完全發(fā)酵的果膠。發(fā)酵過程主要發(fā)生在單胃動(dòng)物結(jié)腸部分,而相比不可溶性纖維,可溶性纖維大部分可以被腸道微生物發(fā)酵,發(fā)酵部位主要在盲腸和結(jié)腸前端,而不可溶性纖維的發(fā)酵可持續(xù)到結(jié)腸末端[19]。最近的研究發(fā)現(xiàn),可溶性纖維在豬小腸部分也會(huì)進(jìn)行大量發(fā)酵[20-21]。飼糧纖維發(fā)酵的產(chǎn)物主要是短鏈脂肪酸(short-chain fatty acids,SCFAs),而不同來(lái)源的飼糧纖維發(fā)酵產(chǎn)生的SCFAs總量和種類組成也完全不同[20-22]。
飼糧纖維在維持豬腸道營(yíng)養(yǎng)功能方面發(fā)揮著重要作用[7]。過往觀點(diǎn)認(rèn)為,飼糧纖維的添加會(huì)降低飼糧中其他營(yíng)養(yǎng)物質(zhì)消化率,減少能量的攝入[23]。但是,飼糧纖維的這種負(fù)面作用與其來(lái)源及添加水平有關(guān),不同來(lái)源的飼糧纖維理化性質(zhì)上的差異決定了其對(duì)營(yíng)養(yǎng)物質(zhì)消化率及能量攝入的影響也不盡相同。并且,飼糧纖維對(duì)腸道發(fā)育及形態(tài)結(jié)構(gòu)等方面也有著積極的影響。
2.1 飼糧纖維對(duì)豬腸道發(fā)育及形態(tài)結(jié)構(gòu)的影響
豬飼糧中添加纖維會(huì)降低能量濃度,機(jī)體必須通過調(diào)動(dòng)擴(kuò)大營(yíng)養(yǎng)物質(zhì)吸收面積、增加食糜滯留時(shí)間等生理響應(yīng)機(jī)制滿足生長(zhǎng)發(fā)育的需要,這樣會(huì)導(dǎo)致動(dòng)物消化器官重量和容積增加[24]。研究表明,飼糧中纖維含量增加會(huì)提高母豬結(jié)腸重量[25]。40 d試驗(yàn)期的高飼糧纖維水平組仔豬胃和十二指腸指數(shù)顯著高于低、中纖維水平組,隨著纖維含量的提高,空腸、回腸、盲腸和結(jié)腸占活體重的比率都有所增加,但影響不顯著[26]。目前解釋飼糧纖維刺激腸道生長(zhǎng)發(fā)育的機(jī)理主要有以下幾種:1)飼糧纖維會(huì)在一定程度上破壞黏膜細(xì)胞表面結(jié)構(gòu),增加細(xì)胞脫落率,進(jìn)而導(dǎo)致細(xì)胞的代償性增殖。2)纖維在后腸發(fā)酵產(chǎn)生的SCFAs降低了腸腔內(nèi)環(huán)境pH,酸性環(huán)境有利于刺激細(xì)胞分裂從而促進(jìn)細(xì)胞增殖。丁酸還可以提供腸道上皮細(xì)胞增殖發(fā)育所需的能量,是后腸細(xì)胞最重要的能量來(lái)源,并通過啟動(dòng)細(xì)胞總DNA和蛋白質(zhì)的合成、改變表皮生長(zhǎng)因子的基因表達(dá)與修復(fù)損傷的后腸上皮細(xì)胞,促進(jìn)腸道的生長(zhǎng)發(fā)育[8]。斷奶仔豬的腸內(nèi)分泌細(xì)胞數(shù)量在飼糧中添加丁酸鈉后極顯著增加[27]。3)SCFAs可以促進(jìn)胃泌素和胰高血糖素樣肽類物質(zhì)的分泌,而有研究表明,胰高血糖素樣肽對(duì)腸道上皮細(xì)胞的增殖有促進(jìn)作用[28]。
腸道消化吸收功能的基礎(chǔ)是腸道黏膜形態(tài)。絨毛高度和隱窩深度及二者比值反映了腸黏膜的吸收功能。絨毛高度與隱窩深度的比值下降,代表黏膜功能受損,消化吸收功能減弱,生長(zhǎng)發(fā)育減緩;該比值上升,代表黏膜功能改善,消化吸收功能增強(qiáng),生長(zhǎng)發(fā)育加快。仔豬上的研究表明,飼糧纖維的添加顯著增加了絨毛高度與隱窩深度的比值,加強(qiáng)了小腸的消化能力[29]。不同來(lái)源的纖維對(duì)腸道形態(tài)的影響并不一致,與對(duì)照組相比,玉米纖維顯著降低了絨毛高度與隱窩深度的比值,而小麥纖維組的豬小腸中則未發(fā)現(xiàn)這一結(jié)果[30]。飼糧纖維發(fā)酵產(chǎn)生的SCFAs可以刺激小腸細(xì)胞增殖,維護(hù)腸黏膜結(jié)構(gòu)的完整,促進(jìn)小腸指狀絨毛的生長(zhǎng)與發(fā)育[31]。利用腸外營(yíng)養(yǎng)技術(shù),將SCFAs作用于Wistar大鼠的移植小腸上,10 d后通過透射電鏡發(fā)現(xiàn),經(jīng)SCFAs作用的大鼠腸黏膜絨毛高度、黏膜厚度均顯著高于對(duì)照組,這證明了SCFAs對(duì)腸黏膜具有較強(qiáng)的促生長(zhǎng)作用[32]。
2.2 飼糧纖維對(duì)豬飼料營(yíng)養(yǎng)物質(zhì)消化吸收的影響
