余寶富 曾紅 唐智明 廖新根 余歡 夏國明 黃黛翠 李洪波
. 論著 Original article .
創(chuàng)傷后肘關(guān)節(jié)外源性攣縮形成中差異表達基因及相關(guān)通路研究
余寶富 曾紅 唐智明 廖新根 余歡 夏國明 黃黛翠 李洪波
目的在分子水平研究創(chuàng)傷后肘關(guān)節(jié)外源性攣縮的機制。方法 建立新西蘭兔創(chuàng)傷后膝關(guān)節(jié)外源性攣縮模型,左膝經(jīng)手術(shù)導致關(guān)節(jié)內(nèi)骨折,并以克氏針固定 8 周為實驗組,未經(jīng)手術(shù)的右膝為對照組,以模擬人肘關(guān)節(jié)外源性攣縮。使用 Agilent 兔全基因芯片技術(shù)檢測兔膝關(guān)節(jié)囊基因表達譜,通過比較實驗組和對照組關(guān)節(jié)囊基因表達譜篩選攣縮關(guān)節(jié)的關(guān)節(jié)囊中差異表達基因,對差異基因進行注釋及功能分析,并采用 Real-time RT-PCR 驗證部分差異基因。結(jié)果 實驗組與對照組基因表達譜相比較后篩選出差異表達基因90 個,其中表達上調(diào) 21 個,表達下調(diào) 69 個。這些差異表達基因在生化過程中主要參與調(diào)節(jié)外部的刺激反應、調(diào)控脂多糖介導的信號轉(zhuǎn)導通路及正性調(diào)節(jié)生物刺激反應,在分子功能中主要參與離子及 ATP 的結(jié)合,在細胞成分中主要參與構(gòu)成胞質(zhì)膜小泡。這些差異基因主要涉及的通路共有 31 個,主要包括風濕性關(guān)節(jié)炎通路 ( rheumatoid arthritis )、吞噬小體通路 ( phagosome )、肌動蛋白細胞骨架調(diào)節(jié)通路 ( regulation of actin cytoskeleton ) 等。Real-time RT-PCR 結(jié)果表明,Acta2、MMP2 及 KGF 3 個差異表達基因的定量結(jié)果與基因芯片檢測結(jié)果一致,均表達上調(diào)。結(jié)論 創(chuàng)傷后肘關(guān)節(jié)外源性攣縮的關(guān)節(jié)囊與正常關(guān)節(jié)囊相比存在差異表達基因,這些差異基因可能通過多種途徑在關(guān)節(jié)攣縮的形成中發(fā)揮作用。篩選出的差異表達基因及分析出的相關(guān)信號通路可為創(chuàng)傷后肘關(guān)節(jié)外源性攣縮機制的進一步研究提供實驗基礎(chǔ)。
關(guān)節(jié)攣縮;肘關(guān)節(jié);創(chuàng)傷;基因;信號通路;基因芯片
肘關(guān)節(jié)攣縮是指肘關(guān)節(jié)主動和 ( 或 ) 被動活動范圍減少或喪失,為肘部常見的并發(fā)癥之一。根據(jù)攣縮的原因可分為外源性、內(nèi)源性以及混合性三類。其中典型的外源性攣縮主要是指累及肘關(guān)節(jié)周圍軟組織結(jié)構(gòu),包括關(guān)節(jié)周圍的關(guān)節(jié)囊、韌帶及肌肉等一系列病理改變。不同程度的關(guān)節(jié)周圍組織攣縮可直接導致肘關(guān)節(jié)屈伸障礙,嚴重影響患者的日常生活及工作。雖然近些年來對肘關(guān)節(jié)創(chuàng)傷的認識不斷提高,治療方法不斷改進,但是創(chuàng)傷后肘關(guān)節(jié)攣縮的問題仍普遍存在。因此,如何預防及治療創(chuàng)傷后肘關(guān)節(jié)攣縮已成為臨床工作及研究的重點,解決問題的關(guān)鍵在于了解攣縮發(fā)生的機制。相對于正常的關(guān)節(jié)囊,創(chuàng)傷后攣縮的關(guān)節(jié)囊中的基因差異表達是引起關(guān)節(jié)囊攣縮的根本原因。為此,本研究根據(jù)以往研究建立新西蘭兔創(chuàng)傷后膝關(guān)節(jié)攣縮模型[1-2],以模擬人類創(chuàng)傷后肘關(guān)節(jié)外源性攣縮。使用基因芯片技術(shù)對新西蘭兔攣縮的膝關(guān)節(jié)囊進行差異表達基因篩選,并對其功能及參與的通路進行分析,試圖在分子水平上為肘關(guān)節(jié)外源性攣縮的形成機制提供依據(jù)。
一、兔膝關(guān)節(jié)外源性攣縮模型的建立
選用健康成年 ( 12~18 個月齡 ) 的新西蘭雌性大白兔 ( 3 只 ),體重約 3.5~3.8 kg。分開飼養(yǎng)。左膝為手術(shù)組,右膝為對照組。戊巴比妥鈉耳緣靜脈麻醉后,左膝處消毒,做左膝前方切口,先暴露股骨內(nèi)側(cè)髁,于側(cè)副韌帶止點近端用直徑 2.0 mm 的克氏針鉆孔并鉆出對側(cè)皮質(zhì)。孔隙中的滲血流入膝關(guān)節(jié)以此模擬關(guān)節(jié)內(nèi)骨折。隨后以直徑 1.5 mm 的克氏針自脛骨前方往后穿入股骨,克氏針兩尾端彎曲,膝關(guān)節(jié)被固定于屈曲 150°,以此為膝關(guān)節(jié)制動模型。
