国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

分泌蛋白質(zhì)組學(xué)在腫瘤標(biāo)志物中的研究進(jìn)展

2017-04-06 05:46余樂正柳鳳娟吳正雨冉小強(qiáng)
生物技術(shù)通報(bào) 2017年3期
關(guān)鍵詞:組學(xué)前列腺癌標(biāo)志物

余樂正 柳鳳娟 吳正雨 冉小強(qiáng)

(貴州師范學(xué)院化學(xué)與生命科學(xué)學(xué)院,貴陽 550018)

分泌蛋白質(zhì)組學(xué)在腫瘤標(biāo)志物中的研究進(jìn)展

余樂正 柳鳳娟 吳正雨 冉小強(qiáng)

(貴州師范學(xué)院化學(xué)與生命科學(xué)學(xué)院,貴陽 550018)

在腫瘤發(fā)生、發(fā)展過程中,腫瘤細(xì)胞會(huì)分泌出大量蛋白質(zhì),而一些分泌蛋白已作為腫瘤標(biāo)志物被用于腫瘤的臨床檢測(cè)與預(yù)后判斷。隨著蛋白質(zhì)組學(xué)技術(shù)的快速發(fā)展,分泌蛋白質(zhì)組學(xué)應(yīng)運(yùn)而生,并為腫瘤研究提供了新的思路與方法。現(xiàn)就分泌蛋白質(zhì)組學(xué)在腫瘤標(biāo)志物研究中的策略及進(jìn)展做一綜述,旨在為研究人員在腫瘤標(biāo)志物發(fā)現(xiàn)及篩選方面提供借鑒。

分泌蛋白;分泌蛋白質(zhì)組;分泌蛋白質(zhì)組學(xué);腫瘤標(biāo)志物

惡性腫瘤是當(dāng)今人類生活中最危險(xiǎn)的疾病之一,其致死率在發(fā)達(dá)國(guó)家中位居第一,在發(fā)展中國(guó)家也位居第二[1]。隨著世界人口數(shù)量的不斷增加,人口老齡化的不斷加劇及工業(yè)化引起的人類生活環(huán)境質(zhì)量的不斷下降,許多惡性腫瘤的患病率仍將繼續(xù)上升。由于惡性腫瘤大都具有高發(fā)病率和高致死率的特點(diǎn),越早發(fā)現(xiàn),其治愈的幾率就越大,因此惡性腫瘤的早期診斷已成為腫瘤治療及延長(zhǎng)患者生命的關(guān)鍵[2]。作為一種強(qiáng)有力的系統(tǒng)生物學(xué)工具,蛋白質(zhì)組學(xué)(proteomics)技術(shù)的快速發(fā)展在深度和廣度上不斷推進(jìn)惡性腫瘤的研究進(jìn)程。利用蛋白質(zhì)組學(xué)技術(shù)對(duì)惡性腫瘤分泌蛋白質(zhì)組進(jìn)行系統(tǒng)研究,找到特異性強(qiáng)、靈敏度高的腫瘤標(biāo)志物,進(jìn)而揭示其表達(dá)水平的變化與惡性腫瘤發(fā)生發(fā)展不同階段的相互關(guān)系與規(guī)律,已逐漸成為惡性腫瘤早期診斷的最有效途徑,本文對(duì)分泌蛋白質(zhì)組學(xué)技術(shù)在腫瘤標(biāo)志物研究中的進(jìn)展進(jìn)行了分析,以期為新的腫瘤標(biāo)志物的發(fā)現(xiàn)及篩選提供借鑒。

1 分泌蛋白、分泌蛋白質(zhì)組及分泌蛋白質(zhì)組學(xué)

分泌蛋白(secreted proteins/secretory proteins)是對(duì)所有在細(xì)胞內(nèi)合成,再被分泌到其它細(xì)胞器、細(xì)胞外環(huán)境及其它細(xì)胞內(nèi)起作用的蛋白質(zhì)的統(tǒng)稱,主要包括細(xì)胞因子、生長(zhǎng)因子、補(bǔ)體、降解酶類、抗體、肽類激素及免疫球蛋白等具有重要生理功能的蛋白質(zhì)。根據(jù)蛋白質(zhì)分泌過程中是否有N端信號(hào)肽的參與,分泌蛋白可簡(jiǎn)單分為經(jīng)典分泌蛋白和非經(jīng)典分泌蛋白兩大類[3,4]。1994年,澳大利亞Macquarie大學(xué)的Wilkins和Williams[5]首次提出了蛋白質(zhì)組(proteome)的概念,以表征一個(gè)基因組、細(xì)胞或組織在一定時(shí)期內(nèi)所表達(dá)出的所有蛋白質(zhì)。2000年,Tjalsma等[6]在研究枯草桿菌分泌蛋白時(shí),在蛋白質(zhì)組的基礎(chǔ)上又提出了“分泌蛋白質(zhì)組”(secretome)的概念。分泌蛋白質(zhì)組是指一個(gè)基因組、細(xì)胞或組織所表達(dá)的全部分泌蛋白,其數(shù)量約為整個(gè)蛋白質(zhì)組的30%[7]。分泌蛋白質(zhì)組學(xué)(secretomics)則是以分泌蛋白質(zhì)組為研究對(duì)象,利用蛋白質(zhì)組學(xué)技術(shù)從整體水平上對(duì)分泌蛋白組成及其活動(dòng)規(guī)律進(jìn)行的研究[8]。

2 腫瘤標(biāo)志物與分泌蛋白質(zhì)組學(xué)

腫瘤是由遺傳和環(huán)境等多種因素協(xié)同作用所致的疾病,其細(xì)胞具有無限增殖的特點(diǎn)。腫瘤標(biāo)志物(tumor markers,TMs)是指在惡性腫瘤發(fā)生和增殖過程中,由腫瘤細(xì)胞合成分泌的或因機(jī)體對(duì)腫瘤反應(yīng)而異常產(chǎn)生或升高的,反映腫瘤存在與生長(zhǎng)的一類物質(zhì)[9]。腫瘤標(biāo)志物包括DNA、RNA、蛋白質(zhì)和代謝物等活性分子[10]。通過對(duì)血液、尿液、脊髓液等體液和細(xì)胞中該類物質(zhì)的定性定量檢測(cè),可為判斷是否存在腫瘤、腫瘤的類型、腫瘤發(fā)展階段、療效及預(yù)后評(píng)估等提供實(shí)驗(yàn)依據(jù)[11]。理想的腫瘤標(biāo)志物應(yīng)具有靈敏度高、特異性強(qiáng)、易于檢測(cè)、經(jīng)濟(jì)性好、可定位腫瘤等特點(diǎn)。

在惡性腫瘤的發(fā)生發(fā)展過程中,腫瘤細(xì)胞會(huì)分泌出諸如細(xì)胞因子、蛋白水解酶等多種蛋白質(zhì),而不同類型、不同發(fā)展階段的腫瘤細(xì)胞釋放出的分泌蛋白的種類與表達(dá)水平也各不相同,分泌蛋白已成為潛在腫瘤標(biāo)志物的主要來源[12-18]。因此,利用分泌蛋白質(zhì)組學(xué)技術(shù)對(duì)惡性腫瘤細(xì)胞分泌物進(jìn)行系統(tǒng)深入的研究,不僅有助于全面理解、認(rèn)識(shí)、分析與解釋惡性腫瘤發(fā)生和發(fā)展的分子機(jī)制,對(duì)于腫瘤標(biāo)志物的篩選,腫瘤的早期診斷、監(jiān)測(cè)、治療及抗腫瘤藥物的研發(fā)等也具有重要指導(dǎo)意義。近期的研究還證實(shí),非經(jīng)典分泌也是惡性腫瘤細(xì)胞轉(zhuǎn)運(yùn)蛋白質(zhì)的主要途徑之一,而一些非經(jīng)典分泌蛋白則成為被忽略的潛在腫瘤標(biāo)志物和藥物靶點(diǎn)[19,20]。