飼糧纖維對(duì)豬飼料營(yíng)養(yǎng)物質(zhì)消化率的影響因其來(lái)源、添加水平及豬生理階段不同而異[33-34]。生長(zhǎng)豬和育肥豬腸道發(fā)育完全,食糜排空速度較慢,因此消化利用飼糧纖維的能力強(qiáng)于仔豬。不同類型的纖維對(duì)脂肪、粗蛋白質(zhì)、能量消化率的影響也差異較大,這種差異的形成與纖維本身的溶解性、黏性等理化性質(zhì)都有密切的關(guān)系。不可溶性纖維提高了食糜排空速度與排糞量,而可溶性纖維則增加了食糜的黏性和水合能力,延長(zhǎng)了消化時(shí)間。除此之外,高纖維含量的飼糧會(huì)導(dǎo)致內(nèi)源性消化液的分泌增加,隨著可溶性纖維在飼糧中含量的上升,體重50 kg的豬唾液和胃液的分泌成倍提高,胰液分泌量也增加了近1倍,膽汁分泌量也顯著增加[35]。消化液分泌量的增加也意味著飼料營(yíng)養(yǎng)物質(zhì)消化率的提高,而這一結(jié)果主要是因?yàn)轱暭Z纖維刺激下消化器官(胃、腸、胰腺等)的活性提高而引起的。針對(duì)不同類型和水平的纖維對(duì)生長(zhǎng)肥育豬營(yíng)養(yǎng)物質(zhì)消化的影響,本課題組進(jìn)行了大量相關(guān)研究。苜蓿纖維添加量在5%水平時(shí),試驗(yàn)豬日增重和營(yíng)養(yǎng)物質(zhì)消化率并未受到影響,但隨著纖維添加量的提高,干物質(zhì)、碳水化合物及總能的消化率均降低[36-37]。相較于高黏度低發(fā)酵的羧甲基纖維素鈉,低黏度高發(fā)酵的菊粉顯著提高了全腸道總能及碳水化合物的后腸發(fā)酵率及全腸道消化率[38]。富含可溶性纖維的甜菜粕可顯著提高飼糧各營(yíng)養(yǎng)物質(zhì)在后腸的發(fā)酵率[39]。這些研究結(jié)果表明,不同來(lái)源、水平的纖維對(duì)豬飼糧中其他營(yíng)養(yǎng)物質(zhì)消化率的影響不同,為飼糧纖維在豬飼糧中的合理配置及非常規(guī)飼料資源的開發(fā)提供了理論基礎(chǔ)。
豬腸道完善的免疫功能是建立在飼糧、寄居在腸道內(nèi)的微生物及黏膜層(包括腸道上皮層及覆蓋上皮層的黏液層)三者之間脆弱的動(dòng)態(tài)平衡的基礎(chǔ)上(圖1)[40-41]。在維持腸道免疫功能方面,飼糧纖維發(fā)揮著重要作用,因?yàn)樗鼘?duì)黏膜層及腸道微生物都會(huì)產(chǎn)生直接的影響[5-6,40-43]。
3.1 飼糧纖維對(duì)腸道微生態(tài)的影響
腸道微生態(tài)由多種微生物組成,結(jié)構(gòu)復(fù)雜,其中細(xì)菌數(shù)量最多,對(duì)其的研究也最為深入。寄居在腸道內(nèi)的微生物種類及活性受多種因素影響,最重要的是飼糧因素。水合作用上的差異是導(dǎo)致不同種飼糧纖維對(duì)微生態(tài)產(chǎn)生不同影響的最主要因素,因?yàn)樗鼤?huì)影響食糜在腸道內(nèi)的消化進(jìn)程及腸腔內(nèi)環(huán)境,進(jìn)而干擾微生物的生態(tài)環(huán)境。隨著進(jìn)入后腸的食糜中飼糧纖維含量的提升,后腸微生物群落的活性也隨之提升。通過測(cè)量ATP濃度發(fā)現(xiàn),高纖維飼糧飼喂下的豬腸道內(nèi)微生物活性提高了5.5倍,發(fā)酵水平增加了5~9倍[44]。然而,有試驗(yàn)結(jié)果表明,腸道微生物在富含纖維的飼糧(50%苜蓿)干擾下,前期腸道微生物總量呈現(xiàn)下降趨勢(shì),但是在持續(xù)飼喂17周后,腸道微生物總量逐漸上升,這說明腸道微生物對(duì)纖維在飼糧中的添加有一個(gè)適應(yīng)的過程[45]。
圖1 飼糧纖維、黏膜層、腸道微生物三者之間的關(guān)系及其對(duì)腸道健康的影響
不同來(lái)源飼糧纖維對(duì)單獨(dú)種群的刺激則有選擇作用[46]。研究表明,斷奶仔豬腸道中細(xì)菌總量與飼糧中中性洗滌纖維(NDF)、酸性洗滌纖維(ADF)含量顯著相關(guān),與飼喂玉米基礎(chǔ)的飼糧相比,飼喂大麥的仔豬腸道中乳酸桿菌的總量上升,而大腸桿菌的總量下降,盲腸中雙歧桿菌的總量也顯著提升[47],這可能是因?yàn)榇篼溨懈缓?葡聚糖,該成分已被證明可以提高腸道有益菌的總量。此外,在母豬上的研究表明,富含阿拉伯木聚糖的飼糧處理下糞便中乳酸桿菌和雙歧桿菌等有益菌的總量也顯著提高[48]。與對(duì)照組相比,飼糧中添加瓜爾膠或者纖維素后,回腸食糜中雙歧桿菌的總量顯著提高[49]。
飼糧纖維的發(fā)酵性能與微生物群落的調(diào)整改變有著重要關(guān)系。與對(duì)照組相比,添加了易發(fā)酵菊苣纖維的豬回腸末端乳酸桿菌為優(yōu)勢(shì)菌種,而結(jié)腸中丁酸產(chǎn)生菌與普雷氏菌的相對(duì)豐度與菊苣纖維添加量呈線性相關(guān)[50]。飼糧中添加34%的抗性淀粉增加了公豬結(jié)腸前端產(chǎn)丁酸菌如普拉梭菌(Faecalibacteriumprausnitzii)和埃氏巨型球菌(Megasphaeraelsdenii)的相對(duì)豐度,降低了潛在致病微生物如鉤端螺旋體屬微生物的相對(duì)豐度;促進(jìn)了結(jié)腸上皮細(xì)胞三羧酸循環(huán)及脂肪酸β-氧化的進(jìn)程,但抑制了細(xì)胞分化、非特異性免疫和適應(yīng)性免疫應(yīng)答[51]。