国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

入侵藍(lán)藻
——擬柱胞藻的分布特征及生理生態(tài)研究進(jìn)展

2017-04-10 13:11:15雷臘梅雷敏婷趙莉阮紫曦于婷彭亮韓博平
關(guān)鍵詞:水華藍(lán)藻水體

雷臘梅,雷敏婷,趙莉,阮紫曦,于婷,彭亮,韓博平

暨南大學(xué)生命科學(xué)技術(shù)學(xué)院,廣東 廣州 510632

入侵藍(lán)藻
——擬柱胞藻的分布特征及生理生態(tài)研究進(jìn)展

雷臘梅*,雷敏婷,趙莉,阮紫曦,于婷,彭亮,韓博平

暨南大學(xué)生命科學(xué)技術(shù)學(xué)院,廣東 廣州 510632

擬柱胞藻(Cylindrospermopsis raciborskii)因能產(chǎn)生藍(lán)藻毒素、形成水華并具入侵特性,導(dǎo)致嚴(yán)重的公眾健康和環(huán)境安全問(wèn)題而在近年備受關(guān)注。擬柱胞藻被認(rèn)為是熱帶特征性種類,但在過(guò)去的20多年中,研究發(fā)現(xiàn)該藻廣泛出現(xiàn)在包括北歐在內(nèi)的亞熱帶和溫帶地區(qū)水體,這表明擬柱胞藻已成為一個(gè)廣布性入侵種類。系統(tǒng)地理學(xué)研究確認(rèn)該藻屬熱帶起源,提出兩個(gè)假說(shuō)解釋其在世界范圍內(nèi)的擴(kuò)散。擬柱胞藻的成功入侵被認(rèn)為與該藻的生理生態(tài)可塑性有關(guān),該藻喜好高溫,耐陰性強(qiáng),但卻可以耐受較寬的溫度和光強(qiáng)波動(dòng),這種適應(yīng)性是其在溫帶到熱帶水體都廣泛存在的基礎(chǔ)。擬柱孢藻在氮利用上被認(rèn)為是廣幅種,可利用NH4+、NO3-、有機(jī)氮等不同形態(tài)的氮以解決缺氮危機(jī);在氮不足的環(huán)境中,它能形成異形胞自行固氮而獲得生長(zhǎng)優(yōu)勢(shì)。擬柱孢藻擁有快速吸收和儲(chǔ)存無(wú)機(jī)磷的能力以適應(yīng)低磷環(huán)境,故其可在磷濃度極低的環(huán)境中占據(jù)優(yōu)勢(shì)。此外,擬柱孢藻的產(chǎn)毒能力可能有助于其營(yíng)養(yǎng)攝取和捕食防御,其他因子如鹽度、化感作用都可能在擬柱胞藻的地理擴(kuò)散中起重要作用。文章較全面地總結(jié)了擬柱胞藻對(duì)不同環(huán)境因子的適應(yīng)性,闡明了該藻入侵的生理生態(tài)策略。

擬柱胞藻;分布;生理生態(tài);入侵

由于工農(nóng)業(yè)迅速發(fā)展,人類活動(dòng)過(guò)于頻繁,環(huán)境污染日趨嚴(yán)重,水體富營(yíng)養(yǎng)化成為目前全球各國(guó)面臨的重大環(huán)境和生態(tài)問(wèn)題之一。藍(lán)藻水華是湖泊富營(yíng)養(yǎng)化的典型表征之一,藍(lán)藻的大量繁殖,改變了水體的理化環(huán)境,水體透明度降低,溶解氧減少,有些有害藻類還能夠產(chǎn)生并釋放毒素,對(duì)水環(huán)境健康、生物安全及經(jīng)濟(jì)發(fā)展造成了嚴(yán)重的負(fù)面影響(De Figueiredo et al.,2004)。伴隨著全球氣候變暖,藍(lán)藻水華規(guī)模和持續(xù)時(shí)間都有加劇的趨勢(shì)(O’Neil et al.,2012),同時(shí)出現(xiàn)了新的水華藍(lán)藻類型,其中擬柱胞藻(Cylindrospermopsis raciborskii)備受關(guān)注。

淡水入侵藍(lán)藻——擬柱胞藻最早被發(fā)現(xiàn)于熱帶亞熱帶氣候區(qū)。在過(guò)去的十多年中,關(guān)于擬柱胞藻的生態(tài)學(xué)和毒理學(xué)特性的研究日益增加,主要有以下兩個(gè)原因:一是因?yàn)樵撛宀粩嘞虿煌乃鷳B(tài)系統(tǒng)擴(kuò)展,這種趨勢(shì)隨著全球變暖和水體富營(yíng)養(yǎng)化可能進(jìn)一步加?。∣’Neil et al.,2012;Sinha et al., 2012);二是擬柱胞藻具備產(chǎn)生多種毒素的能力,其中最常見(jiàn)的為CYN(Cylindrospermopsin),它可抑制蛋白合成,損傷DNA,具廣泛的細(xì)胞毒性,可作用于大量的水生、半水生植物和動(dòng)物及其他浮游植物;另外,CYN還可以在生物中富集和轉(zhuǎn)移,這使得該毒素的環(huán)境影響延伸至陸生生物,嚴(yán)重危害人類健康(Kinnear,2010)。

中國(guó)是世界上水體富營(yíng)養(yǎng)化最嚴(yán)重的國(guó)家之一,藍(lán)藻水華在湖泊、池塘以及河流等各種淡水水體中頻繁發(fā)生。長(zhǎng)期以來(lái)微囊藻基本成為中國(guó)有毒有害藍(lán)藻的代名詞,對(duì)其他水華藍(lán)藻的研究極為匱乏(謝平,2015)。擬柱胞藻已在中國(guó)廣東、云南、湖北、福建及臺(tái)灣等多個(gè)省份發(fā)現(xiàn),且能夠產(chǎn)生CYN(Wu et al.,2011;Yamamoto et al.,2012;Yang et al.,2017)。在南亞熱帶的廣東省,該藻已是許多水庫(kù)的常見(jiàn)和優(yōu)勢(shì)種類,更在三坑、塘坑邊、鎮(zhèn)海等多個(gè)水庫(kù)中形成水華,相對(duì)生物量可達(dá)93%以上,擬柱胞藻已經(jīng)逐漸取代微囊藻成為危害該地區(qū)水庫(kù)供水安全的首要藍(lán)藻(Lei et al.,2014;趙莉等,2017)。為深入了解擬柱胞藻在中國(guó)及全球范圍內(nèi)成功快速擴(kuò)張的原因,本文將對(duì)國(guó)內(nèi)外研究進(jìn)行歸納總結(jié),重點(diǎn)闡述擬柱胞藻在全球范圍內(nèi)的分布以及其適應(yīng)環(huán)境的生理生態(tài)特征,探討其在多種環(huán)境中獲得競(jìng)爭(zhēng)優(yōu)勢(shì)的生理生態(tài)策略。