3 腫瘤分泌蛋白質(zhì)組的研究策略

腫瘤分泌蛋白質(zhì)組的研究策略可分為兩大類,即基于基因組學(xué)技術(shù)和基于蛋白質(zhì)組學(xué)技術(shù)的研究[21,22]?;诨蚪M學(xué)技術(shù)的研究策略:首先利用基因芯片對(duì)實(shí)驗(yàn)樣品進(jìn)行檢測(cè),以獲取腫瘤相關(guān)的基因序列特征信息;再采用生物信息學(xué)方法進(jìn)行分析,篩選出可能編碼分泌蛋白的基因;最后通過實(shí)驗(yàn)手段對(duì)篩選出的基因組進(jìn)行相關(guān)驗(yàn)證?;诘鞍踪|(zhì)組學(xué)技術(shù)的研究策略大致可分為5步,即分泌蛋白的收集或制備、分泌蛋白的分離與鑒定、差異蛋白質(zhì)的定量檢測(cè)、生物信息學(xué)軟件預(yù)測(cè)及目標(biāo)蛋白質(zhì)的驗(yàn)證。前者雖然具有簡(jiǎn)單、快捷、高效等特點(diǎn),但由于基因組水平的研究不能完全準(zhǔn)確地反映細(xì)胞內(nèi)蛋白質(zhì)的真實(shí)情況[23],使得該策略的實(shí)用價(jià)值大大降低。而后者雖然起步較晚,但由于蛋白質(zhì)較DNA和mRNA能更準(zhǔn)確地反映腫瘤的病理學(xué)變化[24],伴隨著實(shí)驗(yàn)技術(shù)、蛋白質(zhì)組學(xué)技術(shù)及生物信息學(xué)的快速發(fā)展,該策略已逐漸成為腫瘤分泌蛋白質(zhì)組研究的主要策略。

4 腫瘤標(biāo)志物研究中的蛋白質(zhì)組學(xué)技術(shù)

目前,已有多種蛋白質(zhì)生物標(biāo)志物被用于腫瘤的臨床診斷與治療,其檢測(cè)與評(píng)估主要通過各種蛋白質(zhì)組學(xué)技術(shù)。這些蛋白質(zhì)組學(xué)技術(shù)可簡(jiǎn)單分為基于質(zhì)譜(MS-based)和不依賴于質(zhì)譜(non-MS-based)兩大類[25]。其中,不依賴于質(zhì)譜的蛋白質(zhì)組學(xué)技術(shù)主要包括蛋白質(zhì)微陣列、血清蛋白質(zhì)電泳、蛋白質(zhì)印跡法(Western blot)、 酶聯(lián)免疫吸附測(cè)定法(ELISA)等[26]。

作為一種高通量、低消耗、小型化的類似于基因芯片的分析技術(shù),蛋白質(zhì)微陣列在過去10年中得到了快速發(fā)展。通過該技術(shù),研究人員可同時(shí)對(duì)數(shù)以萬計(jì)的蛋白質(zhì)進(jìn)行分析,從而為生物標(biāo)志物識(shí)別、蛋白質(zhì)相互作用研究等提供了更多選擇[27]。而經(jīng)過數(shù)十年的改進(jìn)提升,蛋白質(zhì)電泳、Western blot、ELISA等蛋白質(zhì)檢測(cè)技術(shù)現(xiàn)已較為成熟。

近年來,實(shí)際用于腫瘤標(biāo)志物、藥物靶標(biāo)等篩選的蛋白質(zhì)組學(xué)技術(shù)多以質(zhì)譜為核心。根據(jù)蛋白質(zhì)分離方法的不同,基于質(zhì)譜的蛋白質(zhì)組學(xué)技術(shù)可分為基于凝膠的方法和不依賴于凝膠的方法[10,25,26,28]。前者包括二維凝膠電泳(2-DE)和差異凝膠電泳(DIGE);后者主要包括細(xì)胞培養(yǎng)穩(wěn)定同位素標(biāo)記(SILAC)、同位素標(biāo)記相對(duì)和絕對(duì)定量(iTRAQ)、同位素標(biāo)記的親和標(biāo)簽(ICAT)、串聯(lián)質(zhì)譜標(biāo)簽(TMT)等方法。由于具有高通量、高靈敏度等特點(diǎn)[29],這些基于質(zhì)譜的蛋白質(zhì)組學(xué)技術(shù)也能同時(shí)處理數(shù)以萬計(jì)的蛋白質(zhì),雖然樣品中蛋白質(zhì)的含量很低。因此,許多研究小組利用這些技術(shù)以快速準(zhǔn)確地識(shí)別惡性腫瘤診斷與治療中的潛在蛋白標(biāo)志物[10]。

5 分泌蛋白質(zhì)組學(xué)技術(shù)在惡性腫瘤標(biāo)志物研究中的應(yīng)用

在惡性腫瘤的研究中,分泌蛋白質(zhì)組學(xué)技術(shù)主要應(yīng)用于篩選腫瘤標(biāo)志物,探索腫瘤發(fā)生發(fā)展機(jī)制,尋找潛在的腫瘤藥物靶點(diǎn)等方面[7,12]。由于腫瘤標(biāo)志物的檢測(cè)不僅在腫瘤診斷、腫瘤發(fā)生發(fā)展機(jī)制研究中具有重要作用,還可為腫瘤的臨床治療提供依據(jù),進(jìn)而以其為靶點(diǎn)實(shí)現(xiàn)腫瘤的靶向及免疫治療。因此,腫瘤標(biāo)志物在腫瘤研究中占有十分重要的地位,而腫瘤標(biāo)志學(xué)也發(fā)展成為腫瘤學(xué)中一個(gè)重要的新學(xué)科、新領(lǐng)域。分泌蛋白質(zhì)組學(xué)研究最主要的目的就是找到準(zhǔn)確、可靠、專一的腫瘤標(biāo)志物,從而為惡性腫瘤的早期診斷與治療提供實(shí)驗(yàn)依據(jù)。通過分泌蛋白質(zhì)組學(xué)技術(shù),近年來已發(fā)現(xiàn)了不少可成為腫瘤標(biāo)志物的分泌蛋白[30-33]。根據(jù)CA期刊在線發(fā)布的《2012全球癌癥統(tǒng)計(jì)》報(bào)告[34]及全國(guó)腫瘤登記中心出版的《2014年中國(guó)腫瘤登記年報(bào)》[35],本文將10種最常見的惡性腫瘤潛在分泌性蛋白標(biāo)志物匯總于表1中,并對(duì)其中5種進(jìn)行了重點(diǎn)介紹。