母豬飼糧中添加34%的抗性淀粉能夠增加結(jié)腸產(chǎn)普拉梭菌(Faecalibacteriumprausnitzii)和布氏瘤胃球菌(Ruminococcusbromii)的相對(duì)豐度,降低可能致病菌大腸桿菌和假單胞菌屬的相對(duì)豐度,同時(shí)增加結(jié)腸乙酸、丙酸與丁酸濃度[52]。飼糧纖維對(duì)微生物的選擇刺激作用與纖維本身的離散結(jié)構(gòu)(discrete structure)有關(guān)。組成單糖類型、糖之間連接的類型、構(gòu)象與構(gòu)型和與之結(jié)合的其他組分等因素共同組成了飼糧纖維的離散結(jié)構(gòu),不同的離散結(jié)構(gòu)對(duì)應(yīng)相應(yīng)的靶標(biāo)微生物,從而造成了對(duì)腸道微生物的選擇性刺激作用[53]。
3.2 飼糧纖維對(duì)腸道中益生元的影響
益生元最初的定義是可以改善寄主健康的不可被消化的飼糧成分,該成分通過選擇性刺激后腸中一種或幾種細(xì)菌的增殖與活性而對(duì)寄主產(chǎn)生有益的影響[54]。飼糧纖維無(wú)法被內(nèi)源消化酶降解,而被寄居在腸道的大量微生物發(fā)酵產(chǎn)生主要為乙酸、丙酸、丁酸在內(nèi)的SCFAs。在對(duì)腸道細(xì)菌基因組的研究中發(fā)現(xiàn),某些擬桿菌門細(xì)菌基因組中富含可以編碼糖苷水解酶與多糖裂解酶的基因,這些基因所編碼的酶類可以加速多糖的降解。SCFAs不僅可以通過刺激腸道上皮細(xì)胞的增殖來(lái)促進(jìn)腸道的發(fā)育[40],還可以在酸性環(huán)境下抑制如沙門氏菌、大腸桿菌和梭菌屬等病原性細(xì)菌的發(fā)育。結(jié)構(gòu)組成上的差異導(dǎo)致不同纖維在胃腸道內(nèi)發(fā)揮的益生作用也不盡相同??扇苄缘姆堑矸鄱嗵谴龠M(jìn)了腸道微生物增殖,進(jìn)而產(chǎn)生的SCFAs降低了后腸內(nèi)環(huán)境pH,而低pH的環(huán)境利于有益細(xì)菌(如雙歧桿菌屬、乳酸桿菌屬)的生長(zhǎng)[6,55]。不可溶性非淀粉多糖縮短了腸道排空時(shí)間[56],通過增加絨毛高度來(lái)調(diào)控腸道形態(tài)[57]。與不溶性非淀粉多糖相比,飼喂可溶性非淀粉多糖的斷奶仔豬腸道健康得到改善,腹瀉率顯著下降,盲腸pH降低,乳酸菌與大腸桿菌比例升高[58]。
飼糧纖維發(fā)酵產(chǎn)生的大量有機(jī)酸SCFAs不但降低腸道pH,提供酸性環(huán)境,其本身在宿主代謝、改善腸道功能、免疫調(diào)節(jié)作用等方面也發(fā)揮著重要作用:1)直接供給能量,誘導(dǎo)能量代謝等相關(guān)激素合成;2)通過結(jié)合并激發(fā)G蛋白偶聯(lián)受體(G-protein coupled receptors,GPRs)參與體內(nèi)免疫代謝進(jìn)程;3)抑制組蛋白去乙酰化酶(histone deacetylase,HDAC)的活性,誘導(dǎo)細(xì)胞分化及死亡。主要組成為乙酸、丙酸、丁酸的SCFAs為結(jié)腸細(xì)胞提供了60%~70%的能量[59],其中丁酸在能量代謝中參與度最高,而乙酸和丙酸則主要參與肝臟糖脂合成[60]。腸道內(nèi)分泌細(xì)胞表面的GPRs(GPR-41和GPR-43)識(shí)別SCFAs后,經(jīng)其誘導(dǎo)分泌產(chǎn)生胃腸激素肽YY(peptide YY,PYY)和胰高血糖素樣肽(glucagon-like peptide 1,GLP-1)[61-63]。這2種激素都是重要的腸道能量平衡調(diào)控激素,PYY可以延長(zhǎng)食糜在腸道的停留時(shí)間,提高飽腹感,而GLP-1則可促進(jìn)胰島素分泌,調(diào)節(jié)血糖平衡。與對(duì)照組相比,生長(zhǎng)豬飼糧中添加丁酸鈉使回腸蔗糖酶活性顯著提高[64]。SCFAs參與免疫調(diào)節(jié)主要是通過抑制HDAC的活性和激活GPRs這2種途徑,除此之外,SCFAs還可以激發(fā)白細(xì)胞產(chǎn)生細(xì)胞因子[腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-2(IL-2)、白細(xì)胞介素-6(IL-6)和白細(xì)胞介素-10(IL-10)]以及類花生酸及趨化因子[單核細(xì)胞趨化蛋白-1(MCP-1)與中性粒細(xì)胞趨化因子-2(CINC-2)],有試驗(yàn)表明,白細(xì)胞向炎癥病灶的遷移以及消除病原微生物的能力也受SCFAs影響[65-66]。丁酸還參與調(diào)控中性粒細(xì)胞、增加結(jié)腸上皮細(xì)胞緊密連接蛋白的表達(dá),并且經(jīng)GPR-41識(shí)別后,通過MAPKs介導(dǎo)的信號(hào)途徑增強(qiáng)宿主對(duì)炎癥刺激的應(yīng)答[66-68]。
