潘振皓++張磊++孟慶林++李瓊++任鵬
摘要:建筑被動(dòng)蒸發(fā)降溫效益以多孔材料吸水特性為基礎(chǔ)。以廣泛應(yīng)用的多孔燒結(jié)陶片為例,相關(guān)參數(shù)測(cè)試方法標(biāo)準(zhǔn)并不一致。筆者參考國(guó)際標(biāo)準(zhǔn)采用“單面浸泡法”測(cè)試了3種多孔陶片的毛細(xì)吸水系數(shù)及毛細(xì)飽和含水率,實(shí)驗(yàn)結(jié)果表明,在第1吸水階段,材料孔隙率與毛細(xì)吸水系數(shù)及毛細(xì)飽和含水率呈現(xiàn)顯著正相關(guān)關(guān)系。參考中國(guó)標(biāo)準(zhǔn),采用“整體浸泡法”和“真空飽和法”測(cè)試了上述3種材料在水中浸泡24 h后的含水率,并與“單面浸泡法”測(cè)試結(jié)果進(jìn)行了對(duì)比研究,結(jié)果顯示,后者實(shí)驗(yàn)結(jié)果分別比前兩者低3.25%和21.58%。研究表明,第1階段吸水速率高的材料具有更高毛細(xì)飽和含水率,此種陶片更適宜蒸發(fā)降溫應(yīng)用。測(cè)試方法上單面浸泡法優(yōu)于整體浸泡法。采用重復(fù)性誤差衡量實(shí)驗(yàn)精確度,分析結(jié)果表明上述實(shí)驗(yàn)的重復(fù)性誤差均低于2.40%。
關(guān)鍵詞:多孔材料;毛細(xì)吸水;開(kāi)放孔隙率;含水率;實(shí)驗(yàn)分析
中圖分類號(hào):TU111.2文獻(xiàn)標(biāo)志碼:A文章編號(hào):16744764(2017)01002606
收稿日期:20160902
基金項(xiàng)目:國(guó)家自然科學(xué)基金(51590912、51308223、51678243、51308222);廣東省自然科學(xué)基金 (2016A030313506);亞熱帶建筑科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室自主課題(2015ZC14)
作者簡(jiǎn)介:潘振皓(1986),男,博士生,主要從事多孔材料被動(dòng)蒸發(fā)降溫研究,(Email)pangent@foxmail.com。
張磊(通信作者),男,副研究員,碩士生導(dǎo)師,( Email)86599680@qq.cn。
Received:20160902
Foundation item:National Natural Science Foundation of China(No.51590912, 51308223, 51678243,51308222); Guangdong Natural Science Foundation( No. 2016A030313506); State Key Laboratory of Subtropical Building Science Independent Subject(No. 2015ZC14)
Author brief:Pan Zhenhao(1986) , PhD candidate, main research interest: passive evaporation cooling of porous material, (Email)pangent@foxmail.com.
Zhang Lei(corresponding author), associate researcher, master supervisor, (Email)86599680@qq.cn.Experimental methods for water absorption characteristics
of porous firing clay tiles
Pan Zhenhao, Zhang Lei,Meng Qinglin, Li Qiong,Renpeng
(1. School of Architecture, South China University of Technology, Guangzhou 510641, P.R.China)
Abstract:Efficiency of building passive cooling is based on the water absorption characteristics. Illustrated by the example of porous firing clay tiles, test methods are different between national and international standards. Capillary water absorption coefficients and capillary saturated water contents of three kinds of porous face tile are measured through partial immersion method referred to the international standard. The results show that both porosity/capillary absorption coefficient and porosity/capillary saturated water content have a linear positive correlation. Water contents after 24 hours absorption are measured through integral immersion method referred to the national standard, and vacuum saturation method. The results are compared to those abtained through partial immersion. It is showed that the results of partial immersion is less than the results of integral immersion by 3.25%, and less than the results of vacuum saturation by 21.58%. The result shows that higher capillary water absorption coefficients means higher capillary saturated water contents. The corresponding kind of tile is more suitable for passive cooling. For the test method, partial immersion is more appropriate than integral immersion. Repeatability errors of all the tests are under 2.40%, showing high precisions.
