秦帥,王立成,沈世忠,強(qiáng)圣,王霄亞
天津理工大學(xué)化學(xué)化工學(xué)研,天津300384
攪拌槽內(nèi)三相流場(chǎng)混合時(shí)間的測(cè)定及模擬研究
秦帥,王立成,沈世忠,強(qiáng)圣,王霄亞
天津理工大學(xué)化學(xué)化工學(xué)研,天津300384
為140 mm。導(dǎo)流筒直徑為100 mm,高為50 mm,安裝在攪拌槳上方,距離槽底70 mm。采用六直葉圓盤(pán)渦輪槳,槳徑70 mm,葉寬20 mm,安裝位置距離槽底40 mm。
本流場(chǎng)采用甘油水溶液,體積為2 L,固相分別為砂子和赤泥,各相的物性參數(shù)如表1所示。
表1 流場(chǎng)體系各相的物性參數(shù)Table 1 Physical parameters of each phase of the flow field system
混合時(shí)間的測(cè)定采用電導(dǎo)法。槽內(nèi)流場(chǎng)穩(wěn)定后,在兩個(gè)擋板中間,距離攪拌軸中心徑向距離為35 mm的液面上方10 mm處,滴加5 g NaCl,采用電導(dǎo)率儀測(cè)量體系的電導(dǎo)率,當(dāng)電導(dǎo)率值與最終值偏差小于±5%時(shí),認(rèn)為混合均勻所用時(shí)間即為體系的混合時(shí)間。實(shí)驗(yàn)采用的電導(dǎo)率儀是梅特勒-托利多S230型電導(dǎo)率儀,電導(dǎo)率精度為±0.5%。在電解質(zhì)加入位置對(duì)面的兩個(gè)擋板中間,徑向距離為35 mm處,測(cè)量四個(gè)不同位置的混合時(shí)間,取其中最大值作為體系的混合時(shí)間。測(cè)量點(diǎn)的位置及坐標(biāo)如表2所示,其中,坐標(biāo)以(徑向位置,軸向位置)表示,坐標(biāo)原點(diǎn)為攪拌槽底圓心,單位為 mm。
表2 混合時(shí)間測(cè)量點(diǎn)位置及坐標(biāo)Table 2 Position and coordinate of the mixing time measuring point
圖2 不同區(qū)域的混合時(shí)間的測(cè)定Fig.2 Determination of mixing time in different areas by electrical conductivity method
以帶導(dǎo)流筒的液-固-固三相流場(chǎng),攪拌轉(zhuǎn)速175 r/min為例,如圖2所示。按照電導(dǎo)法,P1點(diǎn)混合時(shí)間T為53.4 s,P2點(diǎn)為48.6 s,P3點(diǎn)為59.0 s,P4點(diǎn)為54.2 s,其中P3點(diǎn)混合時(shí)間最大,所以體系的混合時(shí)間T為59.0 s。流場(chǎng)不同區(qū)域,攪拌槳周圍混合時(shí)間最短,槽底和槽頂區(qū)域混合時(shí)間接近,導(dǎo)流筒區(qū)域混合時(shí)間最長(zhǎng),出現(xiàn)這樣的分布規(guī)律,與流場(chǎng)的動(dòng)能分布和流體阻力大小有關(guān)。
本研究采用歐拉多相流模型[13,14]。對(duì)于流場(chǎng)中的某一相q(q為1,2,3),q相的連續(xù)性方程為:
即:?jiǎn)挝豢臻g單位時(shí)間內(nèi)q相質(zhì)量變化率 + 對(duì)流導(dǎo)致的q相質(zhì)量變化率 = p與q相的質(zhì)量傳遞變化量。
其中,α是q相的體積分?jǐn)?shù),ρ為q相密度,為q相速度,m為p至q相的質(zhì)量傳遞,m
qqpqqp為q至p相的質(zhì)量傳遞。
q相的動(dòng)量守恒方程為:
在多相流場(chǎng)中,各相流體互相接觸、碰撞、摩擦,存在相互作用力[15],各種作用力影響著流場(chǎng)的質(zhì)量分布和動(dòng)量傳遞[16]。這些作用力包括升力、虛擬質(zhì)量力和曳力,其中,升力和虛擬質(zhì)量力比曳力要小得多,因此,CFD模擬中只考慮了曳力對(duì)流場(chǎng)的影響[17]。
曳力的計(jì)算公式為:
其中,Kpq為相間動(dòng)量傳遞系數(shù)。
液固相之間的曳力:
當(dāng):αl>0.8時(shí),
ds為s相顆粒的直徑,CD為曳力系數(shù)。
當(dāng):αl≤0.8時(shí),
μl為粘度。
固相之間的曳力:
其中,ess’是顆粒碰撞的歸還系數(shù),Cfr,ss’是固體相間的摩擦系數(shù),g0,ss’為徑向分布函數(shù),是一個(gè)當(dāng)固體顆粒相變密時(shí)用于修改顆粒間碰撞概率的修正因子。在Fluent中:ess’=0.9,Cfr,ss’=0。
本研究采用的湍流模型為RNG(κ-ε)模型,該模型具有精度高,考慮因素全面,適用范圍廣等優(yōu)點(diǎn)。
κ方程和ε方程為[18]:
式中C1ε、C2ε和Rε是模型參數(shù),μeff為有效粘度。
為了選擇合適的網(wǎng)格數(shù),對(duì)流場(chǎng)網(wǎng)格獨(dú)立性進(jìn)行了研究。對(duì)帶有導(dǎo)流筒的攪拌體系分別采用18萬(wàn)、26萬(wàn)和74萬(wàn)三種網(wǎng)格劃分,利用Fluent自帶的前處理器Gambit進(jìn)行網(wǎng)格劃分,采用混合網(wǎng)格,其中攪拌槳及其以上區(qū)域采用非結(jié)構(gòu)化網(wǎng)格,攪拌槳以下區(qū)域采用結(jié)構(gòu)化網(wǎng)格。由于攪拌槳區(qū)域和攪拌槽底計(jì)算結(jié)果受網(wǎng)格數(shù)的影響較大,對(duì)這兩部分區(qū)域的網(wǎng)格細(xì)化,提高模擬結(jié)果的準(zhǔn)確性。模擬采用First Order Upwind離散方程差分格式,設(shè)定收斂殘差為0.000 1。
攪拌轉(zhuǎn)速u(mài)為200 r/min,比較不同徑向距離r處砂子沿軸向的濃度分布,無(wú)因次結(jié)果如圖3所示。在r為25 mm徑向位置,如圖3(a)所示,18萬(wàn)和26萬(wàn)兩種網(wǎng)格劃分,模擬偏差介于0.52%~6.94%;26萬(wàn)和74萬(wàn)兩種網(wǎng)格劃分,模擬偏差介于0.07%~3.97%。在r為35 mm徑向位置,如圖3(b)所示,18萬(wàn)和26萬(wàn)兩種網(wǎng)格劃分,模擬偏差介于0.39%~5.06%;26萬(wàn)和74萬(wàn)兩種網(wǎng)格劃分,模擬偏差介于0.01%~2.87%。在r為60 mm徑向位置,如圖3(c)所示,18萬(wàn)和26萬(wàn)兩種網(wǎng)格劃分,模擬偏差介于0.61%~7.33%;26萬(wàn)和74萬(wàn)兩種網(wǎng)格劃分,模擬偏差介于0.01%~2.99%。可以看出18萬(wàn)和26萬(wàn)兩種網(wǎng)格劃分偏差最大為7.33%,砂子軸向濃度分布曲線偏離較大;26萬(wàn)和74萬(wàn)兩種網(wǎng)格劃分下模擬偏差最大不超過(guò)3.97%,偏差較小,砂子軸向濃度分布曲線偏離較小。綜合考慮計(jì)算的準(zhǔn)確性、模擬速度及對(duì)設(shè)備的要求,該模擬研究采用的網(wǎng)格數(shù)為26萬(wàn)個(gè)網(wǎng)格。
圖3 基于三種網(wǎng)格劃分的砂子軸向濃度分布比較Fig.3 Comparison of the axial concentration distribution of sand based on three grid division
4.1 模型可信度驗(yàn)證
對(duì)于液-固-固三相流場(chǎng),存在砂子和赤泥兩種固相,選取兩種固相混合時(shí)間大者為體系的混合時(shí)間。在攪拌轉(zhuǎn)速175 r/min,砂子的混合時(shí)間的模擬結(jié)果確定方法如圖4所示。計(jì)算得到P1點(diǎn)混合時(shí)間為51.2 s,P2點(diǎn)為44.4 s,P3點(diǎn)為55.4 s,P4點(diǎn)為51.9 s,其中P3點(diǎn)混合時(shí)間最大,所以該體系砂子混合時(shí)間的模擬值為55.4 s,與實(shí)驗(yàn)值59.0 s接近,也說(shuō)明該CFD數(shù)學(xué)模型的準(zhǔn)確性。