許多天然低聚糖已經(jīng)作為促生長(zhǎng)添加劑應(yīng)用于實(shí)際生產(chǎn)中。在斷奶仔豬的研究中發(fā)現(xiàn),添加半乳聚糖組仔豬料重比有降低的趨勢(shì),血清中免疫球蛋白A(IgA)、免疫球蛋白G(IgG)和免疫球蛋白M(IgM)的濃度顯著高于添加抗生素組與對(duì)照組,表明低聚糖具有增強(qiáng)豬體液免疫功能的作用[69],可以用于減少飼糧中抗生素的添加。類似的研究也印證了這一點(diǎn),與添加抗生素組相比,寡糖還具有提高血液中胰島素樣生長(zhǎng)因子1(IGF-1)與生長(zhǎng)激素(GH)的濃度以及肌肉中IGF-1基因表達(dá)水平的功效,這在分子水平上揭示了飼糧纖維促進(jìn)豬生長(zhǎng)的可能機(jī)制[70]。
3.3 飼糧纖維對(duì)黏膜屏障的影響
腸道黏膜屏障主要由腸細(xì)胞屏障和附著在腸細(xì)胞屏障上的黏液屏障共同組成[71]。不同來(lái)源的纖維對(duì)細(xì)胞屏障的影響不同,飼糧中添加10%小麥纖維和豌豆纖維顯著加強(qiáng)了斷奶仔豬的腸道屏障功能,這可能是因?yàn)樗@著提升了回腸與結(jié)腸上皮細(xì)胞緊密連接蛋白(ZO-11)與Toll樣受體(TLR2)mRNA的表達(dá)量,而玉米纖維和大豆纖維的應(yīng)用卻未發(fā)現(xiàn)這一效果。黏液屏障主要包括杯狀細(xì)胞分泌的黏蛋白、腸三葉肽、抗菌肽、細(xì)胞因子、分泌型免疫球蛋白A(sIgA)等[72]。黏液層在消化道各段均有分布,但厚度不一[73]。黏液層的動(dòng)態(tài)平衡是靠杯狀細(xì)胞合成分泌黏蛋白來(lái)調(diào)控的。研究認(rèn)為,纖維影響腸道黏膜屏障是通過影響?zhàn)さ鞍椎姆置谂c組成來(lái)實(shí)現(xiàn)的。主要成分為黏蛋白的黏液隨腸蠕動(dòng)和食糜移動(dòng)而流動(dòng),合成分泌的速度呈動(dòng)態(tài)平衡??扇苄岳w維通過增加杯狀細(xì)胞數(shù)量來(lái)促進(jìn)黏蛋白分泌。與對(duì)照組相比,飼糧中添加阿拉伯木聚糖后,腸道分泌IgA量、杯狀細(xì)胞數(shù)量顯著增加,并且減弱了腸道通透性[74]。
對(duì)無(wú)菌小鼠進(jìn)行的試驗(yàn)顯示,與無(wú)纖維飼糧對(duì)照組相比,添加亞麻籽籽殼的試驗(yàn)組小鼠糞便中4種主要的黏蛋白(分別為巖藻糖、半乳糖胺、氨基葡萄糖和半乳糖糖蛋白)提高了2倍多(223 μmol/g干糞樣vs. 70 μmol/g干糞樣)[75]。向3組小鼠分別飼喂添加不同不可溶性纖維(麥麩和纖維素)的飼糧(添加量為100 g/kg)以及不含纖維的對(duì)照飼糧,纖維素組小鼠空腸中杯狀細(xì)胞的數(shù)量明顯少于其他2組。然而,與對(duì)照組相比,其他2組黏蛋白中3H標(biāo)記的葡萄糖(2.0倍)和S35標(biāo)記的硫酸鈉(2.5倍)含量較高[76]。與飼喂對(duì)照飼糧的豬相比,豌豆纖維在飼糧中的長(zhǎng)期添加提高了結(jié)腸黏膜層中黏蛋白(16%)與sIgA的含量(13%)。利用基因芯片技術(shù)分析,這可能是因?yàn)槔w維通過降低IL-10與腫瘤壞死因子配體超家族成員13B(TNFSF13B)mRNA的表達(dá)量來(lái)影響IgA的分泌,進(jìn)而調(diào)控腸道免疫功能[77]。有研究總結(jié)了復(fù)雜的機(jī)制解釋飼糧纖維對(duì)黏蛋白的刺激作用:第一,含纖維的飼糧能量較低,引起采食量增加,導(dǎo)致食糜體積流量變大,對(duì)黏膜層的傷害加深,黏蛋白更新速度加快,產(chǎn)生代償性作用。消化酶的在腸內(nèi)的分布和活性受纖維類型影響,并進(jìn)而調(diào)控黏蛋白的流失。第二,上皮細(xì)胞保護(hù)不足會(huì)引起腸腔內(nèi)抗原接觸腸壁增多,誘發(fā)產(chǎn)生免疫反應(yīng)加速黏蛋白的合成。第三,表面與新生細(xì)胞會(huì)釋放相關(guān)生長(zhǎng)因子和花生四烯酸途徑的代謝產(chǎn)物。一些生長(zhǎng)因子是結(jié)腸炎癥的有效保護(hù)介質(zhì),還可促進(jìn)杯狀細(xì)胞增殖以及黏蛋白的分泌。
SCFAs也可以影響?zhàn)さ鞍椎谋磉_(dá),從而改變黏液層的厚度。研究表明,乙酸鹽的誘導(dǎo)有劑量依賴效應(yīng),丙酸鹽無(wú)明顯作用,丁酸鈉可顯著影響?zhàn)さ鞍追置赱78]。利用SCFAs灌注小鼠,發(fā)現(xiàn)乙酸刺激了黏蛋白向腸腔的分泌。丁酸的濃度在5 mmol/L時(shí)會(huì)促進(jìn)黏蛋白分泌,但是當(dāng)濃度增加到100 mmol/L時(shí),則會(huì)引起分泌的減弱。相反地,5~100 mmol/L濃度的丙酸并沒有引起黏蛋白分泌的增強(qiáng),對(duì)黏蛋白的分泌并無(wú)顯著影響[79]。