1 擬柱胞藻的分類

早期對(duì)擬柱胞藻的分類鑒定較為混亂,曾被劃分為擬魚(yú)腥藻屬(Anabaenopsis)、尖頭藻(Raphidiopsis)和柱孢藻屬(Cylindrospermum)等(Jeeji-Bai et al.,1977)。1969年,在巴西Paranoá水庫(kù)發(fā)生的擬柱胞藻水華,因其外部形態(tài)特征與束絲藻( Aphanizomenon flosaquae)相似,被劃分為束絲藻屬,后來(lái)有研究發(fā)現(xiàn)擬柱胞藻的自然種群能夠形成異形胞,又將其劃分為擬魚(yú)腥藻,但進(jìn)一步的研究發(fā)現(xiàn)其異形胞的形成方式與擬魚(yú)腥藻有很大區(qū)別,與柱孢藻屬更為相似(Lagos et al.,1999)。Hindák(1988)在斯洛伐克西部湖泊自然種群中發(fā)現(xiàn)擬柱胞藻的異形胞由藻絲末端細(xì)胞形成,擬魚(yú)腥藻的異形胞則在藻絲中間成對(duì)出現(xiàn),進(jìn)一步證實(shí)了擬柱胞藻不同于擬魚(yú)腥藻。擬柱胞藻藻絲末端尖細(xì)狀,具偽空泡,厚壁孢子出現(xiàn)在藻絲一端或兩端,距異形胞1~3個(gè)營(yíng)養(yǎng)細(xì)胞,Komárek et al.(1991)依據(jù)這些形態(tài)特征將其從柱孢藻屬劃分出來(lái),并命名為擬柱胞藻屬。目前根據(jù)形態(tài)學(xué)特征分類,擬柱胞藻屬共有8個(gè)種,其中關(guān)于C. raciborskii的研究報(bào)道最多(Saker et al.,2001)。

近年來(lái),許多學(xué)者運(yùn)用分子生物學(xué)手段來(lái)揭示藍(lán)藻種群遺傳進(jìn)化特點(diǎn)及種類鑒別,對(duì)擬柱胞藻的研究也不例外。有研究者通過(guò)分析澳大利亞、德國(guó)、葡萄牙、巴西和美國(guó)等地理分布區(qū)擬柱胞藻的固氮酶基因nifH和16S rDNA序列,將其劃分為美國(guó)、歐洲和澳大利亞3個(gè)類群。Dyble et al.(2002)以PC-IGS基因序列作為分子標(biāo)記研究擬柱胞藻遺傳多樣性,又將其分為美國(guó)和歐洲—澳大利亞2個(gè)類群(Neilan et al.,2003)。Gugger et al.(2005)以ITS基因序列作為分子標(biāo)記,將歐洲、美國(guó)、澳大利亞和非洲地區(qū)的擬柱胞藻劃分為美國(guó)、歐洲和澳大利亞—非洲3個(gè)類群。Wilson et al.(2000)通過(guò)分析澳大利亞地區(qū)的2種形態(tài)特征(直線形和卷曲形)擬柱胞藻的16S rDNA、rpoC1、nifH和PC-IGS基因序列發(fā)現(xiàn),2種形態(tài)類型的擬柱胞藻具有相似的遺傳特征。因此,將形態(tài)學(xué)分類方法與分子生物學(xué)手段結(jié)合起來(lái)有助于對(duì)擬柱胞藻進(jìn)行精確分類鑒定。

2 擬柱胞藻的分布與擴(kuò)散

擬柱胞藻最初被認(rèn)為是熱帶和亞熱帶特征性種類,自首次在印度爪洼島發(fā)現(xiàn)以來(lái),有大量的報(bào)道稱其在澳大利亞北部、南美洲、非洲等國(guó)家或地區(qū)的湖泊和水庫(kù)中存在并成為優(yōu)勢(shì)種(Fabbro et al.,1996)。在過(guò)去20多年,擬柱胞藻在溫帶地區(qū)出現(xiàn)的頻率明顯增加,已經(jīng)遍布整個(gè)歐洲和澳大利亞,近年來(lái)在法國(guó)、波蘭、日本、加拿大、新西蘭、美國(guó)等國(guó)家的水體中都有發(fā)現(xiàn)擬柱胞藻(Briand et al.,2002;Kokociński et al.,2009;Sinha et al.,2012),在中國(guó)的廣東、云南、湖北及臺(tái)灣地區(qū)水體中也有發(fā)現(xiàn)(Wu et al.,2011;Yamamoto et al.,2012;Lei et al.,2014)。到目前為止,包括南半球和北半球在內(nèi)的全球范圍內(nèi)不斷有國(guó)家報(bào)告擬柱胞藻的出現(xiàn),其發(fā)生的水體包括河流、淺水水體、湖泊和水庫(kù)。近年來(lái)擬柱胞藻報(bào)道頻率的升高被認(rèn)為與人們對(duì)該藻的關(guān)注持續(xù)增加有關(guān),但更多研究認(rèn)為擬柱胞藻具有較強(qiáng)的適應(yīng)能力,隨著全球氣候變暖,其種群分布不斷由熱帶亞熱帶地區(qū)向溫帶地區(qū)擴(kuò)散(Roijackers et al.,2007;Paerl et al.,2008)。