Keywords:porous material; capillary water absorption; open porosity; water content; experimental analysis
多孔燒結(jié)陶片鋪貼于建筑外墻外表面,吸水后經(jīng)被動(dòng)蒸發(fā)可實(shí)現(xiàn)對(duì)圍護(hù)結(jié)構(gòu)降溫效果[12],其吸水特性是決定蒸發(fā)量的關(guān)鍵參數(shù)。中國(guó)南方地區(qū)夏季高溫多雨,利用被動(dòng)蒸發(fā)降低建筑能耗具有優(yōu)勢(shì)[3]。多孔陶片的孔隙率、毛細(xì)吸水系數(shù)、含水量等物性,是吸水蒸發(fā)研究的基礎(chǔ)參數(shù)[47]。單面浸泡吸水實(shí)驗(yàn)方法(簡(jiǎn)稱“單面浸泡法”)、整體浸泡吸水實(shí)驗(yàn)方法(簡(jiǎn)稱“整體浸泡法”),以及真空飽和吸水實(shí)驗(yàn)方法(簡(jiǎn)稱“真空飽和法”)是測(cè)定上述參數(shù)的常用實(shí)驗(yàn)方法[8]。細(xì)、微觀尺度研究采用伽馬射線、中子吸收及核磁共振等方法實(shí)驗(yàn)成本高,操作復(fù)雜且不適合大量實(shí)驗(yàn),因此并未使用[9]。單面浸泡法可使材料處于近似一維吸水過(guò)程,吸水通量Δmt(單位:kg/m2)與時(shí)間二次方根(s0.5)成線性關(guān)系[10]。材料一維吸水呈現(xiàn)顯著兩階段特性:第1階段,水分由吸水面穿過(guò)材料孔隙向多孔陶片另一面滲透,即毛細(xì)吸水階段。此階段Δmt-t1/2線性擬合斜率即為毛細(xì)吸水系數(shù)(Aw)。材料接近毛細(xì)飽和含水量(ωcap)時(shí)吸水速率顯著降低,向第2階段過(guò)度。該階段吸水速率緩慢且穩(wěn)定[11]。吸水性研究可參考文獻(xiàn)多為吸水性相對(duì)較低材料如天然石材或混凝土等[1213]。單面浸泡實(shí)驗(yàn)方法載于國(guó)際標(biāo)準(zhǔn)ISO 15148: 2002(E)和歐洲標(biāo)準(zhǔn)EN 1925 (CEN 1999a)[9,14]。整體浸泡法系將材料整體浸入液體中,并對(duì)吸水后材料濕重進(jìn)行稱量并計(jì)算相關(guān)參數(shù)的方法。整體浸泡使吸水面積提高,吸水速率高于單面浸泡法。為試件檢測(cè)常用方法,操作簡(jiǎn)單??色@取試件吸水24 h含水率(W24GB)、沸騰飽和含水率等參數(shù)。整體浸泡實(shí)驗(yàn)方法載于中國(guó)國(guó)家標(biāo)準(zhǔn)GB/T 2542—2012和GB 13545—2003 [15]。真空飽和法可獲取材料開(kāi)放孔隙率及表觀密度。真空飽和含水率參數(shù)可對(duì)比單面浸泡法和整體浸泡法,顯示其24 h吸水含水率水平。實(shí)驗(yàn)方法載于歐洲標(biāo)準(zhǔn)EN 1936 (CEN 1999b)和美國(guó)標(biāo)準(zhǔn)ASTM C 1699—09[1617]。
一方面,目前,中國(guó)缺乏針對(duì)建材吸水特性的數(shù)據(jù)庫(kù);另一方面,針對(duì)建筑材料吸水特性的實(shí)驗(yàn)標(biāo)準(zhǔn)多為整體浸泡法,而更接近外貼面磚實(shí)際吸水過(guò)程的單面浸泡法則只能參考國(guó)際標(biāo)準(zhǔn)。因此,需要準(zhǔn)確、簡(jiǎn)便的實(shí)驗(yàn)方法,以進(jìn)一步對(duì)廣泛的建材進(jìn)行測(cè)定。本文將對(duì)比單面浸泡與整體浸泡兩種實(shí)驗(yàn)方法,并輔以真空飽和法,探討多孔陶片吸水特性實(shí)驗(yàn)方法,對(duì)3種常用多孔陶片吸水特性進(jìn)行測(cè)定。
1研究方法
1.1研究對(duì)象
選用3種常見(jiàn)粘土多孔陶片:N1(孔隙率:3407%,圖 1)、N2(孔隙率:35.39%,圖 2)及A1(孔隙率:24.09%,圖 3)。通過(guò)電子顯微鏡觀察,材料孔隙直徑均在1~2 μm以上,屬于大孔材料。其它主要儀器有:電子天平(SHIMADZU UX4200H型),最大量程4.2 kg,分度值:0.01 g;旋片真空泵(廣東佛泵真空設(shè)備有限公司 2X8型),抽速8 L/s;以及自制吸水裝置等。