最近的研究表明,飼糧纖維對(duì)豬腸道黏膜層熱休克蛋白(heat shock protein,HSP)的表達(dá)量有明顯影響。高溫應(yīng)激下,機(jī)體可以合成HSP來(lái)維持黏膜屏障的穩(wěn)定性。通過免疫組化技術(shù)發(fā)現(xiàn),飼糧中添加菊苣根與菊苣莖葉顯著提高了回腸與結(jié)腸前端HSP27的表達(dá)量,回腸HSP27的表達(dá)量與飼糧中可溶性糖醛酸攝入量呈顯著正相關(guān)(r=0.390)。除此之外,回腸黏膜層中HSP27的含量與黏膜上埃氏巨型球菌的總量(r=0.553)、飼糧總糖醛酸攝入量(r=0.523)均呈正相關(guān)。但是,HSP的表達(dá)量與微生物群落的多樣性并無(wú)相關(guān)關(guān)系[80]。該試驗(yàn)結(jié)果為飼糧纖維應(yīng)用于養(yǎng)豬生產(chǎn)中抗高溫應(yīng)激方面提供了理論基礎(chǔ)。
飼糧纖維對(duì)豬腸道健康的影響取決于纖維自身的理化性質(zhì),不同來(lái)源的纖維影響不同。越來(lái)越多的研究證明,飼糧纖維在完善健全豬腸道營(yíng)養(yǎng)功能及免疫功能、維持豬腸道健康等方面上有著重要意義。但是仍存在很多問題有待于未來(lái)研究解決:第一,目前纖維對(duì)腸道免疫功能的影響仍集中在抗性低聚糖方面,而對(duì)其他纖維種類如抗性淀粉、非淀粉多糖等在腸道免疫調(diào)控上的作用及相關(guān)機(jī)制的研究仍然較少;第二,飼糧纖維在豬飼糧中的添加量、添加種類仍然停留在經(jīng)驗(yàn)階段,不同階段所需飼糧纖維的來(lái)源及需要量仍然未知,這影響了飼糧纖維在飼糧中的合理使用及飼料本身品質(zhì)的改良;第三,如何利用現(xiàn)代技術(shù)手段改善飼糧纖維品質(zhì)以利于其廣泛應(yīng)用,對(duì)緩解糧食安全問題、推動(dòng)養(yǎng)豬業(yè)可持續(xù)發(fā)展也有著重要的現(xiàn)實(shí)意義。
總之,研究不同飼糧纖維對(duì)豬腸道健康的改善及作用機(jī)制,對(duì)減少抗生素促生長(zhǎng)劑使用、緩解其帶來(lái)的抗藥性與食品安全等問題、合理高效經(jīng)濟(jì)地開發(fā)飼料資源及保證畜牧業(yè)高效綠色可持續(xù)發(fā)展有著重要的意義。并且對(duì)以豬為模型動(dòng)物研究飼糧纖維在對(duì)預(yù)防調(diào)節(jié)人腸道疾病、心血管疾病、代謝綜合征等領(lǐng)域有一定的參考價(jià)值。
[1] LEVY S B,MARSHALL B.Antibacterial resistance worldwide:causes,challenges and responses[J].Nature Medicine,2004,10:122-129.
[2] LEVY S B.Microbial resistance to antibiotics:an evolving and persistent problem[J].The Lancet,1982,320(8289):83-88.
[3] SLAVIN J.Fiber and prebiotics:mechanisms and health benefits[J].Nutrients,2013,5(4):1417-1435.
[4] NRC.Nutrient requirements of swine[S].Washington,D.C.:National Academies Press,1998.
[5] DE LANGE C F M,PLUSKE J,GONG J,et al.Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs[J].Livestock Science,2010,134(1/2/3):124-134.
[6] KNUDSEN K E B,HEDEMANN M S,LAERKE H N.The role of carbohydrates in intestinal health of pigs[J].Animal Feed Science and Technology,2012,173(1/2):41-53.
[7] WENK C.The role of dietary fibre in the digestive physiology of the pig[J].Animal Feed Science and Technology,2001,90(1/2):21-33.
[8] BUTTRISS J L,STOKES C S.Dietary fibre and health:an overview[J].Nutrition Bulletin,2008,33(3):186-200.
[9] TROWELL H.Definition of dietary fiber and hypotheses that it is a protective factor in certain diseases[J].The American Journal of Clinical Nutrition,1976,29(4):417-427.