二、取材
兔膝關(guān)節(jié)制動模型建立后 8 周,3 只兔克氏針無松脫,關(guān)節(jié)無感染表現(xiàn),再次戊巴比妥鈉耳緣靜脈麻醉,左膝關(guān)節(jié)處消毒后,膝關(guān)節(jié)前方入路進入,先暴露克氏針并取出,活動膝關(guān)節(jié)可見左膝關(guān)節(jié)活動范圍較右膝明顯減小,提示左膝關(guān)節(jié)明顯攣縮,然后切取膝關(guān)節(jié)后方關(guān)節(jié)囊組織,取下的標本立即置入液氮保存。同樣方法取對側(cè)正常組標本。
三、RNA 抽提和純化
四、差異基因基因芯片檢測
項目所用芯片為 Agilent 兔全基因 4×44K 芯片( design ID:020908 ),共有 6 個標本,需要完成6 張上述芯片。
1. 樣品 RNA 的放大和標記:實驗樣品 RNA 采用 Agilent 表達譜芯片配套試劑盒,Low Input Quick Amp Labeling Kit,One-Color ( Cat#5190-2305,Agilent technologies,Santa Clara,CA,US ) 和標準操作流程對樣品 total RNA 中的 mRNA 進行放大和標記,并用 RNeasy mini kit ( Cat#74106,QIAGEN,GmBH,Germany ) 純化標記后的 cRNA。
2. 芯片雜交:按照 Agilent 表達譜芯片配套提供的雜交標準流程和配套試劑盒,Gene Expression Hybridization Kit ( Cat#5188-5242,Agilent technologies,Santa Clara,CA,US ),在滾動雜交爐 Hybridization Oven ( Cat#G2545A,Agilent technologies,Santa Clara,CA,US ) 中 65 ℃,10 rpm,滾動雜交 17 h,雜交 cRNA 上樣量 1.65 μg,并在洗缸 staining dishes ( Cat#121,Thermo Shandon,Waltham,MA,US ) 中洗片,洗片所用的試劑為Gene Expression Wash Buffer Kit ( Cat#5188-5327,Agilent technologies,Santa Clara,CA,US )。
3. 芯片掃描:完成雜交的芯片采用 Agilent Microarray Scanner ( Cat#G2565CA,Agilent technologies,Santa Clara,CA,US ) 進行掃描,軟件設(shè)置 Dye channel:Green,Scan resolution=5 μm, PMT 100%,10%,16bit。用 Feature Extraction software 10.7 ( Agilent technologies,Santa Clara,CA,US ) 讀取數(shù)據(jù),最后采用 Gene Spring Software 11.0 ( Agilent technologies,Santa Clara,CA,US ) 進行歸一化處理,所用的算法為 Quantile。
4. 差異基因的篩選及分析:將掃描所得數(shù)據(jù)使用由上海伯豪有限公司提供的在線分析系統(tǒng) ( SAS )進行分析:分別計算差異倍數(shù) ( fold change,F(xiàn)C ) 和每個探針點的 Flag / Call 值。采用配對 t 檢驗比較組間數(shù)據(jù)。差異基因篩選閾值設(shè)定包括以下 2 點:( 1 ) P<0.05;( 2 ) 差異倍數(shù) ( FC ) ≥2 或者≤0.5,并過濾掉功能未知及無注釋的基因。
表1 提取的總 RNA 質(zhì)檢結(jié)果Tab.1 The quality inspection results of extracted total RNA