圖1N1試件及電鏡照片
Fig.1Sample N1 and electronmicroscope photo圖2N2試件及電鏡照片
Fig.2Sample N2 and electronmicroscope photo圖3A1試件及電鏡照片
Fig.3Sample A1 and electronmicroscope photo1.2單面浸泡法
參考國(guó)際標(biāo)準(zhǔn)ISO 15148:2002(E),測(cè)試環(huán)境控制在:氣溫24 ℃±0.3 ℃,相對(duì)濕度33%±2%。試件經(jīng)鼓風(fēng)干燥箱烘干至恒重(110 ℃±5 ℃),移入測(cè)試環(huán)境中降溫穩(wěn)定至恒重。采用不透氣、不透水且不吸水透明材料對(duì)試件上表面及四側(cè)邊進(jìn)行封貼。側(cè)邊封貼至距底面3~5 mm,上表面封貼膜留孔徑<1 mm排氣細(xì)孔,孔距≤1 cm。試件以點(diǎn)支形式安裝,底部浸入液面深度1~2 mm。試件吸水達(dá)到設(shè)定時(shí)長(zhǎng)后取出稱重。實(shí)驗(yàn)第1吸水階段吸水時(shí)長(zhǎng)5 s(由材料吸水情況決定),第2階段初期10~60 s,后期累計(jì)時(shí)間30 min、1 h、8 h、12 h各稱重一次,達(dá)到24 h稱重結(jié)束實(shí)驗(yàn)。試件取出稱重時(shí)保持水平姿態(tài)(傾斜可能影響一維吸水),先以飽和吸水海綿去除試件底面明水,稱重后迅速將試件水平返回吸水。第1階段線性部分?jǐn)M合得斜率即為毛細(xì)吸水系數(shù)Aw, kg/(m2·s0.5)[9]:Aw=Δm′tf-Δm′cltf;其中:Δmt=(mt-mi)/A。式中:Δm′tf為tf(s)時(shí)Δmt值,kg/m2;Δm′0為tf=0時(shí)Δmt值,kg/m2;mt為t時(shí)質(zhì)量,kg;mi為初始質(zhì)量,kg;A為吸水面積,m2。線性擬合第2階段與第1階段擬合直線交點(diǎn)Δmt與試件厚度比值為毛細(xì)飽和含水量,kg/m3。宜將其換算為毛細(xì)飽和含水率(ωcap,%)。結(jié)束實(shí)驗(yàn)烘干試件進(jìn)行重復(fù)實(shí)驗(yàn),每組實(shí)驗(yàn)重復(fù)3次。
圖4單面浸泡法實(shí)驗(yàn)裝置
Fig. 4Partial immersion experimental facility1.3整體浸泡法
參考國(guó)家標(biāo)準(zhǔn)GB/T 2542—2012,測(cè)試室內(nèi)氣溫恒定24 ℃±0.3 ℃,相對(duì)濕度恒定33%±2%。試件經(jīng)鼓風(fēng)干燥箱110 ℃±5 ℃烘干至恒重后稱取干重m0,kg,在電子干燥箱內(nèi)冷卻至室溫。實(shí)驗(yàn)裝置由電子天平、承臺(tái)、鋼絲掛扣、玻璃水箱以及電子計(jì)算機(jī)組成。電子天平置于承臺(tái)上,天平底部稱重掛鉤吊掛試件,試件懸于純水中,頂部距液面50 mm。電子天平連接至計(jì)算機(jī)連續(xù)記錄天平讀數(shù),采樣間隔為10 s。24 h后實(shí)驗(yàn)結(jié)束,將試件取出,拭去表面明水后稱取濕重m24,kg,得24 h試件吸水率W24,%[15]:W24=m24-m0m0×100%。
圖5整體浸泡實(shí)驗(yàn)裝置
Fig. 5Integral immersion experimental facility1.4真空飽和方法
參考美國(guó)標(biāo)準(zhǔn)ASTM C 1699—09,進(jìn)行真空飽和實(shí)驗(yàn)[17]。試件于鼓風(fēng)干燥箱內(nèi)110 ℃±5 ℃烘干至恒重后,記錄試件干重mdry,kg,立于容器中支架上,放入真空艙(見(jiàn)圖 6)中。降低真空艙中氣壓,穩(wěn)定于20 mbar以下4 h,使材料內(nèi)部孔隙中空氣逸出。保持真空艙內(nèi)氣壓,向水槽中緩慢注入純水(水溫24 ℃),液面上升速度控制在50 mm/h左右,直至液面浸沒(méi)試件頂端50 mm。試件于水下浸泡24 h后,稱取試件懸于水中質(zhì)量munder,kg,將試件取出,去除表面明水,稱取濕重mwet,kg可得真空飽和含水率ωvac,%:ωvac=mwet-mdrymdry;孔隙率φ,%:=ωvacρl;表觀密度ρ,kg/m3:ρ=mdry·ρrgmunder。式中:ρl為24 ℃下純水密度,kg/m3;g為重力加速度,取9.8 m/s2。