關(guān)于擬柱胞藻在世界范圍內(nèi)的擴(kuò)散有2個(gè)假設(shè)。第一個(gè)認(rèn)為其首要的起源中心是非洲,非洲地區(qū)湖泊中擬柱胞藻種群具有多樣性,能夠適應(yīng)低濃度氮磷營(yíng)養(yǎng)鹽環(huán)境,形成競(jìng)爭(zhēng)優(yōu)勢(shì),有助于其不斷擴(kuò)散至赤道地區(qū)的印度尼西亞和中美洲;其次的輻射中心是澳大利亞,它能解釋擬柱胞藻向熱帶、亞熱帶和溫帶地區(qū)的擴(kuò)散。澳大利亞的氣候條件有助于篩選出耐低光的溫帶擬柱胞藻入侵株系,而這個(gè)過(guò)程在熱帶地區(qū)的非洲是不可能發(fā)生的。從澳大利亞向外擴(kuò)散的途徑可能有兩條:(1)通過(guò)鳥(niǎo)類或無(wú)意識(shí)的人類活動(dòng),通過(guò)海洋向北美和南美擴(kuò)散;(2)通過(guò)鳥(niǎo)類和河流,從大陸向中亞直至歐洲大陸擴(kuò)展(Padisák,1997)。近期提出的擬柱胞藻增殖假說(shuō)則認(rèn)為它的入侵不是來(lái)自于非洲或澳大利亞,而是每個(gè)大陸的溫暖避難區(qū)。這個(gè)假說(shuō)認(rèn)為該藻在更多溫帶環(huán)境下的擴(kuò)展是這樣發(fā)生的:在多冰期和更新世時(shí)期的氣候變化下,擬柱胞藻得以存活下來(lái),隨著近年來(lái)的溫度上升而在更多的地區(qū)生長(zhǎng)(Gugger et al.,2005)。

有研究表明擬柱胞藻不斷由熱帶亞熱帶地區(qū)向溫帶地區(qū)擴(kuò)散與1960年后全球氣候變暖有關(guān)(Wiedner et al.,2007)。Briand et al.(2004)通過(guò)研究熱帶和溫帶地區(qū)的多株擬柱胞藻的生理生態(tài)學(xué)特征發(fā)現(xiàn):不同地理分布的擬柱胞藻生長(zhǎng)所需的光照條件相似,對(duì)環(huán)境變化具有較強(qiáng)的適應(yīng)能力。擬柱胞藻向溫帶地區(qū)擴(kuò)散的原因?yàn)椋?)全球氣候變暖,導(dǎo)致水體溫度上升;(2)擬柱胞藻具有較寬的溫度適應(yīng)范圍;(3)擬柱胞藻依靠選擇不同生態(tài)類型來(lái)適應(yīng)溫帶地區(qū)的低溫低光照條件。

3 擬柱胞藻的生理生態(tài)特性

3.1 溫度

來(lái)源于世界各地的擬柱胞藻藻株能耐受較寬的溫度波動(dòng),這使得它能在冬季維持一定的種群數(shù)量(Briand et al.,2004;Chonudomkul et al.,2004;Soares et al.,2013),擬柱胞藻可在溫度低至12 ℃時(shí)存活,甚至在11 ℃時(shí)其生物量仍高達(dá)浮游植物總生物量的95%(Bonilla et al.,2012;Dokulil et al.,2016);在溫度高達(dá)35~39 ℃時(shí),擬柱胞藻依然能獲得凈生長(zhǎng)(Piccini et al.,2011;Kovács et al.,2016)。利用分離自溫帶和熱帶地區(qū)的擬柱胞藻進(jìn)行的生長(zhǎng)實(shí)驗(yàn)表明,這些藻株在12~39 ℃下均可獲得凈生長(zhǎng)(Chonudomkul et al.,2004;Everson et al.,2011;Kovács et al.,2016),這種低溫耐受和對(duì)較寬溫度范圍的適應(yīng)性是其在溫帶到熱帶水體都廣泛存在的基礎(chǔ)。作為熱帶特征性種類,其最佳生長(zhǎng)溫度普遍在25 ℃以上,模擬數(shù)據(jù)也表明擬柱胞藻水華的發(fā)生溫度為25~32 ℃(Recknagel et al.,2014)。因此擬柱胞藻可在熱帶水體中常年占據(jù)優(yōu)勢(shì)乃至形成持續(xù)性水華,但在亞熱帶和溫帶地區(qū),該藻僅能在夏季較高的溫度條件下形成優(yōu)勢(shì)種(Wiedner et al.,2007;Everson et al.,2011;Sinha et al.,2012)。

擬柱胞藻另一個(gè)顯著的特點(diǎn)是在高溫下比其他藍(lán)藻生長(zhǎng)更快(Bonilla et al.,2012),顯著受益于氣候變暖下的水溫升高。越來(lái)越多的研究者認(rèn)為氣候變化可能導(dǎo)致藍(lán)藻水華的組成向著有利于包括擬柱胞藻在內(nèi)的入侵種類的方向發(fā)展(Mehnert et al.,2010)。這個(gè)現(xiàn)象已被很多研究證實(shí),如在塞內(nèi)加爾的Guiers湖,擬柱胞藻的高生物量與高溫和水體的穩(wěn)定性直接相關(guān)(Berger et al.,2006);Wiedner et al.(2007)在德國(guó)一些湖泊的研究明確顯示,擬柱胞藻的生長(zhǎng)啟動(dòng)是受溫度控制的,并認(rèn)為擬柱胞藻入侵至這些水體是全球氣候變化的結(jié)果。擬柱胞藻形成的孢子等休眠體可在17 ℃或22~23 ℃萌發(fā)(Briand et al.,2002),春天變暖的提前有利于休眠體早些萌發(fā),從而對(duì)本地種顯示出競(jìng)爭(zhēng)優(yōu)勢(shì)(Mehnert et al.,2010)。

3.2 光照

擬柱胞藻可耐受不同的光強(qiáng),研究發(fā)現(xiàn)其可發(fā)生于不同光強(qiáng)的水體中。Fabbro et al.(1996)在澳大利亞一個(gè)水庫(kù)中發(fā)現(xiàn)擬柱胞藻發(fā)生水華時(shí)水體表面光強(qiáng)最大值達(dá)到2500 μmol·m-2·s-1;Bouvy et al.(1999)在巴西水體中發(fā)現(xiàn)擬柱胞藻發(fā)生水華時(shí)水體光照強(qiáng)度變化范圍為14~830 μmol·m-2·s-1(Pierangelini et al.,2014);而奧地利富營(yíng)養(yǎng)化湖泊中擬柱胞藻種群大量增殖時(shí)的光強(qiáng)范圍為200~600 μmol·m-2·s-1,同時(shí)發(fā)現(xiàn)擬柱胞藻的光合速率在30~60 μmol·m-2·s-1光強(qiáng)下達(dá)到飽和(Dokulil et al.,1996)。由此可見(jiàn),擬柱胞藻對(duì)光照具有較寬的適應(yīng)范圍,能夠適應(yīng)高光強(qiáng),這是因?yàn)槠渚哂袀慰张?,在高光?qiáng)條件下能向水體下層遷移,避免強(qiáng)光傷害(Padisák et al.,1998;Shafik,2003)。