表1 分泌蛋白質(zhì)組學(xué)技術(shù)發(fā)現(xiàn)的潛在惡性腫瘤蛋白標(biāo)志物

5.1 肝癌

肝癌是臨床上最常見的惡性腫瘤之一,因其惡性程度極高,預(yù)后極差,被稱為“癌中之王”。我國(guó)是肝癌最主要的高發(fā)區(qū),2012年新增肝癌病例數(shù)和死亡病例數(shù)約占全球總數(shù)的一半[34,108]。甲胎蛋白(AFP)是肝癌診斷中最主要的指標(biāo)之一,但臨床上約30%肝癌患者的AFP檢測(cè)結(jié)果為陰性,且AFP檢測(cè)不能準(zhǔn)確地區(qū)分早期肝癌與慢性肝炎和肝硬化[109,110],故尋找靈敏度更高、特異性更強(qiáng)的肝癌標(biāo)志物已成為肝癌研究的重要課題。Yamashita等[36]運(yùn)用2D LC-MS/MS技術(shù)從HepG2細(xì)胞中發(fā)現(xiàn)86個(gè)分泌蛋白,其中10個(gè)含信號(hào)肽的分泌蛋白為最新發(fā)現(xiàn)。Zinkin等[37]采用SELDI-TOF MS技術(shù),通過對(duì)41例肝癌患者和51例肝硬化患者間分泌蛋白質(zhì)組進(jìn)行比較研究發(fā)現(xiàn),胱抑素C等11個(gè)蛋白質(zhì)表達(dá)水平變化明顯。以這些蛋白質(zhì)為標(biāo)志物組合對(duì)肝癌進(jìn)行聯(lián)合檢測(cè),其診斷的靈敏度和特異性分別高達(dá)79%和86%。Wu等[39]利用1D SDS-PAGE和nano-LC-MS/MS技術(shù)對(duì)23種癌細(xì)胞系進(jìn)行系統(tǒng)分析后,共識(shí)別出4 584個(gè)非冗余的蛋白質(zhì),其中196個(gè)是肝癌細(xì)胞獨(dú)有的。通過對(duì)44例肝癌患者和45例健康人蛋白質(zhì)組進(jìn)行比較分析發(fā)現(xiàn),肝癌患者血漿中單核細(xì)胞分化抗原CD14表達(dá)水平明顯高于健康人的。此外,根據(jù)人類蛋白質(zhì)圖譜(Human Protein Atlas)數(shù)據(jù)庫中得到的數(shù)據(jù),CD14在肝癌組織樣本中陽性著色率遠(yuǎn)遠(yuǎn)高于在其它19種癌癥,故推測(cè)CD14可能是一種特異性的肝癌標(biāo)志物。為了識(shí)別出有效的肝癌循環(huán)生物標(biāo)志物,Awan等[45]從7個(gè)開放的基因和蛋白質(zhì)數(shù)據(jù)庫中提取出731個(gè)肝特異性的蛋白質(zhì)。對(duì)這些蛋白質(zhì)的表達(dá)譜進(jìn)行驗(yàn)證分析后,共篩選出20個(gè)可作為肝癌標(biāo)志物的蛋白質(zhì),其中6個(gè)已被證實(shí)為肝細(xì)胞癌循環(huán)生物標(biāo)志物。

5.2 肺癌

肺癌是全球最常見,也是導(dǎo)致死亡人數(shù)最多的惡性腫瘤[34,111]。由于其早期癥狀輕微,且缺乏特異性的生物標(biāo)志物及早期篩查方法,大多數(shù)肺癌患者就診時(shí)已處于晚期,失去了手術(shù)機(jī)會(huì)。因此,找到高靈敏度、高特異性的肺癌標(biāo)志物,已成為肺癌早期診斷與治療的關(guān)鍵。Chen等[46]運(yùn)用2D-PAGE聯(lián)合MS技術(shù),通過對(duì)93份肺癌組織樣本和10份正常組織樣本進(jìn)行比對(duì)研究發(fā)現(xiàn),抗氧化酶AOE372、ATP合酶亞基d(ATP5D)等9種蛋白質(zhì)在肺癌組織樣本中顯著過表達(dá),表明它們可能是潛在的肺癌標(biāo)志物。Luo等[52]運(yùn)用1DE聯(lián)合LC-MS/ MS技術(shù)對(duì)A549細(xì)胞蛋白質(zhì)組進(jìn)行研究后,構(gòu)建了一個(gè)包含382個(gè)蛋白質(zhì)的分泌蛋白數(shù)據(jù)集。ELISA證實(shí)C4b結(jié)合蛋白(C4BP)在非小細(xì)胞肺癌血清中上調(diào)表達(dá)。進(jìn)一步的研究表明,C4BP血清表達(dá)水平與非小細(xì)胞肺癌的臨床分期緊密相關(guān)。Yu等[53]利用1D-SDS-PAGE聯(lián)合 nano-LC-MS/MS技術(shù)對(duì)肺癌胸腔積液蛋白質(zhì)組進(jìn)行研究后,構(gòu)建了一個(gè)包含482個(gè)非冗余蛋白質(zhì)的數(shù)據(jù)集。為了識(shí)別出源自胸腔積液的潛在肺癌標(biāo)志物,將該數(shù)據(jù)集與3個(gè)肺癌細(xì)胞系蛋白質(zhì)組進(jìn)行比對(duì)分析后,共發(fā)現(xiàn)了107個(gè)胸腔積液中特有的蛋白質(zhì)。通過對(duì)68例肺癌患者和119例非致命性肺病患者胸腔積液中分泌蛋白質(zhì)組進(jìn)行比對(duì)研究發(fā)現(xiàn),α2 HS糖蛋白(AHSG)和胰島素樣生長(zhǎng)因子結(jié)合蛋白2(IGFBP2)在肺癌患者胸腔積液中水平升高。Na等[54]利用蛋白質(zhì)組學(xué)技術(shù)對(duì)肺癌細(xì)胞分泌蛋白質(zhì)組進(jìn)行分析后發(fā)現(xiàn),斯鈣素2(STC2)的表達(dá)水平高于鄰近正常細(xì)胞中的。RTPCR和Western blot進(jìn)一步證實(shí)肺癌組織中STC2的mRNA和蛋白質(zhì)表達(dá)水平也高于鄰近正常組織,表明STC2可能是一種潛在的肺癌標(biāo)志物,并在肺癌的轉(zhuǎn)移和發(fā)展中發(fā)揮了重要作用。