[10] 盧德勛.日糧纖維的營(yíng)養(yǎng)作用及其利用//劉建新,張宏福,王康寧.飼料營(yíng)養(yǎng)研究進(jìn)展[M].澳門:亞洲中醫(yī)藥雜志社,1998:13-241.
[11] MUDGIL D,BARAK S.Composition,properties and health benefits of indigestible carbohydrate polymers as dietary fiber:a review[J].International Journal of Biological Macromolecules,2013,61:1-6.
[12] KNUDSEN K E B.The nutritional significance of “dietary fibre” analysis[J].Animal Feed Science and Technology,2001,90(1/2):3-20.
[13] KELKAR S,SIDDIQ M,HARTE J B,et al.Use of low-temperature extrusion for reducing phytohemagglutinin activity (PHA) and oligosaccharides in beans (PhaseolusvulgarisL.) cv. Navy and Pinto[J].Food Chemistry,2012,133(4):1636-1639.
[14] VAN SOEST P V,ROBERTSON J B,LEWIS B.Methods for dietary fiber,neutral detergent fiber,and nonstarch polysaccharides in relation to animal nutrition[J].Journal of Dairy Science,1991,74(10):3583-3597.
[15] ESPOSITO F,ARLOTTI G,BONIFATI A M,et al.Antioxidant activity and dietary fibre in durum wheat bran by-products[J].Food Research International,2005,38(10):1167-1173.
[16] LUNN J,BUTTRISS J.Carbohydrates and dietary fibre[J].Nutrition Bulletin,2007,32(1):21-64.
[17] WELLOCK I J,HOUDIJK J G K,KYRIAZAKIS I.Effect of dietary non-starch polysaccharide solubility and inclusion level on gut health and the risk of post weaning enteric disorders in newly weaned piglets[J].Livestock Science,2007,108(1/2/3):186-189.
[18] DIKEMAN C L,FAHEY G C,Jr.Viscosity as related to dietary fiber:a review[J].Critical Reviews in Food Science and Nutrition,2006,46(8):649-663.
[19] CHOCT M.Feed non-starch polysaccharides:chemical structures and nutritional significance[J].Feed Milling International,1997:13-26.
[20] JHA R,LETERME P.Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs[J].The Animal Consortium,2012,6(4):603-611.
[21] JHA R,ROSSNAGEL B,PIEPER R,et al.Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets[J].The Animal Consortium,2010,4(5):724-731.
[22] JHA R,OWUSU-ASIEDU A,SIMMINS P H,et al.Degradation and fermentation characteristics of wheat coproducts from flour milling in the pig intestine studiedinvitro[J].Journal of Animal Science,2012,90 Suppl 4:173-175.
[23] NOBLET J,LE GOFF G.Effect of dietary fibre on the energy value of feeds for pigs[J].Animal Feed Science and Technology,2001,90(1):35-52.
[24] JHA R,BERROCOSO J D.Review:dietary fiber utilization and its effects on physiological functions and gut health of swine[J].Animal,2015,9(9):1441-1452.
[25] SERENA A,HEDEMANN M S,BACH KNUDSEN K E.Influence of dietary fiber on luminal environment and morphology in the small and large intestine of sows[J].Journal of Animal Science,2008,86(9):2217-2227.
[26] 楊玉芬,盧德勛,許梓榮.日糧纖維對(duì)仔豬生長(zhǎng)性能和消化生理功能的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2009,21(6):816-821.
[27] JASLEEN J,ASHLEY S W,SHIMODA N,et al.Glucagon-like peptide 2 stimulates intestinal epithelial proliferationinvitro[J].Digestive Diseases and Sciences,2002,47(5):1135-1140.
[28] MAZZONI M,LE GALL M,DE FILIPPI S,et al.Supplemental sodium butyrate stimulates different gastric cells in weaned pigs[J].The Journal of Nutrition,2008,138(8):1426-1431.
[29] ARGENZIO R A,WHIPP S C.Inter-relationship of sodium,chloride,bicarbonate and acetate transport by the colon of the pig[J].The Journal of Physiology,1979,295(1):365-381.
[30] CHEN H,MAO X,YIN J,et al.Comparison of jejunal digestive enzyme activities,expression of nutrient transporter genes,and apparent fecal digestibility in weaned piglets fed diets with varied sources of fiber[J].Journal of Animal and Feed Sciences,2015,24(1):41-47.
[31] SAKATA T,INAGAKI A.Organic acid production in the large intestine:implication for epithelial cell proliferation and cell death[M]//PIVA A, BACH KNUDSEN K E, LINDBERG J E.The gut environment of pigs.Nottingham:Nottingham University Press,2001:85-94.
[32] 李可洲,李寧,黎介壽,等.短鏈脂肪酸對(duì)大鼠移植小腸形態(tài)及功能的作用研究[J].世界華人消化雜志,2002,10(6):720-722.
[33] RENTERIA-FLORES J A,JOHNSTON L J,SHURSON G C,et al.Effect of soluble and insoluble fiber on energy digestibility,nitrogen retention,and fiber digestibility of diets fed to gestating sows[J].Journal of Animal Science,2008,86(10):2568-2575.
[34] URRIOLA P E.Digestibility of dietary fiber by growing pigs[D].Ph.D.Thesis.Urbana-Champaign:University of Illinois,2010.
[35] ZEBROWSKA T,LOW A G,ZEBROWSKA H.Studies on gastric digestion of protein and carbohydrate,gastric secretion and exocrine pancreatic secretion in the growing pig[J].British Journal of Nutrition,1983,49(3):401-410.