擬柱胞藻同時(shí)還對(duì)低光強(qiáng)有極強(qiáng)的耐受能力,屬于耐陰種,且能夠在低光強(qiáng)水體中獲得競(jìng)爭(zhēng)優(yōu)勢(shì)(Reynolds et al.,2002)。實(shí)驗(yàn)室的研究表明該藻具有較低的最適生長(zhǎng)光強(qiáng)(Briand et al.,2004;Kovács et al.,2016),野外調(diào)查也發(fā)現(xiàn)它能在透明度很低的條件下成為優(yōu)勢(shì)種(O’Brien et al.,2009;Yamamoto et al.,2012)。低光強(qiáng)耐受性被認(rèn)為是擬柱胞藻所具有的最重要的生態(tài)優(yōu)勢(shì)之一,有利于該藻的成功入侵。

3.3 氮營(yíng)養(yǎng)鹽

由于擬柱胞藻具固氮能力,能在N2的固定和氮營(yíng)養(yǎng)鹽的同化這兩個(gè)過(guò)程中交替,以應(yīng)對(duì)氮元素在環(huán)境中的變化,因此在氮利用上被認(rèn)為是廣幅種(Moisander et al.,2012)。當(dāng)水體中無(wú)機(jī)氮濃度較低時(shí),藻類生長(zhǎng)受到限制,而研究發(fā)現(xiàn)擬柱胞藻在低濃度無(wú)機(jī)氮的水體中仍然能夠存在并占優(yōu)勢(shì),這與其靈活吸收利用氮源的機(jī)制有關(guān)。擬柱胞藻能夠利用不同的氮源,在NH4+環(huán)境中生長(zhǎng)的擬柱胞藻具有最大生長(zhǎng)速率,其次是NO3-,最后是有機(jī)氮源(Présing et al.,1996;Padisák,1997;Saker et al.,2001;Herrero et al.,2004)。與其他藻類相比,擬柱胞藻吸收利用NH4+-N的閾值較低,有利于其在缺氮的水體中獲得競(jìng)爭(zhēng)優(yōu)勢(shì),優(yōu)先獲取氮源;有研究顯示,在高氨濃度下,擬柱胞藻比浮游藍(lán)絲藻生長(zhǎng)更快,這意味著擬柱胞藻可與溫帶地區(qū)的本地種進(jìn)行競(jìng)爭(zhēng)(Ammar et al.,2014)。當(dāng)水體中氮源消耗殆盡,擬柱胞藻能夠產(chǎn)生末端異形胞,固定氮?dú)鈦?lái)維持生長(zhǎng)(Hong et al.,2006),這種能力賦予擬柱胞藻一定的生態(tài)優(yōu)勢(shì),有助于其在湖泊水庫(kù)中成為優(yōu)勢(shì)種,尤其是相對(duì)于非固氮藍(lán)藻而言(Hadas et al.,2012)。

3.4 磷營(yíng)養(yǎng)鹽

就溶解性無(wú)機(jī)磷(DIP)的利用而言,擬柱胞藻被認(rèn)為是機(jī)會(huì)主義者。該種對(duì)磷的攝取親和力和儲(chǔ)存能力均非常高,這些特性在某些條件下是有利的,如水體中磷濃度上下波動(dòng),或營(yíng)養(yǎng)鹽具垂直梯度變化(Isvánovics et al.,2000;Wu et al.,2009)。大量研究表明在擬柱胞藻出現(xiàn)的水體中,溶解無(wú)機(jī)磷濃度變化范圍較廣(Vincent,2002;Vidal et al.,2008),但低磷環(huán)境顯著有利于擬柱胞藻獲得生長(zhǎng)優(yōu)勢(shì)。在法國(guó)的一個(gè)池塘中,擬柱胞藻的增殖與高溫和相對(duì)較低的氮磷營(yíng)養(yǎng)鹽相關(guān)(Posselt et al.,2009),研究發(fā)現(xiàn)擬柱胞藻往往在高氮低磷的水體中達(dá)到較高生物量(Dolman et al.,2012)。初步認(rèn)為擬柱胞藻擁有快速吸收和儲(chǔ)存無(wú)機(jī)磷的能力(Isvánovics et al.,2000),從而適應(yīng)低磷環(huán)境;另外它的胞外堿性磷酸酶活性較高,能有效裂解并利用有機(jī)磷(Wu et al.,2009),這使得擬柱胞藻在磷濃度極低的環(huán)境中仍占劇優(yōu)勢(shì)(Burford et al.,2006)。測(cè)序表明它的基因組中存在多個(gè)與磷攝取和利用相關(guān)的基因(Stucken et al.,2010),這些基因賦予該藻在低磷環(huán)境中擴(kuò)張的能力,使得其優(yōu)勢(shì)度常常在低磷條件下表現(xiàn)得更為明顯(Burford et al.,2006;Posselt et al.,2009);在無(wú)機(jī)氮供應(yīng)充足的情況下,擬柱胞藻甚至在磷限制下生長(zhǎng)更快(Kenesi et al.,2009)。然而,在高磷的環(huán)境中,擬柱胞藻較高的磷吸收能力并不占任何優(yōu)勢(shì),在這種情況下,擬柱胞藻與其他物種間競(jìng)爭(zhēng)的決定性因素可能是氮的吸收速率(Borics et al.,2000)。因此在解釋各營(yíng)養(yǎng)鹽在擬柱胞藻生長(zhǎng)中的作用時(shí),需要共同考慮擬柱胞藻對(duì)不同營(yíng)養(yǎng)鹽的吸收策略。

3.5 產(chǎn)毒

擬柱胞藻具產(chǎn)生多種毒素的能力,其中最常見(jiàn)的為CYN,其次為STX(Saxitoxin)(Lagos et al.,1999;Fastner et al.,2003;Willis et al.,2016)。人們發(fā)現(xiàn)擬柱胞藻的“產(chǎn)毒型”似乎呈現(xiàn)較規(guī)律的地理分布特點(diǎn),如CYN主要由大洋洲和亞洲水體分離的擬柱胞藻株系產(chǎn)生(Jiang et al.,2014;Willis et al.,2016),歐洲和北美水體的株系則不產(chǎn)生CYN(Fastner et al.,2003;Yilmaz et al.,2008),南美株系主要產(chǎn)生STX(Lagos et al.,1999)。初步推測(cè)這種“產(chǎn)毒型”的地理格局是地區(qū)性環(huán)境下的選擇壓力不同所致,因此擬柱胞藻的產(chǎn)毒能力可能在其擴(kuò)張和增殖過(guò)程中發(fā)揮重要作用。