5.3 乳腺癌

乳腺癌是女性中最常被檢出,也是導(dǎo)致女性死亡人數(shù)最多的惡性腫瘤[34]。目前有關(guān)乳腺癌標(biāo)志物的研究已有很多,而一些標(biāo)志物也被應(yīng)用于乳腺癌的臨床診斷與治療,但其靈敏度和特異性仍有待進(jìn)一步提高。Zhao等[55]運(yùn)用2-DE聯(lián)合MALDIMS技術(shù)對(duì)54例正常女性和76例乳腺癌患者血清蛋白質(zhì)組進(jìn)行對(duì)比研究后發(fā)現(xiàn),乳腺癌患者血清中既有HSP27的上調(diào)表達(dá),也有14-3-3 σ的下調(diào)表達(dá)。以這兩個(gè)蛋白質(zhì)為腫瘤標(biāo)志物組合對(duì)104份未知血清樣本進(jìn)行分類,其靈敏度和特異度分別高達(dá)100%和97%。Kulasingam等[59]通過對(duì)100例健康女性,50例健康男性及150例乳腺癌患者血清樣本進(jìn)行檢測(cè)發(fā)現(xiàn),ALCAM的檢出率(0.78)高于經(jīng)典的乳腺癌標(biāo)志物CA15-3(0.70)和CEA(0.63)的檢出率。此外,ROC曲線結(jié)果表明,聯(lián)合檢測(cè)血清中ALCAM和CA15-3,可進(jìn)一步提高對(duì)乳腺癌的診斷靈敏度。Lai等[60]利用2D-DIGE聯(lián)合MALDI-TOF MS技術(shù),從MCF-7,MB-MDA-231和MCF-10A三個(gè)細(xì)胞系的蛋白質(zhì)組中發(fā)現(xiàn)了50個(gè)差異性表達(dá)的分泌蛋白,其中IFIT3和MMP2被證實(shí)是乳腺癌發(fā)展階段的潛在標(biāo)志物。Tan等[64]運(yùn)用2DE聯(lián)合圖像分析技術(shù)從MCF-7乳腺癌細(xì)胞系培養(yǎng)基中發(fā)現(xiàn)了CPA4、AAT、HSP70和HP 4個(gè)糖蛋白,而在正常乳腺上皮細(xì)胞(HMEpC)的培養(yǎng)基中則只發(fā)現(xiàn)了CPA4和ON 2個(gè)糖蛋白。凝集素印跡法分析進(jìn)一步證實(shí)CPA4、AAT、HSP70、HP都是作為N端多糖而被分泌到MCF-7培養(yǎng)基中的,而只有CPA4是作為N端多糖被分泌到HMEpC培養(yǎng)基中,表明糖蛋白可作為糖基生物標(biāo)志物用于乳腺癌的預(yù)后判斷。

5.4 前列腺癌

前列腺癌的檢出率在男性惡性腫瘤中排第二,其致死率在歐美發(fā)達(dá)國(guó)家惡性腫瘤中位居第三[34]。我國(guó)雖然不是前列腺癌的高發(fā)區(qū),但近年來隨著我國(guó)人口老齡化、飲食結(jié)構(gòu)改變等因素,前列腺癌的發(fā)病率和致死率也逐年升高。前列腺癌特異性抗原(prostate-specific antigen,PSA)是目前臨床上前列腺癌診斷最有價(jià)值的腫瘤標(biāo)志物,但由于PSA是一個(gè)組織特異性而非腫瘤特異性的標(biāo)志物,其檢測(cè)結(jié)果會(huì)受到諸多因素的影響,在改善患者預(yù)后方面也存在較大爭(zhēng)議[112]。因此尋找到專一性更強(qiáng)的腫瘤標(biāo)志物,對(duì)于前列腺癌的早期診斷具有重要的臨床價(jià)值。Zheng等[65]利用SELDI技術(shù)對(duì)22例前列腺癌根治術(shù)切除標(biāo)本進(jìn)行分析后發(fā)現(xiàn),了一個(gè)特殊蛋白Pca-24。通過激光捕獲顯微切割技術(shù)(LCM),進(jìn)一步證實(shí)Pca-24的確來自于前列腺癌細(xì)胞,表明Pca-24可能是一個(gè)有效的前列腺癌標(biāo)志物。Pan等[113]采用SELDI-TOF MS對(duì)83例前列腺癌患者和95例健康男性血清樣本進(jìn)行比對(duì)分析后,發(fā)現(xiàn)了18個(gè)血清差異性蛋白,其中4個(gè)表達(dá)水平升高,另外14個(gè)表達(dá)水平降低。Chen等[114]運(yùn)用2DE聯(lián)合MALDITOF MS技術(shù)對(duì)BPH-1和LNCaP細(xì)胞條件培養(yǎng)液中蛋白質(zhì)組進(jìn)行分析后,共發(fā)現(xiàn)了11個(gè)差異性表達(dá)蛋白,其中6個(gè)上調(diào),5個(gè)下調(diào)。以這些蛋白質(zhì)為前列腺癌標(biāo)志物組合,可有效地區(qū)分前列腺癌和良性前列腺增生。Liu等[71]利用SWATH質(zhì)譜對(duì)10例正常前列腺組織樣本,24例非侵略性前列腺癌,16例侵略性前列腺癌,25例轉(zhuǎn)移性前列腺癌組織樣本進(jìn)行比對(duì)分析后發(fā)現(xiàn),包括NAAA和PTK7等在內(nèi)的220個(gè)糖蛋白與前列腺癌的侵襲、轉(zhuǎn)移等多種生理過程緊密相關(guān)。通過蛋白質(zhì)微陣列技術(shù)對(duì)獨(dú)立樣本集進(jìn)行分析,進(jìn)一步證實(shí)這兩個(gè)糖蛋白與侵略性前列腺癌存在顯著關(guān)聯(lián),表明NAAA和PTK7可作為潛在的前列腺癌標(biāo)志物。

5.5 胃癌

在我國(guó)惡性腫瘤中,胃癌的發(fā)病率位居第二,死亡率位居第三,每年約35萬人死于胃癌。目前臨床上能用于胃癌診斷與治療的腫瘤標(biāo)志物還很少,而專門針對(duì)胃癌細(xì)胞系條件培養(yǎng)液蛋白質(zhì)組的研究也不多[108]。Chong等[73]運(yùn)用MS技術(shù)結(jié)合iTRAQ標(biāo)記對(duì)胃癌動(dòng)物模型蛋白質(zhì)組進(jìn)行研究后發(fā)現(xiàn),α胰蛋白酶抑制因子H3(ITIH3)在胃癌小鼠模型血漿中的表達(dá)水平顯著高于正常小鼠血漿中的。通過對(duì)83例正常人和84例胃癌患者血漿樣本進(jìn)行分析,實(shí)驗(yàn)結(jié)果表明ITIH3在胃癌患者血漿中的表達(dá)水平更高。以ITIH3為胃癌診斷標(biāo)志物,ROC曲線得到的最佳靈敏度和特異性分別為96%、66%。Loei等[75]應(yīng)用2D-LC-MS/MS技術(shù)結(jié)合iTRAQ標(biāo)記對(duì)胃癌細(xì)胞系A(chǔ)GS和MKN7分泌蛋白組進(jìn)行研究后,共發(fā)現(xiàn)了90個(gè)在條件培養(yǎng)液中表達(dá)水平升高的蛋白質(zhì)。免疫組化實(shí)驗(yàn)表明顆粒體蛋白(GRN)在胃癌組織中頻繁表達(dá),而在正常胃黏膜上皮細(xì)胞中不表達(dá)。ELISA分析進(jìn)一步證實(shí)GRN在胃癌患者血清中的表達(dá)水平高于正常人群的,尤其是早期胃癌患者,表明GRN可能是早期胃癌診斷的潛在標(biāo)志物。Penno等[76]利用2D-DIGE聯(lián)合LC-MS/MS技術(shù)對(duì)胃癌小鼠模型中正常型和腫瘤型分泌蛋白組進(jìn)行比對(duì)分析后發(fā)現(xiàn),28個(gè)人類同源蛋白質(zhì)。以其中8個(gè)蛋白質(zhì)為胃癌診斷的標(biāo)志物組合,ELISA分析證實(shí)載脂蛋白E和結(jié)合珠蛋白在胃癌患者血清中表達(dá)水平顯著升高,而afamin和叢生蛋白則明顯降低。ROC分析結(jié)果進(jìn)一步表明這4個(gè)蛋白質(zhì)對(duì)于胃癌診斷的靈敏度和特異性可能要優(yōu)于現(xiàn)有的胃癌檢測(cè)標(biāo)志物CA72-4。Wu等[78]利用2D-DIGE聯(lián)合Western blot、免疫組化技術(shù)對(duì)胃癌組織樣本及其鄰近正常組織樣本進(jìn)行比對(duì)分析后發(fā)現(xiàn),GRP78、GSTpi、ApoAI、A1AT和GKN-1等5個(gè)蛋白質(zhì)可作為有效的胃癌標(biāo)志物組合。實(shí)驗(yàn)結(jié)果表明,GRP78、GSTpi在胃癌組織中顯著上調(diào)表達(dá),A1AT顯著下調(diào)表達(dá)。此外,GRP78和ApoAI的表達(dá)水平與A1AT緊密相關(guān)。