圖4 流場(chǎng)模擬確定砂子混合時(shí)間的方法Fig.4 Determination of sand mixing time in the flow field simulation
表3所示為攪拌槽中有無(wú)導(dǎo)流筒設(shè)置三相流場(chǎng)混合時(shí)間的實(shí)驗(yàn)測(cè)定和模擬計(jì)算結(jié)果。其中,S1表示沒(méi)有導(dǎo)流筒的體系,S2表示有導(dǎo)流筒的體系。由表3也可以看出,混合時(shí)間的實(shí)驗(yàn)值與模擬值吻合較好,S1體系最大偏差為5.25%,S2體系最大偏差為6.11%,說(shuō)明建立的CFD模型能夠很好地預(yù)測(cè)流場(chǎng)的混合時(shí)間。
表3 不同攪拌轉(zhuǎn)速下流場(chǎng)混合時(shí)間實(shí)驗(yàn)值與模擬值的比較Table 3 Comparison of experimental and simulated values of mixing time under different stirred speed
4.2 不同條件下混合時(shí)間的模擬結(jié)果
4.2.1 攪拌轉(zhuǎn)速對(duì)混合時(shí)間的影響
圖5 攪拌槽內(nèi)三相流場(chǎng)的混合時(shí)間Fig.5 Mixing time of the three-phase flow field in the stirred tank
攪拌槽內(nèi)三相流場(chǎng)混合時(shí)間對(duì)攪拌速率的變化的模擬結(jié)果如圖5所示,由圖5可知,流場(chǎng)的混合時(shí)間隨攪拌轉(zhuǎn)速的增大而減小。當(dāng)轉(zhuǎn)速u(mài)小于150 r/min時(shí),混合時(shí)間隨攪拌轉(zhuǎn)速增大,下降趨勢(shì)較緩;轉(zhuǎn)速u(mài)大于150 r/min后,混合時(shí)間隨攪拌轉(zhuǎn)速增大,下降趨勢(shì)較大,特別是轉(zhuǎn)速介于150~160 r/min時(shí),混合時(shí)間呈直線下降趨勢(shì)。
4.2.2 導(dǎo)流筒對(duì)流場(chǎng)混合時(shí)間和固相混合時(shí)間的影響
由圖5可知,對(duì)于帶有導(dǎo)流筒(S2)體系,當(dāng)轉(zhuǎn)速u(mài)小于160 r/min或u大于182 r/min時(shí),體系的混合時(shí)間較無(wú)導(dǎo)流筒(S1)體系大;當(dāng)轉(zhuǎn)速為160~182 r/min時(shí),混合時(shí)間較S1體系小。究其原因,當(dāng)轉(zhuǎn)速小于160 r/min或u大于182 r/min時(shí),徑向混合占主導(dǎo)地位,導(dǎo)流筒的存在降低了物質(zhì)的徑向流速,不利于了液相和固相間的質(zhì)量、動(dòng)量傳遞;當(dāng)轉(zhuǎn)速為160~ 182 r/min時(shí),軸向混合占主導(dǎo)地位,導(dǎo)流筒的存在利于液相和固相間的質(zhì)量、動(dòng)量傳遞,縮短混合時(shí)間[19]。
圖6 不同流場(chǎng)內(nèi)同一固相混合時(shí)間比較Fig.6 Comparison of mixing time of the same solid phase in different flow fields
不同流場(chǎng)內(nèi)同一固相混合時(shí)間的比較如圖6所示。由圖6(a)可見(jiàn),在125~200 r/min攪拌轉(zhuǎn)速時(shí),砂子在設(shè)置導(dǎo)流筒的流場(chǎng)體系中混合時(shí)間大于不設(shè)導(dǎo)流筒的流場(chǎng)體系,但在165~180 r/min時(shí),兩者相差不大。由圖6(b)可見(jiàn),在125~160 r/min和184~200 r/min攪拌轉(zhuǎn)速時(shí),設(shè)置導(dǎo)流筒增大了赤泥的混合時(shí)間;160~184 r/min轉(zhuǎn)速時(shí),設(shè)置導(dǎo)流筒有利于赤泥混合時(shí)間的減小。