Sinha et al.(2014)在對(duì)不產(chǎn)毒和產(chǎn)CYN的擬柱胞藻藻株的基因組進(jìn)行比較時(shí)發(fā)現(xiàn),兩者在脅迫和適應(yīng)性基因上存在顯著差異,推測(cè)CYN的產(chǎn)生與擬柱胞藻的生理適應(yīng)性相關(guān)(Sinha et al.,2014)。有研究顯示CYN在藍(lán)藻磷利用方面起著重要作用,在無(wú)機(jī)磷不足的水體中,CYN可誘導(dǎo)其他浮游植物過(guò)度分泌堿性磷酸酶,從而使產(chǎn)CYN的顫藻獲得生長(zhǎng)所需的無(wú)機(jī)磷,這使得藍(lán)藻自身無(wú)需消耗大量能量合成堿性磷酸酶,因此其處于競(jìng)爭(zhēng)上的有利地位(Bar-Yosef et al.,2010)。CYN可對(duì)許多水生生物產(chǎn)生毒性作用,這使得產(chǎn)毒擬柱胞藻具抗捕食防御能力(Holland et al.,2013),可在種群競(jìng)爭(zhēng)中獲得優(yōu)勢(shì)。

3.6 其他因素

擬柱胞藻偏好高pH值的生長(zhǎng)環(huán)境,通常出現(xiàn)在pH值為8.0~8.7水體中,在pH值為7.3~7.8的湖泊中擬柱胞藻也可發(fā)生,同時(shí)有研究發(fā)現(xiàn)擬柱胞藻在pH值為9.2~9.3的水體中仍可存活,但在偏酸性水體中未發(fā)現(xiàn)擬柱胞藻(Bowling,1994;Branco et al.,1994)。擬柱胞藻偏好低鹽度環(huán)境,其最適生長(zhǎng)出現(xiàn)在淡水或寡鹽條件下(Chapman,1997),鹽度的上升可限制擬柱胞藻的生長(zhǎng)(Moisander et al.,2012)。但也有研究發(fā)現(xiàn)擬柱胞藻可生長(zhǎng)在微咸水湖中,對(duì)鹽度具有一定的耐受性,可出現(xiàn)在高達(dá)2%的鹽度環(huán)境中(Calandrino et al.,2011;Moisander et al.,2012)。具有能利用紅光的色素和偽空泡也可提高擬柱胞藻的競(jìng)爭(zhēng)優(yōu)勢(shì),因?yàn)槠≌{(diào)節(jié)能力有助于其在貧營(yíng)養(yǎng)的水體中向下遷移利用底部豐富的營(yíng)養(yǎng)鹽,還可躲避水體表面的強(qiáng)光刺激(Padisák et al.,1998;Carey et al.,2012)。最近有研究推斷化感作用對(duì)擬柱胞藻的地理擴(kuò)散也有重要作用,被認(rèn)為是擬柱胞藻在溫帶氣候中擴(kuò)張的一個(gè)優(yōu)勢(shì)機(jī)制(Cleberc et al.,2007)。這可能是由于本地種與擬柱胞藻缺少長(zhǎng)期的共存生活,因此不能忍受擬柱胞藻所產(chǎn)生的化感物質(zhì)(Fitter,2003)。

4 結(jié)語(yǔ)

大量的研究表明擬柱胞藻具有一些生理生態(tài)共性,如表型可塑性強(qiáng),對(duì)光照溫度等關(guān)鍵生長(zhǎng)因子有較寬的生態(tài)輻(Kokociński et al.,2010),良好的漂浮能力,耐受低光強(qiáng),能固氮,對(duì)磷有較高的親和力且具有儲(chǔ)存磷的能力,能夠產(chǎn)毒等(Antunes et al.,2015)。上述特征使得擬柱胞藻能適應(yīng)各種氣候條件,使其能在復(fù)雜多變的環(huán)境下生長(zhǎng)并在合適的條件下爆發(fā)形成水華。

但最近的研究結(jié)果認(rèn)為擬柱胞藻擁有表型和遺傳上不同的多種生態(tài)型,即使在同一地區(qū)甚至同一水體,擬柱胞藻表現(xiàn)出的環(huán)境偏好差異性仍達(dá)顯著(Piccini et al.,2011;Yamamoto et al.,2014),這導(dǎo)致全球不同水體中,影響擬柱胞藻獲得競(jìng)爭(zhēng)優(yōu)勢(shì)的因素差異較大。如巴西的Ingazeira水庫(kù),卷曲狀擬柱胞藻的平均比例可達(dá)97%,因厄爾尼諾現(xiàn)象導(dǎo)致的降水不足和水體交換缺乏是導(dǎo)致擬柱胞藻水華發(fā)生的主要原因(Bittencourt-Oliveira et al.,2012);而在巴西的另一個(gè)水庫(kù)中,微囊藻只能在捕食壓力很小的情況下形成水華,而擬柱胞藻則可在捕食壓力高的條件下占據(jù)優(yōu)勢(shì)(Soares et al.,2009);在臺(tái)灣北部的池塘中,擬柱胞藻可在透明度很低的條件下成為優(yōu)勢(shì)種,而秋季降水沖刷、水體交換被認(rèn)為是擬柱胞藻消失的關(guān)鍵因子(Yamamoto et al.,2012)。

綜上所述,擬柱胞藻在全球的成功擴(kuò)張和形成優(yōu)勢(shì)的過(guò)程常常是多個(gè)環(huán)境因子共同參與,因此將來(lái)的研究不僅僅要關(guān)注擬柱胞藻的生理生態(tài)共性,更應(yīng)了解有不同環(huán)境需求的生態(tài)型,從而更好地評(píng)估擬柱胞藻在某一地域的擴(kuò)張潛力和發(fā)展趨勢(shì)。另外,作為一種產(chǎn)毒藍(lán)藻,目前對(duì)擬柱胞藻產(chǎn)毒的遺傳學(xué)基礎(chǔ)已有較好的了解,但關(guān)于產(chǎn)毒擬柱胞藻的發(fā)生和產(chǎn)毒機(jī)制,以及毒素在其全球擴(kuò)張中的作用仍知之甚少。目前,中國(guó)對(duì)擬柱胞藻的發(fā)生發(fā)展機(jī)制研究極為薄弱,加強(qiáng)這方面的研究將有助于評(píng)估擬柱胞藻這種新型藍(lán)藻水華對(duì)中國(guó)水生態(tài)安全的危害水平,可為有效控制擬柱胞藻水華的發(fā)生提供科學(xué)依據(jù)。

AMMAR M, COMTE K, TRAN T D C, et al. 2014. Initial growth phases of two bloom-forming cyanobacteria (Cylindrospermopsis raciborskii and Planktothrix agardhii) in monocultures and mixed cultures depending on light and nutrient conditions [J]. Annales De Limnologie-International Journal of Limnology, 1051(50): 231-240.