6 展望

分泌蛋白是潛在的腫瘤標(biāo)志物及藥物靶標(biāo)等的主要來源,已成為腫瘤研究中的熱點(diǎn)和難點(diǎn)問題。由于具有靈敏度高、特異性強(qiáng)、復(fù)現(xiàn)性好、高通量、簡(jiǎn)單、快捷等特點(diǎn),基于質(zhì)譜的蛋白質(zhì)組學(xué)技術(shù)在過去十年中發(fā)展迅速,并在腫瘤標(biāo)志物的篩選與鑒定、腫瘤分類與發(fā)生發(fā)展機(jī)制、治療與預(yù)后評(píng)估等方面承擔(dān)起越來越重要的角色。近期的研究還表明,多種腫瘤標(biāo)志物聯(lián)合檢測(cè)的靈敏度和準(zhǔn)確度較單一標(biāo)志物檢測(cè)更高[83,115]。盡管蛋白質(zhì)組學(xué)方法在腫瘤研究的各個(gè)領(lǐng)域都取得了顯著成效,但目前仍存在諸多困難與問題。蛋白質(zhì)組學(xué)方法雖然能同時(shí)識(shí)別成千上萬的蛋白質(zhì),但檢測(cè)結(jié)果往往偏向于可溶性和高豐度的蛋白質(zhì),而容易錯(cuò)過許多低豐度的具有重要生理功能的蛋白質(zhì)。腫瘤的異質(zhì)性是惡性腫瘤的特征之一[116],故即使在同一類型的惡性腫瘤中,也很難找到通用的蛋白標(biāo)志物。此外,藥物研發(fā)的速度遠(yuǎn)遠(yuǎn)滯后于新的藥物靶標(biāo)的發(fā)現(xiàn)速率,而藥物靶標(biāo)的發(fā)現(xiàn)同樣來自于大量的蛋白質(zhì)組學(xué)研究。因此,雖然蛋白質(zhì)組學(xué)技術(shù)目前已篩選出大量腫瘤診斷、治療及預(yù)后的蛋白標(biāo)志物,但其中只有很少一部分能應(yīng)用于臨床。今后對(duì)于腫瘤標(biāo)志物的研究應(yīng)更注重其功能性研究和臨床試驗(yàn),以期獲得更快的檢出速度和更高的檢測(cè)成功率。在惡性腫瘤靶向和組合療法的臨床前與臨床研究中,蛋白質(zhì)組學(xué)技術(shù)有望發(fā)揮越來越重要的作用[25]。

[1]Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2):69-90.

[2]王凡羽, 劉剛, 郭玉. 蛋白質(zhì)組學(xué)在腫瘤研究中的應(yīng)用[J].基層醫(yī)學(xué)論壇, 2013, 17(17):2276-2277.

[3]Bendtsen JD, Jensen LJ, Blom N, et al. Feature-based prediction of non-classical and leaderless protein secretion[J]. Protein Eng Des Sel, 2004, 17(4):349-356.

[4]Klee EW, Sosa CP. Computational classification of classically secreted proteins[J]. Drug Discov Today, 2007, 12(5-6):234-240.

[5]Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J]. Biotechnol Genet Eng Rev, 1996, 13(1):19-50.

[6]Tjalsma H, Bolhuis A, Jongbloed JD, et al. Signal peptide-dependent protein transport in Bacillus subtilis:a genome-based survey of the secretome[J]. Microbiol Mol Biol Rev, 2000, 64(3):515-547.

[7]鄧孟垚, 曹亞. 血清分泌蛋白質(zhì)組學(xué)在腫瘤中的研究進(jìn)展[J].中國(guó)生物工程雜志, 2010, 30(11):83-87.

[8] Karagiannis GS, Pavlou MP, Diamandis EP. Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology[J]. Mol Oncol, 2010, 4(6):496-510.

[9] 陳燕. 腫瘤標(biāo)志物臨床應(yīng)用原則[J]. 醫(yī)學(xué)檢驗(yàn)與臨床, 2006, 17(1):1-2.

[10]Paul D, Kumar A, Gajbhiye A, et al. Mass spectrometry-based proteomics in molecular diagnostics:discovery of cancer biomarkers using tissue culture[J]. Biomed Res Int, 2013, 2013:783131.

[11]黃立坤. 學(xué)看化驗(yàn)單(八)——怕得癌檢查哪些指標(biāo)[J].健康向?qū)? 2012, 18(6):4-5.

[12]Makridakis M, Vlahou A. Secretome proteomics for discovery of cancer biomarkers[J]. J Proteomics, 2010, 12:2291-2305.

[13]Pavlou MP, Diamandis EP. The cancer cell secretome:a good source for discovering biomarkers?[J]. J Proteomics, 2010, 73(10):1896-1906.

[14]Anderson KS, Sibani S, Wallstrom G, et al. Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer[J]. J Proteome Res, 2011, 10(1):85-96.

[15]Lin LL, Huang HC, Juan HF. Discovery of biomarkers for gastric cancer:a proteomics approach[J]. J Proteomics, 2012, 75(11):3081-3097.

[16]Paltridge JL, Belle L, Khew-Goodall Y. The secretome in cancer progression[J]. Biochim Biophys Acta, 2013, 1834(11):2233-2241.

[17]Alvarez-Chaver P, Otero-Estévez O, Páez de la Cadena M, et al. Proteomics for discovery of candidate colorectal cancer biomarkers[J]. World J Gastroenterol, 2014, 14:3804-3824.

[18]Bhatnagar S, Katare DP, Jain SK. Serum-based protein biomarkers for detection of lung cancer[J]. Cent Eur J Biol, 2014, 9(4):341-358.

[19]Schaaij-Visser TB, de Wit M, Lam SW, et al. The cancer secretome, current status and opportunities in the lung, breast and colorectal cancer context[J]. Biochim Biophys Acta, 2013, 1834(11):2242-2258.

[20]Villarreal L, Méndez O, Salvans C, et al. Unconventional secretion is a major contributor of cancer cell line secretomes[J]. Mol Cell Proteomics, 2013, 12(5):1046-1060.

[21]Hathout Y. Approaches to the study of the cell secretome[J]. Expert Rev Proteomics, 2007, 4(2):239-248.

[22]薛花, 來茂德. 腫瘤分泌蛋白質(zhì)組研究進(jìn)展[J]. 中華病理學(xué)雜志, 2007, 36(11):777-780.