4.2.3 不同固相物料的混合時(shí)間
圖7所示為同一流場(chǎng)內(nèi)兩種固相的混合時(shí)間。可以看見(jiàn),不同固相的混合時(shí)間都隨攪拌轉(zhuǎn)速的增大而減小。不設(shè)導(dǎo)流筒時(shí),在實(shí)驗(yàn)轉(zhuǎn)速條件下(125~200 r/min),砂子的混合時(shí)間小于赤泥的混合時(shí)間。當(dāng)設(shè)置導(dǎo)流筒時(shí)(S2體系),攪拌轉(zhuǎn)速小于150 r/min時(shí)砂子易于混合均勻;當(dāng)150~175 r/min轉(zhuǎn)速時(shí),砂子和赤泥的混合時(shí)間曲線幾乎重合;但是當(dāng)攪拌轉(zhuǎn)速大于175 r/min時(shí),砂子的混合時(shí)間反而大于赤泥的混合時(shí)間。
圖7 同一流場(chǎng)內(nèi)兩種固相的混合時(shí)間Fig.7 Comparison of mixing time of two solid phases in the same flow field
混合時(shí)間是裝置設(shè)計(jì)和放大的重要依據(jù)。該研究表明,攪拌槽內(nèi)三相流場(chǎng)的混合時(shí)間隨攪拌轉(zhuǎn)速的增大而減小,轉(zhuǎn)速較小時(shí),混合時(shí)間減小較為緩慢,隨著轉(zhuǎn)速增大,混合時(shí)間減小幅度增大。對(duì)于不帶導(dǎo)流筒的流場(chǎng)體系,粒徑和密度大的固相(如砂子)混合時(shí)間較小。帶有導(dǎo)流筒的流場(chǎng)體系,粒徑和密度小的固相(如赤泥)在大部分?jǐn)嚢柁D(zhuǎn)速范圍內(nèi)混合時(shí)間較小。攪拌轉(zhuǎn)速較小或太大時(shí),流場(chǎng)體系無(wú)法形成完整的軸向循環(huán)流場(chǎng),設(shè)置導(dǎo)流筒不利于固相混合時(shí)間的縮短。當(dāng)攪拌轉(zhuǎn)速在一定范圍內(nèi)時(shí),流場(chǎng)形成完整的軸向循環(huán),軸向混合占主導(dǎo)地位,增設(shè)導(dǎo)流筒有利于固體物料混合時(shí)間的縮短。
[1] 張慶華, 毛在砂, 楊 超, 等. 攪拌反應(yīng)器中液相混合時(shí)間研究進(jìn)展 [J]. 化工進(jìn)展, 2008, 27(10):1544-1549. Zhang Qinghua, Mao Zaisha, Yang Chao, et al. Research progress of liquid-phase mixing time in stirred tanks [J]. Chemical Industry and Engineering Progress, 2008, 27(10):1544-1549.
[2] Mcclure D D, Aboudha N, Kavanagh J M , et al. Mixing in bubble column reactors: experimental study and CFD modeling [J]. Chemical Engineering Journal, 2015, 264:291-301.
[3] Ruszkowski S. A rational method for measuring blending performance and comparison of different impeller types [J]. Proc. 8th Europe Mixing Conf., 1994, 283-291.
[4] 徐世艾. 兩層槳攪拌釜內(nèi)混合過(guò)程的新二維單元串聯(lián)模型 [J]. 化學(xué)工業(yè)與工程, 2000, 17(4):208-213. Xu Shi’ai. A new cells-in-series model for the mixing process in a vessel with double impellers [J]. Chemical Industry and Engineering, 2000, 17 (4): 208-213.