5. 數(shù)據(jù)分析:對差異基因行 GO ( gene ontology )功能分析、Pathway 分析等。GO 功能分析:由于暫時沒有找到直接支持新西蘭兔 EntrezGene ID 號檢索的 GO 功能的分析工具,本研究將 EntrezGene ID 號轉(zhuǎn)化成 UNIPROT 號,針對所有的 UNIPROT 蛋白GO 信息進行了檢索,生成的 GO 注釋文件在 WEGO ( http://wego.genomics.org.cn/cgi-bin/wego/index.pl ) 進行 GO 作圖。根據(jù)所有檢測到差異基因的 GO 數(shù)據(jù)和所有檢測到基因的 GO 數(shù)據(jù)進行比對,分析 GO 富集數(shù)據(jù),由于兔 GO 數(shù)據(jù)過少,本研究將篩選標準上調(diào)為 P<0.10,在 REVIGO ( http://revigo.irb.hr/ ) 上作圖。KEGG Pathway 分析:使用 KOBAS 2.0 ( http:// kobas.cbi.pku.edu.cn/home.do ) 來做 KEGG Pathway 分析,篩選標準為 P<0.05。
那是我最后一次看到萬姐,背著一個比她身體還要大的包袱。老公要下樓幫她攔輛出租車,卻被她攔住了,一個人搖搖欲墜地向樓下走去。我這才發(fā)現(xiàn),原來她住在我家時,竟然做了那么多的衣服。
五、Real-time RT-PCR 驗證
查閱文獻并結(jié)合芯片的結(jié)果,初步選擇 Acta2、KGF、MMP2 基因行 Real-time RT-PCR 驗證基因芯片結(jié)果。所用試劑:Real-time RT-PCR Takara kit。儀器:ABI stepone plus。實驗步驟按照試劑盒進行,以 Gapdh 為內(nèi)參,三復孔。所用引物:Acta2-forward ( 5’-GACAATGGCTCCGGGCTCTGT AA-3’ ),Acta2-reverse ( 5’-TGCGCTTCATCACCC ACGTA-3’ ),KGF-forward ( 5’-AAACGAGGCAAAG TAAAAGGGAC-3’ ),KGF-reverse ( 5’-CCATTTAGC TGATGCGTATGTGTTG-3’ ),MMP2-forward ( 5’-C ATGTCTACTATTGGCGGGAAC-3’ ),MMP2-reverse ( 5’-TTCTTCGTGTAGGTGTAAATGGG-3’ ),Gapdhforward ( 5’-GCACGGTCAAGGCTGAGAAC-3’ ),Gapdh-reverse ( 5’-TGGTGAAGACGCCAGTGG A-3’ )。采用 2-ΔΔCt法比較實驗組和對照組間的差異[3]。使用配對 t 檢驗比較兩組間的差異,P<0.05為差異有統(tǒng)計學意義。
表2 芯片實驗質(zhì)控結(jié)果Tab.2 The quality inspection results of gene chip
一、提取的總 RNA 質(zhì)檢
共 6 份標本,除 Trauma 2 以外,2100 RIN 均≥7.0,28 s / 18 s 均≥0.7,且 260 / 280 nm 的比值均>1.8 ( 表1 )。Trauma 2 標本雖然 2100 RIN ( 值為6.8 )<7.0,但接近 7.0,提示 RNA 部分降解,但28 s / 18 s>0.7,260 / 280 nm 比值>1.8,考慮對芯片實驗的表達檢測影響不大,因此仍進行后續(xù)實驗。
二、芯片實驗質(zhì)控情況
基因芯片實驗中,所有標本 CV 值均<10%,檢出率均>60% ( 表2 ),提示芯片質(zhì)量合格。
三、差異基因篩選結(jié)果
篩選出兩組間差異表達基因 90 個,與對照組正常膝關(guān)節(jié)囊相比,創(chuàng)傷后的關(guān)節(jié)囊中表達上調(diào)的差異基因有 21 個 ( 表3 ),表達下調(diào)的差異基因有69 個 ( 表4 )。
四、GO 功能分析
GO 結(jié)果見圖1,2。在 REVIGO 上作圖結(jié)果顯示,這些差異基因在生化過程中主要參與調(diào)節(jié)外部的刺激反應、調(diào)控脂多糖介導的信號轉(zhuǎn)導通路及正性調(diào)節(jié)生物刺激反應,在分子功能中主要參與離子及 ATP 的結(jié)合,在細胞成分中主要參與構(gòu)成胞質(zhì)膜小泡。
五、KEGG Pathway 分析
結(jié)果顯示差異基因涉及到的通路有 31 個。主要包括風濕性關(guān)節(jié)炎通路 ( rheumatoid arthritis )、吞噬小體通路 ( phagosome )、肌動蛋白細胞骨架調(diào)節(jié)通路( regulation of actin cytoskeleton ) 等。31 條通路結(jié)果見表5 ( P≤0.05 )。
六、Real-time RT-PCR 對差異表達基因的驗證結(jié)果
在差異基因中,選擇與創(chuàng)傷后關(guān)節(jié)囊攣縮明顯相關(guān)的 3 個基因進行驗證,Acta2、MMP2 及 KGF 均上調(diào),與基因芯片結(jié)果一致。