[23]尹穩(wěn), 伏旭, 李平. 蛋白質(zhì)組學(xué)的應(yīng)用研究進(jìn)展[J]. 生物技術(shù)通報(bào), 2014(1):32-38.

[24]Ko?evar N, Hudler P, Komel R. The progress of proteomic approaches in searching for cancer biomarkers[J]. N Biotechnol, 2013, 30(3):319-326.

[25]Guo S, Zou J, Wang G. Advances in the proteomic discovery of novel therapeutic targets in cancer[J]. Drug Des Devel Ther, 2013, 7(11):1259-1271.

[26]Hudler P, Ko?evar N, Komel R. Proteomic approaches in biomarker discovery:new perspectives in cancer diagnostics[J]. Sci World J, 2014, 2014:260348.

[27] 趙美玲. 蛋白芯片對(duì)肺癌腫瘤標(biāo)志物的篩選和檢測(cè)[D]. 保定:河北大學(xué), 2007.

[28]Mukherjee P, Mani S. Methodologies to decipher the cell secretome[J]. Biochim Biophys Acta, 2013, 11:2226-2232.

[29]王瑋鵬, 苗芳芳, 武丹丹, 等. 蛋白質(zhì)組學(xué)技術(shù)在細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)研究中的應(yīng)用[J]. 生物技術(shù)通報(bào), 2013(11):46-50.

[30]曾麗妮. CA153和CA19-9對(duì)惡性腹水的診斷價(jià)值[D]. 南寧:廣西醫(yī)科大學(xué), 2009.

[31]魏文杰, 秦濤, 胡偉, 等. 部分血清腫瘤標(biāo)志物在臨床診斷中的研究進(jìn)展[J]. 安徽醫(yī)藥, 2009, 13(4):355-357.

[32]伍建蓉, 鄭玲, 鄔仁華, 等. 多種腫瘤標(biāo)志物對(duì)肺癌轉(zhuǎn)移的檢測(cè)及預(yù)后評(píng)估[J]. 現(xiàn)代腫瘤醫(yī)學(xué), 2010, 6:1141-1142.

[33] 邢曉光. 血清胸苷激酶1水平變化對(duì)惡性腫瘤的診斷價(jià)值[J].山東醫(yī)藥, 2012, 52(23):83-84.

[34]Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2):87-108.

[35]赫捷, 陳萬青. 2014中國(guó)腫瘤登記年報(bào)[M]. 北京:清華大學(xué)出版社, 2015.

[36]Yamashita R, Fujiwara Y, Ikari K, et al. Extracellular proteome of human hepatoma cell, HepG2 analyzed using twodimensional liquid chromatography coupled with tandem mass spectrometry[J]. Mol Cell Biochem, 2007, 298(1-2):83-92.

[37]Zinkin NT, Grall F, Bhaskar K, et al. Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease[J]. Clin Cancer Res, 2008, 14(2):470-477.

[38]Sun S, Xu MZ, Poon RT et al. Circulating Lamin B1(LMNB1)biomarker detects early stages of liver cancer in patients[J]. J Proteome Res, 2010, 9(1):70-78.

[39]Wu CC, Hsu CW, Chen CD, et al. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas[J]. Mol Cell Proteomics, 2010, 9(6):1100-1117.

[40]程華, 閆靜輝. Glypican-3與腫瘤關(guān)系的研究進(jìn)展[J]. 生物技術(shù)通報(bào), 2010(2):33-37.

[41]Wong KF, Luk JM. Discovery of lamin B1 and vimentin as circulating biomarkers for early hepatocellular carcinoma[J]. Methods Mol Biol, 2012, 909:295-310.

[42]Kim H, Kim K, Yu SJ, et al. Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring[J]. PLoS One, 2013, 8(5):e63468.

[43]Tessitore A, Gaggiano A, Cicciarelli G, et al. Serum biomarkers identification by mass spectrometry in high-mortality tumors[J]. Int J Proteomics, 2013, 2013(1):125858.

[44]Mathew S, Ali A, Abdel-Hafiz H, et al. Biomarkers for virusinduced hepatocellular carcinoma(HCC)[J]. Infect Genet Evol, 2014, 26:327-339.

[45]Awan FM, Naz A, Obaid A, et al. Identification of circulating biomarker candidates for hepatocellular carcinoma(HCC):an integrated prioritization approach[J]. PLoS One, 2015, 10(9):e0138913.

[46]Chen G, Gharib TG, Huang CC, et al. Proteomic analysis of lung adenocarcinoma:identification of a highly expressed set of proteins in tumors[J]. Clin Cancer Res, 2002, 7:2298-2305.

[47]Lou X, Xiao T, Zhao K, et al. Cathepsin D is secreted from M-BEcells:its potential role as a biomarker of lung cancer[J]. J Proteome Res, 2007, 6(3):1083-1092.

[48]Kim JE, Koo KH, Kim YH, et al. Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model[J]. Exp Mol Med, 2008, 40(6):709-720.

[49] 宋琳婧. 肺癌患者血清癌癥促凝素臨床意義的研究[D]. 昆明:昆明醫(yī)學(xué)院, 2008.

[50]Planque C, Kulasingam V, Smith CR, et al. Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines[J]. Mol Cell Proteomics, 2009, 8(12):2746-2758.

[51]Rodríguez-Pi?eiro AM, Blanco-Prieto S, Sánchez-Otero N, et al. On the identification of biomarkers for non-small cell lung cancer in serum and pleural effusion[J]. J Proteomics, 2010, 73(8):1511-1522.

[52]Luo X, Liu Y, Wang R, et al. A high-quality secretome of A549 cells aided the discovery of C4b-binding protein as a novel serum biomarker for non-small cell lung cancer[J]. J Proteomics, 2011, 74(4):528-538.

[53]Yu CJ, Wang CL, Wang CI, et al. Comprehensive proteome analysis of malignant pleural effusion for lung cancer biomarker discovery by using multidimensional protein identification technology[J]. J Proteome Res, 2011, 10(10):4671-4682.

[54]Na SS, Aldonza MB, Sung HJ, et al. Stanniocalcin-2(STC2):A potential lung cancer biomarker promotes lung cancer metastasis and progression[J]. Biochim Biophys Acta, 2015, 1854(6):668-676.

[55]Zhao R, Ji JG, Tong YP, et al. Use of serological proteomic methods to find biomarkers associated with breast cancer[J]. Proteomics, 2003, 3(4):433-439.

[56]Mbeunkui F, Metge BJ, Shevde LA, et al. Identification of differentially secreted biomarkers using LC-MS/MS in isogenic cell lines representing a progression of breast cancer[J]. J Proteome Res, 2007, 6(8):2993-3002.

[57]吳策. 肺癌蛋白芯片檢測(cè)系統(tǒng)在乳腺癌診斷中的價(jià)值[D].保定:河北大學(xué), 2007.

[58]王海霞. 乳腺癌閱讀框架內(nèi)噬菌體文庫的構(gòu)建[D]. 保定:河北大學(xué), 2008.

[59]Kulasingam V, Zheng Y, Soosaipillai A, et al. Activated leukocyte cell adhesion molecule:a novel biomarker for breast cancer[J]. Int J Cancer, 2009, 125(1):9-14.