ANTUNES J T, LE?O P N, VASCONCELOS V M. 2015. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species [J]. Frontiers in Microbiology, 6: 1-13.

BAR-YOSEF Y, SUKENIK A, HADAS O, et al. 2010. Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons [J]. Current Biology Cb, 20(17): 1557-1561.

BERGER C, BA N, GUGGER M, et al. 2006. Seasonal dynamics and toxicity of Cylindrospermopsis raciborskii in lake Guiers (Senegal, West Africa) [J]. Fems Microbiology Ecology, 57(3): 355-366.

BITTENCOURT-OLIVEIRA M C, DIAS S N, MOURA A N, et al. 2012. Seasonal dynamics of cyanobacteria in a eutrophic reservoir (Arcoverde) in a semiarid region of Brazil [J]. Brazilian Journal of Biology, 72(3): 533-544.

BONILLA S, AUBRIOT L, SOARES M C S, et al. 2012. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii [J]. Fems Microbiology Ecology, 79(3): 594-607.

BORICS G, GRIGORSKI I, SZABó S, et al. 2000. Phytoplankton associations under changing pattern of bottom-up vs top-down control in a small hypertrophic fishpond in East Hungary [J]. Hydrobiologia, 424(1): 79-90.

BOUVY M, MOLICA R, OLIVEIRA S, et al. 1999. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil [J]. Aquatic Microbial Ecology, 20(3): 285-297.

BOWLING L. 1994. Occurrence and possible causes of a severe cyanobacterial bloom in Lake Cargelligo, New South Wales [J]. Marine & Freshwater Research, 45(5): 737-745.

BRANCO C W C, SENNA P A C. 1994. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoá Reservoir, Brasília, Brazil [J]. Algological Studies, 75: 85-96.

BRIAND J F, LEBOULANGER C, HUMBERT J F, et al. 2004. Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming [J]. Journal of Phycology, 40(2): 231-238.

BRIAND J F, ROBILLOT C, QUIBLIER-LLOBéRAS C, et al. 2002. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France [J]. Water Research, 36(13): 3183-3192.

BURFORD M A, MCNEALE K L, MCKENZIE-SMITH F J. 2006. The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir [J]. Freshwater Biology, 51(11): 2143-2153.

CALANDRINO E S, PAERL H W. 2011. Determining the potential for the proliferation of the harmful cyanobacterium Cylindrospermopsis raciborskii in subtropical water reservoir [J]. Journal of Phycology, 45: 540-546.

CAREY C C, IBELINGS B W, HOFFMANN E P, et al. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate [J]. Water Research, 46(5): 1394-1407.

CHAPMAN A D, SCHELSKE C L. 1997. Recent appearance of Cylindrospermopsis (Cyanobacteria) in five hypereutrophic Florida lakes [J]. Journal of Phycology, 33: 191-195.

CHONUDOMKUL D, YONGMANITCHAI W, THEERAGOOL G, et al. 2004. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan [J]. Fems Microbiology Ecology, 48(3): 345-355.

CLEBERC F, ALESSANDRA G, DAVIDF B, et al. 2007. Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion [J]. Journal of Phycology, 43(2): 256-265.

DE FIGUEIREDO D R, AZEITEIRO U M, ESTEVES S M, et al. 2004. Microcystin-producing blooms—a serious global public health issue [J]. Ecotoxicology & Environmental Safety, 59(2): 151-163.

DOKULIL M T, MAYER J. 1996. Population dynamics and photosynthetic rates of a Cylindrospermopsis-Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria [J]. Journal of Agronomy & Crop Science, 83(1): 179-195.

DOKULIL, MARTIN T. 2016. Vegetative survival of Cylindrospermopsis raciborskii (Cyanobacteria) at low temperature and low light [J]. Hydrobiologia, 764(1): 241-247.

DOLMAN A M, RüCKER J, PICK F R, et al. 2012. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus [J]. Plos One, 7(6): e38757.

DYBLE J, PAERL H W, NEILAN B A. 2002. Genetic characterization of Cylindrospermopsis raciborskii (Cyanobacteria) isolates from diverse geographic origins based on nifH and cpcBA-IGS nucleotide sequence analysis [J]. Applied & Environmental Microbiology, 68(5): 2567-2571.

EVERSON S, FABBRO L, KINNEAR S, et al. 2011. Extreme differences in akinete, heterocyte and cylindrospermospsin concentrations with depth in a successive bloom involving Aphanizomenon ovalisporum (Forti) and Cylindrospermopsis raciborskii (Woloszynska) Seenaya and SubbaRaju [J]. Harmful Algae, 10(3): 265-276.

FABBRO L D, DUIVENVOORDEN L J. 1996. Profile of a bloom of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju in the Fitzroy River in tropical central Queensland [J]. Marine & Freshwater Research, 47(5): 685-694.

FASTNER J, HEINZE R, HUMPAGE A R, et al. 2003. Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates [J]. Toxicon, 42(3): 313-321.

FITTER A. 2003. Making allelopathy respectable [J]. Science, 301(5638): 1337-1338.

GUGGER M, MOLICA R, LE BERRE B, et al. 2005. Genetic diversity of Cylindrospermopsis strains (Cyanobacteria) isolated from four continents [J]. Applied & Environmental Microbiology, 71(2): 1097-1100.

HADAS O, PINKAS R, MALINSKY-RUSHANSKY N, et al. 2012. Appearance and establishment of diazotrophic cyanobacteria in Lake Kinneret, Israel [J]. Freshwater Biology, 57(6): 1214-1227.

HERRERO A, MURO-PASTOR A M, VALLADARES A, et al. 2004. Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria [J]. Fems Microbiology Ecology, 28(4): 469-487.

HINDáK F. 1988. Planktonic species of two related genera, Cylindrospermopsis and Anabaenopsis, from western Slovakia [J]. Archiv Für Hydrobiologie, 80: 283-302.