[36] CHEN L,ZHANG H F,GAO L X,et al.Effect of graded levels of fiber from alfalfa meal on intestinal nutrient and energy flow,and hindgut fermentation in growing pigs[J].Journal of Animal Science,2013,91(10):4757-4764.
[37] CHEN L,GAO L X,ZHANG H F.Effect of graded levels of fiber from alfalfa meal on nutrient digestibility and flow of fattening pigs[J].Journal of Integrative Agriculture,2014,13(8):1746-1752.
[38] GAO L X,CHEN L,HUANG Q H,et al.Effect of dietary fiber type on intestinal nutrient digestibility and hindgut fermentation of diets fed to finishing pigs[J].Livestock Science,2015,174:53-58.
[39] 孟麗輝,龐敏,朱麗媛,等.日糧纖維來(lái)源對(duì)生長(zhǎng)豬養(yǎng)分消化率的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2015,27(4):1068-1075.
[40] MONTAGNE L,PLUSKE J R,HAMPSON D J.A review of interactions between dietary fibre and the intestinal mucosa,and their consequences on digestive health in young non-ruminant animals[J].Animal Feed Science and Technology,2003,108(1/2/3/4):95-117.
[41] MASLOWSKI K M,MACKAY C R.Diet,gut microbiota and immune responses[J].Nature Immunology,2011,12(1):5-9.
[42] LINDBERG J E.Fiber effects in nutrition and gut health in pigs[J].Journal of Animal Science and Biotechnology,2014,5:15.
[43] ZOETENDAL E G,COLLIER C T,KOIKE S,et al.Molecular ecological analysis of the gastrointestinal microbiota:a review[J].The Journal of Nutrition,2004,134(2):465-472.
[44] KNUDSEN K E B,HANSEN I.Gastrointestinal implications in pigs of wheat and oat fractions[J].British Journal of Nutrition,1991,65(2):217-232.
[45] VAREL V H,POND W G,PEKAS J C,et al.Influence of high-fiber diet on bacterial populations in gastrointestinal tracts of obese-and lean-genotype pigs[J].Applied and Environmental Microbiology,1982,44(1):107-112.
[46] WILLIAMS B A,VERSTEGEN M W A,TAMMINGA S.Fermentation in the large intestine of single-stomached animals and its relationship to animal health[J].Nutrition Research Reviews,2001,14(2):207-228.
[47] DREW M D,VAN KESSEL A G,ESTRADA A E,et al.Effect of dietary cereal on intestinal bacterial populations in weaned pigs[J].Canadian Journal of Animal Science,2002,82(4):607-609.
[48] NIELSEN T S,LAERKE H N,THEIL P K,et al.Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs[J].British Journal of Nutrition,2014,112(11):1837-1849.
[49] MCDONALD D E,PETHICK D W,PLUSKE J R,et al.Adverse effects of soluble non-starch polysaccharide (guar gum) on piglet growth and experimental colibacillosis immediately after weaning[J].Research in Veterinary Science,1999,67(3):245-250.
[50] LIU H,IVARSSON E,DICKSVED J,et al.Inclusion of chicory (CichoriumintybusL.) in pigs’ diets affects the intestinal microenvironment and the gut microbiota[J].Applied and environmental microbiology,2012,78(12):4102-4109.
[51] HAENEN D,DA SILVA C S,ZHANG J,et al.Resistant starch induces catabolic but suppresses immune and cell division pathways and changes the microbiome in the proximal colon of male pigs[J].The Journal of Nutrition,2013,143(12):1889-1898.
[52] HAENEN D,ZHANG J,DA SILVA C S,et al.A diet high in resistant starch modulates microbiota composition,SCFA concentrations,and gene expression in pig intestine[J].The Journal of Nutrition,2013,143(3):274-283.
[53] HAMAKER B R,TUNCIL Y E.A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota[J].Journal of Molecular Biology,2014,426(23):3838-3850.
[54] GIBSON G R,ROBERFROID M B.Dietary modulation of the human colonic microbiota:introducing the concept of prebiotics[J]. The Journal of Nutrition,1995,125(6):1401-1412.
[55] BOUHNIK Y ,RASKINE L,SIMONEAU G,et al.The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans:a double-blind,randomized,placebo-controlled,parallel-group,dose-response relation study[J].The American Journal of Clinical Nutrition,2004,80(6):1658-1664.
[56] FREIRE J P B,GUERREIRO A J G,CUNHA L F,et al.Effect of dietary fibre source on total tract digestibility,caecum volatile fatty acids and digestive transit time in the weaned piglet[J].Animal Feed Science and Technology,2000,87(1/2):71-83.
[57] HEDEMANN M S,ESKILDSEN M,LAERKE H N,et al.Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties[J].Journal of Animal Science,2006,84(6):1375-1386.
[58] WELLOCK I J,FORTOMARIS P D,HOUDIJK J G,et al.The consequences of non-starch polysaccharide solubility and inclusion level on the health and performance of weaned pigs challenged with enterotoxigenic Escherichia coli[J].British Journal of Nutrition,2008,99(3):520-530.
[59] TOPPING D L,CLIFTON P M.Short-chain fatty acids and human colonic function:roles of resistant starch and nonstarch polysaccharides[J].Physiological Reviews,2001,81(3):1031-1064.
[60] TREMAROLI V,BCKHED F.Functional interactions between the gut microbiota and host metabolism[J].Nature,2012,489(7415):242-249.
[61] ICHIMURA A,HIRASAWA A,HARA T,et al.Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis[J].Prostaglandins & Other Lipid Mediators,2009,89(3/4):82-88.
[62] KAJI I,KARAKI S I,TANAKA R,et al.Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine,and increased cell numbers after ingestion of fructo-oligosaccharide[J].Journal of Molecular Histology,2011,42(1):27-38.