表3 表達上調(diào)的差異基因Tab.3 The up-regulated differentially expressed genes
表4 表達下調(diào)的差異基因Tab.4 The down-regulated differentially expressed genes
描述ITI-HC2 Oryctolagus cuniculus inter-alpha-trypsin inhibitor heavy chain2 ( ITI-HC2 ), mRNA [ NM_001082647 ]NCF1 Oryctolagus cuniculus neutrophil cytosolic factor 1 ( NCF1 ), mRNA [ NM_001082102 ]CD4 Oryctolagus cuniculus CD4 molecule ( CD4 ), mRNA [ NM_001082313 ]AOAH Oryctolagus cuniculus acyloxyacyl hydrolase ( neutrophil ) ( AOAH ), mRNA [ NM_001082025 ]CCL2 Oryctolagus cuniculus chemokine ( C-C motif ) ligand 2 ( CCL2 ), mRNA [ NM_001082294 ]APOBEC1 Oryctolagus cuniculus apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 ( APOBEC1 ), mRNA [ NM_001082341 ]CAPS Oryctolagus cuniculus calcyphosine ( CAPS ), mRNA [ NM_001082644 ]CD38 Oryctolagus cuniculus CD38 molecule ( CD38 ), mRNA [ NM_001082683 ]RLA-A3 Oryctolagus cuniculus MHC class I antigen-like ( RLA-A3 ), mRNA [ NM_001190434 ]LOC100101599 Oryctolagus cuniculus cathepsin W mRNA, partial cds [ EF472895 ]LOC100344030 Oryctolagus cuniculus cathepsin L1 ( LOC100344030 ), mRNA [ XM_002708256 ]SLC5A9 Oryctolagus cuniculus solute carrier family 5 ( sodium/glucose cotransporter ), member 9 ( SLC5A9 ), mRNA [ NM_001082699 ]CYBB Oryctolagus cuniculus cytochrome b-245 beta polypeptide ( CYBB ), mRNA [ NM_001082100 ]ACP5 Oryctolagus cuniculus acid phosphatase 5, tartrate resistant ( ACP5 ), mRNA [ NM_001081988 ]MYH11 Oryctolagus cuniculus myosin, heavy chain 11, smooth muscle ( MYH11 ), mRNA [ NM_001082308 ]IFNG Oryctolagus cuniculus interferon, gamma ( IFNG ), mRNA [ NM_001081991 ]IL8 Oryctolagus cuniculus interleukin 8 ( IL8 ), mRNA [ NM_ 001082293 ]NCF4 Oryctolagus cuniculus neutrophil cytosolic factor 4, 40 kDa ( NCF4 ), mRNA [ NM_001082654 ]FPR Oryctolagus cuniculus N-formyl peptide receptor ( FPR ), mRNA [ NM_001082314 ]SLC15A2 Oryctolagus cuniculus solute carrier family 15 ( H+/peptide transporter ), member 2 ( SLC15A2 ), mRNA [ NM_001082700 ]KCTD16 Oryctolagus cuniculus potassium channel tetramerisation domain containing 16 (LOC100357562), mRNA [XM_002710279]PLN Oryctolagus cuniculus