HOLLAND A, KINNEAR S. 2013. Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and or physiological Aide [J]. Marine Drugs, 11(7): 2239-2258.

HONG Y, STEINMAN A, BIDDANDA B, et al. 2006. Occurrence of the toxin-producing cyanobacterium Cylindrospermopsis raciborskii in Mona and Muskegon Lakes, Michigan [J]. Journal of Great Lakes Research, 32(3): 645-652.

ISVáNOVICS V, SHAFIK H M, PRéSING M, et al. 2000. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures [J]. Freshwater Biology, 43(2): 257-275.

JEEJI-BAI N, NEGEWALD E, SOEDER C J. 1977. Revision and taxonomic analysis of the genus Anabaenopsis [J]. Archiv Für Hydrobiologie, 51 (Supplement): 3-24.

JIANG Y, XIAO P, YU G, et al. 2014. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies [J]. Applied & Environmental Microbiology, 80(17): 5219-5230.

KENESI G, SHAFIK H M, KOVáCS A W, et al. 2009. Effect of nitrogen forms on growth, cell composition and N fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures [J]. Hydrobiologia, 623(1): 191-202.

KINNEAR S H W. 2010. Cylindrospermopsin: a decade of progress on bioaccumulation research [J]. Marine Drugs, 8(3): 542-564.

KOKOCI?SKI M, DZIGA D, SPOOF L, et al. 2009. First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland [J]. Chemosphere, 74(5): 669-675.

KOKOCI?SKI M, STEFANIAK K, MANKIEWICZ-BOCZEK K, et al. 2010. The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta) [J]. Journal of Phycology, 45: 365-374.

KOMáREK J, KLING H. 1991. Variation in six planktonic cyanophyte genera in Lake Victoria (East Africa) [J]. Algological Studies, 61: 21-45.

KOVáCS A W, PRéSING M, V?R?S L. 2016. Thermal-dependent growth characteristics for Cylindrospermopsis raciborskii (Cyanoprokaryota) at different light availabilities: methodological considerations [J]. Aquatic Ecology, 50(4): 623-638.

LAGOS N, ONODERA H, ZAGATTO P A, et al. 1999. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil [J]. Toxicon, 37(10): 1359-1373.

LEI L, PENG L, HUANG X, et al. 2014. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China [J]. Environmental Monitoring & Assessment, 186(5): 3079-3090.

MEHNERT G, LEUNERT F, CIRéS S, et al. 2010. Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions [J]. Journal of Plankton Research, 32(7): 1009-1021.

MOISANDER P H, CHESHIRE L A, BRADDY J, et al. 2012. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability [J]. Fems Microbiology Ecology, 79(3): 800-811.

NEILAN B A, SAKER M L, FASTNER J, et al. 2003. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii [J]. Molecular Ecology, 12(1): 133-140.

O’BRIEN K R, BURFORD M A, BROOKES J D. 2009. Effects of light history on primary productivity in a phytoplankton community dominated by the toxic cyanobacterium Cylindrospermopsis raciborskii [J]. Freshwater Biology, 54(2): 272-282.

O’NEIL J M, DAVIS T W, BURFORD M A, et al. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change [J]. Harmful Algae, 14: 313-334.

PADISáK J, REYNOLDS C S. 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes [J]. Hydrobiologia, 384(1-3): 41-53.

PADISáK J. 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology [J]. Archiv Für Hydrobiologie Supplementband Monographische Beitrage, 107(4): 563-593.

PAERL H W, HUISMAN J. 2008. Blooms like it hot [J]. Science, 320(5872): 57-58.

PICCINI C, AUBRIOT L, FABRE A, et al. 2011. Genetic and eco-physiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes [J]. Harmful Algae, 10(6): 644-653.

PIERANGELINI M, STOJKOVIC S, ORR P T, et al. 2014. Photosynthetic characteristics of two Cylindrospermopsis raciborskii strains differing in their toxicity [J]. Journal of Phycology, 50(2): 292-302.

POSSELT A J, BURFORD M A, SHAW G, et al. 2009. Pulses of phosphate promote dominance of the toxic cyanophyte Cylindrospermopsis raciborskii in a Currituck Sound, North Carolina [J]. Harmful Algae, 11: 1-9.

PRéSING M, HERODEK S, V?R?S L, et al. 1996. Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton [J]. Archiv Für Hydrobiologie, 136(4): 553-562.

RECKNAGEL F, ORR P T, CAO H. 2014. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation [J]. Harmful Algae, 31: 26-34.

REYNOLDS C S, HUSZAR V, KRUK C, et al. 2002. Towards a functional classification of the freshwater phytoplankton [J]. Journal of Plankton Research, 24(5): 417-428.

ROIJACKERS R M M, LüRLING M F L L W. 2007. Climate change and bathing water quality [J]. Rapport, 101(1): 53-60.

SAKER M L, NEILAN B A. 2001. Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from northern Australia [J]. Applied & Environmental Microbiology, 67(4): 1839-1845.

SHAFIK H M. 2003. Morphological characteristics of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju in laboratory cultures [J]. Acta Biologica Hungarica, 54(1): 121-136.

SINHA R, PEARSON L A, DAVIS T W, et al. 2012. Increased incidence of Cylindrospermopsis raciborskii in temperate zones-is climate change responsible? [J]. Water Research, 46(5): 1408-1419.

SINHA R, PEARSON L A, DAVIS T W, et al. 2014. Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities [J]. BMC Genomics, 15(1): 83-96.

SOARES M C S, LüRLING M, HUSZAR V L M. 2013. Growth and temperature-related phenotypic plasticity in the cyanobacteriumCylindrospermopsis raciborskii [J]. Phycological Research, 61(1): 61-67.

SOARES M C S, ROCHA M I D A, MARINHO M M, et al. 2009. Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects [J]. Aquatic Microbial Ecology, 57(2): 137-149.

STUCKEN K, JOHN U, CEMBELLA A, et al. 2010. The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications [J]. Plos One, 5(2): e9235.

VIDAL L, KRUK C. 2008. Cylindrospermopsis raciborskii (Cyanobacteria) extends its distribution to Latitude 34°53’S: taxonomical and ecological features in Uruguayan eutrophic lakes [J]. Pan-American Journal of Aquatic Sciences, 3(2): 142-151.

VINCENT W F. 2002. Cyanobacterial dominance in the polar regions [M]// The Ecology of Cyanobacteria. Netherlands: Springer: 321-340.

WIEDNER C, RüCKER J, BRüGGEMANN R, et al. 2007. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions [J]. Oecologia, 152(3): 473-484.