[63] SAMUEL B S,SHAITO A,MOTOIKE T,et al.Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor,Gpr41[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(43):16767-16772.
[64] CLAUS R,GüNTHNER D,LETZGUSS H.Effects of feeding fat-coated butyrate on mucosal morphology and function in the small intestine of the pig[J].Journal of Animal Physiology and Animal Nutrition,2007,91(7/8):312-318.
[65] VINOLO M A,RODRIGUES H G,HATANAKA E,et al.Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils[J].The Journal of Nutritional Biochemistry,2011,22(9):849-855.
[66] VINOLO M A R,RODRIGUES H G,NACHBAR R T,et al.Regulation of inflammation by short chain fatty acids[J].Nutrients,2011,3(10):858-876.
[67] NICHOLSON J K,HOLMES E,KINROSS J,et al.Host-gut microbiota metabolic interactions[J].Science,2012,336(6086):1262-1267.
[68] KIM M H,KANG S G,PARK J H,et al.Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J].Gastroenterology,2013,145(2):396-406.
[69] WANG R L,HOU Z P,WANG B,et al.Effects of feeding galactomannan oligosaccharides on growth performance,serum antibody levels and intestinal microbiota in newly-weaned pigs[J].Journal of Food,Agriculture & Environment,2010,8(3/4):47-55.
[70] TANG Z R,YIN Y L,NYACHOTI C M,et al.Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-Ⅰ mRNA expression in early-weaned piglets[J].Domestic Animal Endocrinology,2005,28(4):430-441.
[71] RAMSAY A J,HUSBAND A J,RAMSHAW I A,et al.The role of interleukin-6 in mucosal IgA antibody responsesinvivo[J].Science,1994,264(5158):561-563.
[72] BAI Z B,ZHANG Z T,YE Y J,et al.Sodium butyrate induces differentiation of gastric cancer cells to intestinal cells via the PTEN/phosphoinositide 3-kinase pathway[J].Cell Biology International,2010,34(12):1141-1145.
[73] VARUM F J O,VEIGA F,SOUSA J S,et al.An investigation into the role of mucus thickness on mucoadhesion in the gastrointestinal tract of pig[J].European Journal of Pharmaceutical Sciences,2010,40(4):335-341.
[74] CHEN H,WANG W,DEGROOTE J,et al.Arabinoxylan in wheat is more responsible than cellulose for promoting intestinal barrier function in weaned male piglets[J].The Journal of Nutrition,2015,145(1):51-58.
[75] CABOTAJE L M,SHINNICK F L,LOPéZ-GUISA J M,et al.Mucin secretion in germfree rats fed fiber-free and psyllium diets and bacterial mass and carbohydrate fermentation after colonization[J].Applied and Environmental Microbiology,1994,60(4):1302-1307.
[76] SCHMIDT-WITTIG U,ENSS M L,COENEN M,et al.Response of rat colonic mucosa to a high fiber diet[J].Annals of Nutrition & Metabolism,1996,40(6):343-350.
[77] CHE L Q,CHEN H,YU B,et al.Long-Term intake of pea fiber affects colonic barrier function,bacterial and transcriptional profile in pig model[J].Nutrition and Cancer,2014,66(3):388-399.
[78] HATAYAMA H,IWASHITA J,KUWAJIMA A,et al.The short chain fatty acid,butyrate,stimulates MUC2 mucin production in the human colon cancer cell line,LS174T[J].Biochemical and Biophysical Research Communications,2007,356(3):599-603.
[79] BARCELO A,CLAUSTRE J,MORO F,et al.Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon[J].Gut,2000,46(2):218-224.
[80] LIU H Y,LUNDH T,DICKSVED J,et al.Expression of heat shock protein 27 in gut tissue of growing pigs fed diets without and with inclusion of chicory fiber[J].Journal of Animal Science,2012,90 Suppl 4:25-27.
*Corresponding author, professor, E-mail: zhanghongfu@caas.cn
(責(zé)任編輯 武海龍)
Research Progress of Dietary Fiber Affects Gut Health of Pigs
WU Weida XIE Jingjing ZHU Liyuan ZHANG Hongfu*
(StateKeyLaboratoryofAnimalNutrition,InstituteofAnimalScience,ChineseAcademyofAgriculturalScience,Beijing100193,China)
Gut health, which influences cffective nutrient absorption, stable intestinal microbial community and good immune function and so on. The gut health depends on diet, intestinal mucous membrane and intestinal microbial community. Dietary fiber (DF) is a mixture with complex composition and structure such as ellulose, hemicellulose, pectin and lignin and so on. DF may have positive effects such as to improve intestinal nutrients absorption, decrease intestinal pH, ameliorate the proportion of beneficial and potentially pathogenic bacteria, optimize intestinal microbial community composition and enhance mucosal barrier function and so on. The physiological impact of DF will be determined by the fiber properties and may differ considerably between fiber sources. This review summarized classification and characteristics of DF, and its influence on nutrition and immunologic function with a goal to promote dietary fiber utilization in pig feed industry.[ChineseJournalofAnimalNutrition, 2017, 29(3):739-748]
gut health; pigs; dietary fiber; short-chain fatty acids; intestinal microorganism
10.3969/j.issn.1006-267x.2017.03.002
2016-09-01
“十二五”農(nóng)村領(lǐng)域國(guó)家科技計(jì)劃課題(2014BAD21B02-01);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS07)
吳維達(dá)(1987—),男,河北保定人,博士研究生,從事豬營(yíng)養(yǎng)研究。E-mail: wuweida87@foxmail.com
*通信作者:張宏福,研究員,博士生導(dǎo)師,E-mail: zhanghongfu@caas.cn
S828
A
1006-267X(2017)03-0739-10
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2017年3期