phospholamban ( PLN ), mRNA [ NM_001082621 ]LOC100009317 Oryctolagus cuniculus heme carrier protein 1 ( LOC100009317 ), mRNA [ NM_001082630 ]FYB Oryctolagus cuniculus FYN binding protein ( FYB-120/130 ) ( LOC100350748 ), mRNA [ XM_002713989 ]LOC100008880 Oryctolagus cuniculus lipophilin AL2 ( LOC100008880 ), mRNA [ NM_001082139 ]LPXN Oryctolagus cuniculus leupaxin ( LPXN ), mRNA [ NM_ 001082048 ]OLFM3 Oryctolagus cuniculus olfactomedin 3 ( LOC100344242 ), mRNA [ XM_002715827 ]CX3CR1 Oryctolagus cuniculus chemokine ( C-X3-C motif ) receptor 1 ( CX3CR1 ), mRNA [ NM_001082134 ]ZAN Oryctolagus cuniculus zonadhesin ( ZAN ), mRNA [ NM_001082081 ]THBD Oryctolagus cuniculus thrombomodulin ( THBD ), mRNA [ NM_001082144 ]TNFAIP8L2 Oryctolagus cuniculus tumor necrosis factor, alpha-induced protein 8-like 2 ( TNFAIP8L2 ), mRNA [ NM_001171296 ]CTLA4 Oryctolagus cuniculus cytotoxic T-lymphocyte-associated protein 4 ( CTLA4 ), mRNA [ NM_001082685 ]CHM-I Oryctolagus cuniculus chondromodulin-I precursor ( CHM-I ), mRNA [ NM_001082040 ]LOC100101588 Oryctolagus cuniculus caspase 1 ( LOC100101588 ), mRNA [ XM_002708417 ]CASQ2 Oryctolagus cuniculus calsequestrin 2 ( cardiac muscle ) ( CASQ2 ), nuclear gene encoding mitochondrial protein, mRNA [ NM_001101691 ]CYP8B1 Oryctolagus cuniculus cytochrome P450, family 8, subfamily B, polypeptide 1 ( CYP8B1 ), mRNA [ NM_001082622 ]MSR1 Oryctolagus cuniculus macrophage scavenger receptor 1 ( MSR1 ), mRNA [ NM_001082248 ]LOC100009479 Oryctolagus cuniculus potassium channel subunit Kv 1.2 ( LOC100009479 ), mRNA [ NM_001082722 ]GRO-A Oryctolagus cuniculus GRO ( GRO-A ), mRNA [ NM_ 001082386 ]TACC3 Oryctolagus cuniculus transforming, acidic coiled-coil containing protein 3 ( TACC3 ), mRNA [ NM_001082146 ]基因符號
圖1 差異表達上調(diào)基因的 GO 分析結(jié)果Fig.1 The GO analysis results of the up-regulated expressed differential genes
圖2 差異表達下調(diào)基因的 GO 分析結(jié)果Fig.2 The GO analysis results of the down-regulated expressed differential genes
表5 差異基因主要參與的通路Tab.5 The main related pathways of differential genes