WILLIS A, CHUANG A W, WOODHOUSE J N, et al. 2016. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii [J]. Toxicon, 119: 307-310.

WILSON K M, SCHEMBRI M A, BAKER P D, et al. 2000. Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR [J]. Applied & Environmental Microbiology, 66(1): 332-338.

WU Z, SHI J, LI R. 2009. Comparative studies on photosynthesis and phosphate metabolism of Cylindrospermopsis raciborskii with Microcystis aeruginosa and Aphanizomenon flos-aquae [J]. Harmful algae, 8(6): 910-915.

WU Z, SHI J, XIAO P, et al. 2011. Phylogenetic analysis of two cyanobacterial genera Cylindrospermopsis and Raphidiopsis based on multi-gene sequences [J]. Harmful Algae, 10(5): 419-425.

YAMAMOTO Y, SHIAH F K. 2012. Factors related to the dominance of Cylindrospermopsis raciborskii (cyanobacteria) in a shallow pond in northern Taiwan [J]. Journal of Phycology, 48(4): 984-991.

YAMAMOTO Y, SHIAH F K. 2014. Growth, trichome size and akinete production of Cylindrospermopsis raciborskii (cyanobacteria) under different temperatures: Comparison of two strains isolated from the same pond [J]. Phycological Research, 62(2): 147-152.

YANG Y, JIANG Y, LI X, et al. 2017. Variations of growth and toxin yield in Cylindrospermopsis raciborskii under different phosphorus concentrations [J]. Toxins, 9(1): 13.

YILMAZ M, PHLIPS E J, SZABO N J, et al. 2008. A comparative study of Florida strains of Cylindrospermopsis and Aphanizomenon for cylindrospermopsin production [J]. Toxicon, 51(1): 130-139.

謝平. 2015. 藍(lán)藻水華及其次生危害[J]. 水生態(tài)學(xué)雜志, 36(4): 1-13.

趙莉, 雷臘梅, 彭亮, 等. 2017. 廣東省鎮(zhèn)海水庫(kù)擬柱胞藻(Cylindrospermopsis raciborskii)的季節(jié)動(dòng)態(tài)及驅(qū)動(dòng)因子分析[J]. 湖泊科學(xué), 29(1): 193-199.

Review of the Distribution and Ecophysiology of An Invasive Cyanobacterial Species, Cylindrospermopsis raciborskii

LEI Lamei, LEI Minting, ZHAO Li, RUAN Zixi, YU Ting, PENG Liang, HAN Boping
Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China

Cylindrospermopsis raciborskii has been extensively studied and gained considerable attention for its toxicity, bloom formation and invasiveness, which have posed a serious problem to public and environmental health. C. raciborskii is typically ascribed to tropical distribution,but there are recent reports of its appearance in subtropical and temperate regions including northern Europe, which suggest that C. raciborskii has acquired the status of a cosmopolitan species. Phylogeography studies have confirmed a tropical origin of C. raciborskii and proposed two hypotheses on the worldwide dispersion of this species. The invasive success of C. raciborskii may be due to its ecophysiological plasticity. Although C. raciborskii prefers to higher temperatures and exhibits superior shade tolerance, this cyanobacteria is known to tolerate wide range of temperature and light intensity that may result in its global existence in tropical, subtropical and temperate regions. C. raciborskii is considered a generalist in terms of nitrogen usage because it can utilize different forms of nitrogen including ammonia, nitrate and urea, and under nitrogen limitation the heterocyst will be produced for N2fixation, leading to this species’ dominance. C. raciborskii has both a high uptake rate and high storage capacity for phosphorus which gives it an ecological advantage under low phosphorus conditions. The toxin production of C. raciborskii may play a role in nutrient uptake and grazing defense, and other factors, such as salinity and allelopathy, may also be important to its global expansion. This review comprehensively focuses on the adaptation of C. raciborskii to different environmental factors and try to elucidate the ecophysiological strategies favoring its spreading and invasion.

Cylindrospermopsis raciborskii; distribution; ecophysiology; invasion

10.16258/j.cnki.1674-5906.2017.03.024

Q949.22; X173

A

1674-5906(2017)03-0531-07

雷臘梅, 雷敏婷, 趙莉, 阮紫曦, 于婷, 彭亮, 韓博平. 2017. 入侵藍(lán)藻——擬柱胞藻的分布特征及生理生態(tài)研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào), 26(3): 531-537.

LEI Lamei, LEI Minting, ZHAO Li, RUAN Zixi, YU Ting, PENG Liang, HAN Boping. 2017. Review of the distribution and ecophysiology of an invasive cyanobacterial species, Cylindrospermopsis raciborskii [J]. Ecology and Environmental Sciences, 26(3): 531-537.

廣東省水利科技創(chuàng)新項(xiàng)目(2016-29);廣東省科技計(jì)劃項(xiàng)目(2013B091300015)

雷臘梅(1973年生),女,副研究員,博士,研究方向?yàn)樵孱惌h(huán)境生物學(xué)。E-mail: tleilam@jnu.edu.cn

*通信作者

2016-12-19

猜你喜歡
水華藍(lán)藻水體
農(nóng)村黑臭水體治理和污水處理淺探
藻類水華控制技術(shù)及應(yīng)用
生態(tài)修復(fù)理念在河道水體治理中的應(yīng)用
南美白對(duì)蝦養(yǎng)殖池塘藍(lán)藻水華處理舉措
南美白對(duì)蝦養(yǎng)殖池塘藍(lán)藻水華處理舉措
針對(duì)八月高溫藍(lán)藻爆發(fā)的有效處理方案
廣元:治理黑臭水體 再還水清岸美
可怕的藍(lán)藻
油酸酰胺去除藍(lán)藻水華的野外圍隔原位試驗(yàn)
巢湖滅藻
民生周刊(2012年25期)2012-04-29 00:44:03
互助| 宁河县| 宿松县| 长泰县| 临沂市| 阳曲县| 金川县| 保德县| 合山市| 西藏| 新民市| 昌乐县| 涟源市| 台东市| 沙河市| 徐水县| 博野县| 吕梁市| 太原市| 陵水| 柯坪县| 阆中市| 定安县| 丰顺县| 凤阳县| 额济纳旗| 宜兰市| 噶尔县| 阳江市| 南京市| 大姚县| 丰城市| 鄂温| 辉县市| 白朗县| 博野县| 光泽县| 涟源市| 嘉祥县| 三亚市| 郯城县|