[5] 周 坤. 偏心攪拌槽內(nèi)固液兩相流動(dòng)特性的研究 [D]. 北京:北京化工大學(xué), 2015:16.
[6] Abouzar A, Mahmoud Z, Nahid K, et al. Experimental and numerical study of iron pyrite nanoparticles synthesis based on hydrothermal method in a laboratory-scale stirred antoclave [J]. Powder Technology, 2016, 287:177-189.
[7] Claudio C, Giuseppina M, Cataldo D B, et al. Liquid mixing dynamics in slurry stirred tanks based on electrical resistance tomography[J]. Chemical Engineering Science, 2016, 152:478-487.
[8] 王曼曼. 剪切變稀體系下雙軸組合攪拌槳的氣液分散、傳質(zhì)和混合特性研究 [D]. 浙江:浙江大學(xué), 2016.
[9] Yu X, Makkawi Y, Ocone R, et al. A CFD study of biomass pyrolysis in a downer reactor equipped with a novel gas-solid separator-I: hydrodynamic performance [J]. Fuel Processing Technology, 2014, 126:366-382.
[10] Patel R, He P F, Zhang B, et al. Transport of interacting and evaporating liquid sprays in a gas-solid riser reactor [J]. Chemical Engineering Science, 2013, 100:433-444.
[11] Murthy B N, Ghadge R S, Joshi J B. CFD simulations of gas-liquid-solid stirred reactor: Prediction of critical impeller speed for solid suspension [J]. Chemical Engineering Science, 2007, 62: 7184-7195.
[12] Panneerselvam R, Savithri S, Surender G D. CFD simulation of hydrodynamics of gas-liquid-solid fluidised bed reactor [J]. Chemical Engineering Science, 2009, 64: 1119-1135.
[13] Khan M J H, Hussain M A, Mansourpour Z, et al. CFD simulation of fluidized bed reactors for polyolefin production-a review [J]. Journal of Industrial and Engineering Chemistry, 2014, 20: 3919-3946.
[14] Heidari A, Hashemabadi S H. CFD study of diesel oil hydrotreating process in the non-isothermal trickle bed reactor [J]. Chemical Engineering Research and Design, 2015, 94: 549-564.
[15] Ranade V V. Numerical simulation of dispersed gas-liquid flows [J]. Sadhaana, 1992, 17: 237-273.
[16] Ljungqvist M, Rasmuson A. Numerical simulation of the two-phase flow in an axially stirred vessel [J]. Trans. Inst. Chem. Eng., 2001, 79: 533-546.
[17] Chen X Z, Shi D P, Gao X, et al. A fundamental CFD study of the gas-solid flow field in fluidized bed polymerization reactors[J]. Powder Technology, 2005, 205: 276-288.
[18] Wang L C, Zhang Y F, Li X G, et al. Experimental investigation and CFD simulation of liquid-solid-solid dispersion in a stirred reactor[J]. Chemical Engineering Science, 2010, 65: 5559-5572.
[19] 王立成. 帶導(dǎo)流筒攪拌槽中液-固-固三相流場(chǎng)的實(shí)驗(yàn)與模擬研究 [D]. 天津: 天津大學(xué), 2010.
Measurement and Simulation of Mixing Time of Three-Phase Flow Field in the Stirred Tank
Qin Shuai, Wang Licheng, Shen Shizhong, Qiang Sheng, Wang Xiaoya
School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
The mixing time is an important index to evaluate the mixing efficiency of the mixing equipment. In order to detect the mixing time of the liquid-solid-solid three-phase flow field in the stirred tank equipped with baffles and draft tube, a flow field system using the glycerol solution as the liquid phase, the sand and red mud as solid phases was established and the mixing time of the system was measured by electrical conductivity method. The computational fluid dynamics (CFD) simulation of the flow field was carried out. The CFD model was based on the Eulerian multiphase model and the RNG κ-ε turbulence model. The simulation results indicated that the CFD model could well predict the mixing time of the flow field due to smaller deviation of between the simulation and experimental results. The mixing time decreased with the increase of the stirring speed, and when the axial mixing of the flow field was dominant, the mixing time of the flow field can be reduced by adding the draft tube. The draft tube had a great influence on the solids with smaller particle size and density.
stirred tank; mixing time; flow field; computational fluid dynamics