本研究建立模型研究創(chuàng)傷后關(guān)節(jié)外源性攣縮的機制,其中較多分子與人類的研究結(jié)果一致,證明了模型建立的合理性。如本研究中,攣縮的關(guān)節(jié)囊MMP1、MMP2 表達上調(diào),而 Cohen 等[4]發(fā)現(xiàn)在人體中,創(chuàng)傷后攣縮的肘關(guān)節(jié)囊中 MMP1、MMP2 的表達水平也顯著上調(diào)。本研究使用 Agilent 兔全基因芯片技術(shù)篩選攣縮關(guān)節(jié)的關(guān)節(jié)囊中差異表達基因,篩選出兩組間差異表達基因 90 個,表達上調(diào)的差異基因有 21 個,表達下調(diào)的差異基因有 69 個,表明創(chuàng)傷后肘關(guān)節(jié)外源性攣縮的關(guān)節(jié)囊中存在差異表達基因。通過對差異基因的功能分析發(fā)現(xiàn),它們參與對外部刺激反應的調(diào)節(jié)、調(diào)控脂多糖介導的信號轉(zhuǎn)導通路、生物刺激反應的正調(diào)節(jié)、離子結(jié)合、ATP結(jié)合及組成胞質(zhì)膜小泡等。這些過程與文獻報道一致[5-6],如調(diào)節(jié)外部刺激反應,機體的損傷和疼痛可引起神經(jīng)末梢釋放神經(jīng)肽 P 物質(zhì)及降鈣素 G 相關(guān)肽類物質(zhì),從而引起肥大細胞脫顆粒。肥大細胞含有促纖維化顆粒,包括血小板生長因子 A ( platelet derived growth factor A,PDGFA ),內(nèi)皮縮血管素 1( endothelin1,ET1 ),成纖維細胞生長因子 ( fibroblast growth factor,F(xiàn)GF ) 和轉(zhuǎn)化生長因子-β ( transforming growth factor-β,TGF-β1 ) 等,肥大細胞通過脫顆粒,釋放上述因子,從而促進肌成纖維細胞的分化及增殖[7]。在動物及人類的創(chuàng)傷后攣縮肘關(guān)節(jié)中,肥大細胞、含神經(jīng)肽的神經(jīng)纖維的數(shù)目 4 周內(nèi)便開始上升,而在慢性階段仍保持升高的狀態(tài)[8]。肥大細胞因此連接創(chuàng)傷后的急性炎癥期和隨后的攣縮期,也因此可能成為創(chuàng)傷后肘關(guān)節(jié)攣縮的干預靶點。酮替芬可以減少肥大細胞及肌成纖維細胞的數(shù)量,并且相對地可以減少關(guān)節(jié) 42%~52% 的攣縮程度。因此,酮替芬可能是人類皮膚損傷后減少傷口攣縮及纖維化的有效措施,并且不影響正常的愈合過程[9]。Hildebrand 等[8]發(fā)現(xiàn)兔子的創(chuàng)傷后膝關(guān)節(jié)攣縮的急、慢性階段及人類創(chuàng)傷后攣縮的肘關(guān)節(jié)慢性階段,關(guān)節(jié)囊中的肌成纖維細胞、肥大細胞、神經(jīng)肽的含量顯著上升,而上述過程必然伴隨著能量的代謝,與本研究結(jié)構(gòu)中參與 ATP 結(jié)合是一致的。差異基因的功能結(jié)果提示創(chuàng)傷后關(guān)節(jié)囊攣縮的發(fā)生、發(fā)展與多種基因差異表達、多個分子生物學過程共同所致。KEGG Pathway 分析顯示,差異基因涉及的通路有 31 個,主要包括風濕性關(guān)節(jié)炎通路、吞噬小體通路、肌動蛋白細胞骨架調(diào)節(jié)通路等。如α-平滑肌肌動蛋白 ( α-SMA ) 是肌成纖維細胞胞內(nèi)表達的一種肌動蛋白,α-SMA 可通過細胞膜上的整合素作用于細胞外基質(zhì),從而影響細胞外基質(zhì)的構(gòu)成[10-11]。因此對肌動蛋白細胞骨架調(diào)節(jié)通路的干預能夠預防關(guān)節(jié)的攣縮。KEGG Pathway 分析結(jié)果表明這些通路共同作用,構(gòu)成創(chuàng)傷后關(guān)節(jié)囊攣縮的發(fā)生發(fā)展中復雜的網(wǎng)絡(luò)調(diào)控系統(tǒng)。為了驗證基因芯片的可靠性,本研究從所篩選的差異基因中挑選了Acta2、MMP2 及 KGF 3 個有意義的差異基因進行Real-time RT-PCR 驗證,其結(jié)果與基因芯片結(jié)果趨勢一致,從而確保了基因芯片結(jié)果的可靠性。