[60]Lai TC, Chou HC, Chen YW, et al. Secretomic and proteomic analysis of potential breast cancer markers by two-dimensional differential gel electrophoresis[J]. J Proteome Res, 2010, 9(3):1302-1322.

[61]McElwee JL, Mohanan S, Griffith OL, et al. Identification of PADI2 as a potential breast cancer biomarker and therapeutic target[J]. BMC Cancer, 2012, 12:e500.

[62]Jeon YR, Kim SY, Lee EJ, et al. Identification of annexin II as a novel secretory biomarker for breast cancer[J]. Proteomics, 2013, 13(21):3145-3156.

[63]Tan AA, Mu AK, Kiew LV, et al. Comparative secretomic and N-glycoproteomic profiling in human MCF-7 breast cancer and HMEpC normal epithelial cell lines using a gel-based strategy[J]. Cancer Cell Int, 2014, 14(1):120.

[64]Tan AA, Phang WM, Gopinath SC, et al. Revealing glycoproteins in the secretome of MCF-7 human breast cancer cells[J]. Biomed Res Int, 2015, 2015:453289.

[65]Zheng YX, Xu Y, Jerome P, et al. Protein chip array technology identify Pca-24, a potential protein marker in prostate cancer[J]. China Oncol, 2005, 15(3):257-260.

[66]Sardana G, Marshall J, Diamandis EP. Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell cultureconditioned medium[J]. Clin Chem, 2007, 53(3):429-437.

[67]Sardana G, Jung K, Stephan C, et al. Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines:discovery and validation of candidate prostate cancer biomarkers[J]. J Proteome Res, 2008, 8:3329-3338.

[68]Zhao L, Lee BY, Brown DA, et al. Identification of candidate biomarkers of therapeutic response to docetaxel by proteomic profiling[J]. Cancer Res, 2009, 69(19):7696-7703.

[69]Thoenes L, Hoehn M, Kashirin R, et al. In vivo chemoresistance of prostate cancer in metronomic cyclophosphamide therapy[J]. J Proteomics, 2010, 73(7):1342-1354.

[70]Bijnsdorp IV, Geldof AA, Lavaei M, et al. Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients[J]. J Extracell Vesicles, 2013, 2:22097.

[71]Liu Y, Chen J, Sethi A, et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discoversN-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness[J]. Mol Cell Proteomics, 2014, 13(7):1753-1768.

[72]Yang YX, Sun XF, Cheng AL, et al. Increased expression of HSP27 linked to vincristine resistance in human gastric cancer cell line[J]. J Cancer Res Clin Oncol, 2009, 135(2):181-189.

[73]Chong PK, Lee H, Zhou J, et al. ITIH3 is a potential biomarker for early detection of gastric cancer[J]. J Proteome Res, 2010, 9(7):3671-3679.

[74]Deng L, Su T, Leng A, et al. Upregulation of soluble resistancerelated calcium-binding protein(sorcin)in gastric cancer[J]. Med Oncol, 2010, 27(4):1102.

[75]Loei H, Tan HT, Lim TK, et al. Mining the gastric cancer secretome:identification of GRN as a potential diagnostic marker for early gastric cancer[J]. J Proteome Res, 2012, 11(3):1759-1772.

[76]Penno MA, Klingler-Hoffmann M, Brazzatti JA, et al. 2D-DIGE analysis of sera from transgenic mouse models reveals novel candidate protein biomarkers for human gastric cancer[J]. J Proteomics, 2012, 77:40-58.

[77]Marimuthu A, Subbannayya Y, Sahasrabuddhe NA, et al. SILAC-based quantitative proteomic analysis of gastric cancer secretome[J]. Proteomics Clin Appl, 2013, 7(5-6):355-366.

[78]Wu JY, Cheng CC, Wang JY, et al. Discovery of tumor markers for gastric cancer by proteomics[J]. PLoS One, 2014, 9(1):e84158.

[79]Wu CC, Chen HC, Chen SJ, et al. Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes[J]. Proteomics, 2008, 8(2):316-332.

[80]Ma Y, Peng J, Huang L, et al. Searching for serum tumor markers for colorectal cancer using a 2-D DIGE approach[J]. Electrophoresis, 2009, 30(15):2591-2599.

[81]Liu W, Ma Y, Huang L, et al. Identification of HSP27 as a potential tumor marker for colorectal cancer by the two-dimensional polyacrylamide gel electrophoresis[J]. Mol Biol Rep, 2010, 37(7):3207-3216.

[82]Xue H, Lu B, Zhang J, et al. Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach[J]. J Proteome Res, 2010, 9(1):545-555.

[83]Lee H, Song M, Shin N, et al. Diagnostic significance of serum HMGB1 in colorectal carcinomas[J]. PLoS One, 2012, 7(4):e34318.

[84]Shin J, Kim HJ, Kim G, et al. Discovery of melanotransferrin as a serological marker of colorectal cancer by secretome analysis and quantitative proteomics[J]. J Proteome Res, 2014, 13(11):4919-4931.

[85]Chiang SF, Kan CY, Hsiao YC, et al. Bone marrow stromal antigen 2 is a novel plasma biomarker and prognosticator for colorectal carcinoma:a secretome-based verification study[J]. Dis Markers, 2015, 2015:874054.

[86]Lin Q, Lim HS, Lin HL, et al. Analysis of colorectal cancer glycosecretome identifies laminin β-1(LAMB1)as a potential serological biomarker for colorectal cancer[J]. Proteomics, 2015, 15(22):3905-3920.

[87]Cheng AL, Huang WG, Chen ZC, et al. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis[J]. Clin Cancer Res, 2008, 14(2):435-445.

[88]Chang YH, Wu CC, Chang KP, et al. Cell secretome analysis using hollow fiber culture system leads to the discovery of CLIC1 protein as a novel plasma marker for nasopharyngeal carcinoma[J]. J Proteome Res, 2009, 8(12):5465-5474.

[89]Chang KP, Wu CC, Chen HC, et al. Identification of candidate nasopharyngeal carcinoma serum biomarkers by cancer cell secretome and tissue transcriptome analysis:potential usage of cystatin A for predicting nodal stage and poor prognosis[J]. Proteomics, 2010, 10(14):2644-2660.

[90]Tang CE, Tan T, Li C, et al. Identification of Galectin-1 as a novel biomarker in nasopharyngeal carcinoma by proteomic analysis[J]. Oncol Rep, 2010, 24(2):495-500.

[91]Yang J, Zhou M, Zhao R, et al. Identification of candidate biomarkers for the early detection of nasopharyngeal carcinoma by quantitative proteomic analysis[J]. J Proteomics, 2014, 109:162-175.

[92]Nagler R, Bahar G, Shpitzer T, et al. Concomitant analysis of salivary tumor markers - a new diagnostic tool for oral cancer[J]. Clin Cancer Res, 2006, 12(13):3979-3984.

[93]Weng LP, Wu CC, Hsu BL, et al. Secretome-based identification of Mac-2 binding protein as a potential oral cancer marker involvedin cell growth and motility[J]. J Proteome Res, 2008, 7(9):3765-3775.

[94]Hsu CW, Yu JS, Peng PH, et al. Secretome profiling of primary cells reveals that THBS2 is a salivary biomarker of oral cavity squamous cell carcinoma[J]. J Proteome Res, 2014, 13(11):4796-4807.