圖3 Real-time RT-PCR 結(jié)果顯示 Acta2 基因表達上調(diào) ( t = 6.092,P = 0.026 )圖4 Real-time RT-PCR 結(jié)果顯示 KGF 基因表達上調(diào) ( t = 8.199,P = 0.014 )圖5 Real-time RT-PCR 結(jié)果顯示 MMP2 基因表達上調(diào) ( t = 4.758,P = 0.041 )Fig.3 The results of Real-time RT-PCR showed Acta2 was up-regulated in expression ( t = 6.092, P = 0.026 )Fig.4 The results of Real-time RT-PCR showed KGF was up-regulated in expression ( t = 8.199, P = 0.014 )Fig.5 The results of Real-time RT-PCR showed that expression of MMP2 was up-regulated ( t = 4.758, P = 0.041 )
本研究也有一定的局限性,首先,本研究的樣本較少,增加兔子的數(shù)量可使研究結(jié)果更可靠。其次,攣縮的關(guān)節(jié)囊中,分子的表達水平會隨著時間的改變而改變[12],因此可使用更多數(shù)量的兔子,分別固定后 8 周、16 周及 32 周再測定差異表達基因。再者,該研究是在 RNA 水平揭示基因表達,細胞調(diào)控蛋白的表達包括在轉(zhuǎn)錄水平和翻譯水平,RNA 水平未必與蛋白水平一致的,因此,有必要進行蛋白水平的研究來證實本研究的結(jié)果。最后,可直接用來分析兔子基因的數(shù)據(jù)庫很少,對該研究數(shù)據(jù)的分析也有一定的影響。
創(chuàng)傷后關(guān)節(jié)攣縮發(fā)生的機理非常復雜,是多基因多通路共同作用的結(jié)果。創(chuàng)傷后肘關(guān)節(jié)攣縮仍是臨床中常見的難以預防及治療的問題,通過對創(chuàng)傷后肘關(guān)節(jié)攣縮的機制研究,可指導創(chuàng)傷后肘關(guān)節(jié)或者是肘關(guān)節(jié)松解后的靶向干預來預防肘關(guān)節(jié)攣縮或復發(fā)。目前主要觀點認為,肌成纖維細胞-肥大細胞-神經(jīng)肽纖維化軸在創(chuàng)傷后肘關(guān)節(jié)攣縮的發(fā)生發(fā)展中起著最主要的作用,而對該軸的干預主要集中在酮替芬對肥大細胞的穩(wěn)定作用上[9,13-14]。本研究篩選出的差異基因及分析出的可能通路,將為今后研究創(chuàng)傷后肘關(guān)節(jié)外源性攣縮的預防及治療提供更多的可參考靶點。
[1]Hildebrand KA, Sutherland C, Zhang M. Rabbit knee model ofpost-traumatic joint contractures: the long-term natural history of motion loss and myofibroblasts[J]. J Orthop Res, 2004, 22(2):313-320.
[2]Hildebrand KA, Zhang M, Salo PT, et al. Joint capsule mast cells and neuropeptides are increased within four weeks of injury and remain elevated in chronic stages of posttraumatic contractures[J]. J Orthop Res, 2008, 26(10):1313-1319.
[3]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C (T) method[J]. Nat Protoc, 2008, 3(6): 1101-1108.
[4]Cohen MS, Schimmel DR, Masuda K, et al. Structural and biochemical evaluation of the elbow capsule after trauma[J]. J Shoulder Elbow Surg, 2007, 16(4):484-490.
[5]Sch?ffer M, Beiter T, Becker HD, et al. Neuropeptides: mediators of inflammation and tissue repair[J]? Arch Surg, 1998, 133(10):1107-1116.
[6]Duggan AW, Morton CR, Zhao ZQ, et al. Noxious heating of the skin releases immunoreactive substance p in the substantia gelatinosa of the cat: a study with antibody microprobes[J]. Brain Res, 1987, 403(2):345-349.