[95]Chang KP, Lin SJ, Liu SC, et al. Low-molecular-mass secretome profiling identifies HMGA2 and MIF as prognostic biomarkers for oral cavity squamous cell carcinoma[J]. Sci Rep, 2015, 5:11689.

[96]Mathur SP, Mathur RS, Young RC. Cervical epidermal growth factor-receptor(EGF-R)and serum insulin-like growth factor II(IGF-II)levels are potential markers for cervical cancer[J]. Am J Reprod Immunol, 2000, 44(4):222-230.

[97]Mathur SP, Mathur RS, Gray EA, et al. Serum vascular endothelial growth factor C(VEGF-C)as a specific biomarker for advanced cervical cancer:Relationship to insulin-like growth factor II(IGF-II), IGF binding protein 3(IGF-BP3)and VEGFA[corrected][J]. Gynecol Oncol, 2005, 98(3):467-483.

[98]Lu D, Yang X, Jiang NY, et al. IMP3, a new biomarker to predict progression of cervical intraepithelial neoplasia into invasive cancer[J]. Am J Surg Pathol, 2011, 35(11):1638-1645.

[99] Wu D, Wang H, Li Z, et al. Cathepsin B may be a potential biomarker in cervical cancer[J]. Histol Histopathol, 2012, 1:79-87.

[100]Lin LH, Chang SJ, Hu RY, et al. Biomarker discovery for neuroendocrine cervical cancer[J]. Electrophoresis, 2014, 35(14):2039-2045.

[101] Quillien V, Raoul JL, Laurent JF, et al. Comparison of Cyfra 21-1, TPA and SCC tumor markers in esophageal squamous cell carcinoma[J]. Oncol Rep, 1998, 5(6):1561-1565.

[102] Gu ZD, Chen KN, Li M, et al. Clinical significance of matrix metalloproteinase-9 expression in esophageal squamous cell carcinoma[J]. World J Gastroenterol, 2005, 6:871-874.

[103] Liu CZ, Zhu PY, Shi MX, et al. Screening of serum proteome biomarker of esophageal squamous cell carcinoma by WCX2 protein chip[J]. China Oncol, 2007, 17(9):701-705.

[104] 馮笑山, 單探幽, 高社干, 等. C-12多種腫瘤標(biāo)志物蛋白芯片對(duì)食管癌轉(zhuǎn)移及預(yù)后的研究[J]. 腫瘤防治研究, 2007, 34(9):730-731.

[105] 單探幽, 馮笑山, 高社干, 等. 多種腫瘤標(biāo)志物對(duì)食管癌轉(zhuǎn)移的檢測(cè)及預(yù)后評(píng)估[J]. 臨床腫瘤學(xué)雜志, 2007, 12(7):512-513.

[106] Zhu X, Ding M, Yu ML, et al. Identification of galectin-7 as a potential biomarker for esophageal squamous cell carcinoma by proteomic analysis[J]. BMC Cancer, 2010, 10:290.

[107] Yan SM, Han X, Han PJ, et al. SIRT3 is a novel prognostic biomarker for esophageal squamous cell carcinoma[J]. Med Oncol, 2014, 31(8):103.

[108] Lin Q, Tan HT, Lim HS, et al. Sieving through the cancer secretome[J]. Biochim Biophys Acta, 2013, 1834(11):2360-2371.

[109] Colli A, Fraquelli M, Casazza G, et al. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma:a systematic review[J]. Am J Gastroenterol. 2006, 101(3):513-523.

[110] Hsieh SY, He JR, Yu MC, et al. Secreted ERBB3 isoforms are serum markers for early hepatoma in patients with chronic hepatitis and cirrhosis[J]. J Proteome Res, 2011, 10(10):4715-4724.

[111] 黃金桔. 非小細(xì)胞肺癌患者ADAM8的表達(dá)及臨床意義研究[D]. 廣州:廣州醫(yī)學(xué)院, 2009.

[112] Prensner JR, Rubin MA, Wei JT, et al. Beyond PSA:the next generation of prostate cancer biomarkers[J]. Sci Transl Med, 2012, 4(127):127rv3.

[113] Pan YZ, Xiao XY, Zhao D, et al. Application of surface-enhanced laser desorption/ionization time-of-flight-based serum proteomic array technique for the early diagnosis of prostate cancer[J]. Asian J Androl, 2006, 8(1):45-51.

[114] Chen WZ, Pang B, Yang B, et al. Differential proteome analysis of conditioned medium of BPH-1 and LNCaP cells[J]. Chin Med J(Engl), 2011, 124(22):3806-3809.

[115] 陳鋒, 李為民, 王冬梅, 等. 聯(lián)合檢測(cè)血清腫瘤標(biāo)志物在肺癌診斷中的價(jià)值[J]. 四川大學(xué)學(xué)報(bào):醫(yī)學(xué)版, 2008, 39(5):832-835.

[116] 黃海燕. 抗結(jié)腸腫瘤相關(guān)抗原單克隆抗體的制備及鑒定[D].西安:第四軍醫(yī)大學(xué), 2005.

(責(zé)任編輯 狄艷紅)

Research Progress on Tumor Markers by Secretomics

YU Le-zheng LIU Feng-juan WU Zheng-yu RAN Xiao-qiang
(School of Chemistry and Life Science,Guizhou Normal College,Guiyang 550018)

In the occurrence and development processes of tumor,a large number of proteins are secreted by tumor cells,and some of them are considered as tumor markers and used for clinical detection and prognosis. With the rapid development of proteomics techniques,secretomics is born at the right moment and provides new ideas and methods for tumor research. Now the strategy and the advance in the study of tumor markers by secretomics are reviewed,which may provide reference for the researchers in the discovery and screening of tumor markers.

secreted proteins;secretome;secretomics;tumor markers

10.13560/j.cnki.biotech.bull.1985.2017.03.003

2016-07-02

貴州省科學(xué)技術(shù)基金計(jì)劃項(xiàng)目(黔科合J字[2014]2134號(hào)),貴州省普通本科高等學(xué)校青年科技人才成長(zhǎng)項(xiàng)目(黔教合KY字[2016]219),貴州師范學(xué)院校級(jí)博士項(xiàng)目(12BS024),貴州師范學(xué)院校級(jí)大學(xué)生科研項(xiàng)目(2015DXS136)

余樂正,男,博士,副教授,研究方向:生物信息學(xué);E-mail:xinyan_scu@126.com

猜你喜歡
組學(xué)前列腺癌標(biāo)志物
MTA1和XIAP的表達(dá)與前列腺癌轉(zhuǎn)移及預(yù)后的關(guān)系
口腔代謝組學(xué)研究
前列腺癌,這些蛛絲馬跡要重視
基于UHPLC-Q-TOF/MS的歸身和歸尾補(bǔ)血機(jī)制的代謝組學(xué)初步研究
前列腺癌治療與繼發(fā)性糖代謝紊亂的相關(guān)性
微小RNA-424-3p和5p對(duì)人前列腺癌細(xì)胞LNCaP增殖和遷移影響的比較
膿毒癥早期診斷標(biāo)志物的回顧及研究進(jìn)展
冠狀動(dòng)脈疾病的生物學(xué)標(biāo)志物
代謝組學(xué)在多囊卵巢綜合征中的應(yīng)用
腫瘤標(biāo)志物在消化系統(tǒng)腫瘤早期診斷中的應(yīng)用