[7]Gruber BL. Mast cells in the pathogenesis of fi brosis[J]. Curr Rheumatol Rep, 2003, 5(2):147-153.
[8]Hildebrand KA, Zhang M, Salo PT, et al. Joint capsule mast cells and neuropeptides are increased within four weeks of injury and remain elevated in chronic stages of posttraumatic contractures[J]. J Orthop Res, 2008, 26(10):1313-1319.
[9]Monument MJ, Hart DA, Befus AD, et al. The mast cell stabilizer ketotifen fumarate lessens contracture severity and myofibroblast hyperplasia: a study of a rabbit model of posttraumatic joint contractures[J]. J Bone Joint Surg Am, 2010, 92(6):1468-1477.
[10]Skalli O, Ropraz P, Trzeciak A, et al. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation[J]. J Cell Biol, 1986, 103(6 Pt 2): 2787-2796.
[11]Hinz B. The myof i broblast: paradigm for a mechanically active cell[J]. J Biomech, 2010, 43(1):146-155.
[12]Hildebrand KA, Zhang M, Hart DA. Joint capsule matrix turnover in a rabbit model of chronic joint contractures: correlation with human contractures[J]. J Orthop Res, 2006, 24(5):1036-1043.
[13]Gottwald T, Coerper S, Sch?ffer M, et al. The mast cell-nerve axis in wound healing: a hypothesis[J]. Wound Repair Regen, 1998, 6(1):8-20.
[14]Gallant-Behm CL, Hildebrand KA, Hart DA. The mast cell stabilizer ketotifen prevents development of excessive skin wound contraction and fibrosis in red duroc pigs[J]. Wound Repair Regen, 2008, 16(2):226-233.
( 本文編輯:李慧文 )
Differentially expressed genes and related pathways of post-traumatic elbw joint extrinsic contractures
YU Bao-fu,ZENG Hong, TANG Zhi-ming, LIAO Xin-gen, YU Huan, XIA Guo-ming, HUANG Dai-cui, LI Hong-bo. The People’s Hospital of Jiangxi Province, Nanchang, Jiangxi, 330006, China
LI Hong-bo, Email: hongbolijx@163.com
ObjectiveTo study the mechanism of post-traumatic elbow joint extrinsic contracture at molecular level. Methods New Zealand rabbit model of post-traumatic knee extrinsic joint contracture was established to mimic post-traumatic elbow joint extrinsic contracture of human, of which left knees were operated on to result in intraarticular fractures and were fi xed for 8 weeks with K-wire as the experimental group. The right knees served as control group. The differentially expressed genes were screened with Agilent whole rabbit genome microarray technology by comparing gene expression prof i les of contracted joint capsules with normal ones. The functions of the differentially expressed genes were analyzed and annotated. Partial differentially expressed genes were conf i rmed by Real-time RTPCR. Results Ninety differentially expressed genes were detected between experimental group and control group, of which 21 were up-regulated and 69 down-regulated. In the analysis of differentially expressed genes, they were closely related to regulation of response to external stimulus, regulation of lipopolysaccharide-mediated signaling pathway and positive regulation of response to biotic stimulus in the function of biological process, ion binding and ATP binding in the molecular function, and cytoplasmic membrane-bounded vesicle in cellular component. There were mainly 31 pathways related to the differentially expressed genes, including rheumatoid arthritis, phagosome, regulation of actin cytoskeleton, etc. The results of Real-time RT- PCR were consistent with the results of the gene chip when tested for Acta2, MMP2 and KGF genes which were all up-regulated. Conclusions There are differentially expressed genes in the joint capsule of post-traumatic elbow joint extrinsic contracture, which may play a signif i cant role in the formation of joint contracture through multiple channels. These differentially expressed genes and related signal pathways mayprovide experimental basis for further research of post-traumatic elbow joint extrinsic contracture.
Arthrogryposis; Elbow joint; Trauma; Genes; Signal pathway; Gene chip
10.3969/j.issn.2095-252X.2017.03.007
R684
330006 南昌,江西省人民醫(yī)院
李洪波,Email: hongbolijx@163.com
2016-10-13 )