圖6真空飽和實(shí)驗(yàn)裝置
Fig.6Vacuum saturation experimental facility1.5誤差分析方法
各組實(shí)驗(yàn)均在相同實(shí)驗(yàn)室、恒定溫濕度環(huán)境下,采用同一組儀器由同一人員進(jìn)行操作,符合重復(fù)性條件[18]。因此,可采用平均相對(duì)標(biāo)準(zhǔn)差計(jì)算重復(fù)性誤差(er,Repeatability Errors),以衡量實(shí)驗(yàn)精確度,其中x為測(cè)試值;i為某試樣, i∈[1,p];j為某次測(cè)試[8],j∈[1,q][8]。er=rsr=rsx1i,j(j,i)=
1qqj=1qj=1x1i,j-x1i,j(j)2q-1·1x1i,j(j)×100%2實(shí)驗(yàn)結(jié)果與討論
1)單面浸泡實(shí)驗(yàn)實(shí)驗(yàn)顯示,3試件的毛細(xì)吸水階段均在1 min左右完成,并逐漸向第2階段過(guò)度。毛細(xì)吸水階段內(nèi),材料保持較高吸水速率。試件N1和N2孔隙率均在35%左右,兩者具有較接近的毛細(xì)吸水系數(shù)。而孔隙率僅有24.09%的A1試件吸水系數(shù)較前兩者有顯著降低(圖7)。同時(shí),N1和N2的毛細(xì)飽和含水率接近,而A1顯著偏低,顯示出孔隙率越大,毛細(xì)飽和含水率越高的趨勢(shì)(圖8)。經(jīng)線性回歸分析,孔隙率與毛細(xì)吸水系數(shù)、毛細(xì)飽和含水率呈線性正相關(guān)關(guān)系(圖9)。實(shí)驗(yàn)水溫235 ℃。重復(fù)性試驗(yàn)間隔24 h。N1、N2及A1試件單面浸泡實(shí)驗(yàn)重復(fù)性誤差依次為1.40%、2.40%及1.85%,實(shí)驗(yàn)重復(fù)性好,精確度高[8]。
圖7毛細(xì)吸水系數(shù)
Fig.7Capillary absorption coefficient圖8毛細(xì)飽和含水率
Fig.8Capillary saturated water content圖9毛細(xì)吸水系數(shù)及飽及含水率隨孔隙率變化情況
Fig. 9 Relations of φ-Aw and φ-ωcap2)整體浸泡實(shí)驗(yàn)整體浸泡下試件吸水速率遠(yuǎn)大于單面浸泡。該方法下毛細(xì)吸水階段在20 s左右結(jié)束。另一方面,受材料內(nèi)部液態(tài)水?dāng)U散速率影響,不同材料在不同時(shí)刻吸水飽和度不同。在毛細(xì)吸水階段吸水量較其他材料大的試件,在第2吸水階段系數(shù)量可能低于其他材料。例如N1試件在毛細(xì)吸水階段結(jié)束時(shí)的含水率大于N2試件,但過(guò)度到第2階段后,N2試件吸水含水率超過(guò)了N1試件(圖 10)。吸水24 h后,單面浸泡試件含水率低于整體浸泡,總體平均差距(d/%)為3.25%(表格 1),差距與孔隙率無(wú)顯著相關(guān)關(guān)系。實(shí)驗(yàn)水溫23.6 ℃。N1、N2及A1試件每組重復(fù)實(shí)驗(yàn)間隔24 h,實(shí)驗(yàn)重復(fù)性誤差分別為0.68%、0.35%及0.06%,精確度較好。
圖10含水率曲線
Fig.1024 h water content curve表1吸水24 h含水率
Table 124 h water absorption content試件整體浸泡
W24GB/%單面浸泡
W24ISO/%差距
d/%N116.7716.203.44N216.0815.632.82A18.898.593.483)真空飽和實(shí)驗(yàn)真空飽和含水率是材料所能達(dá)到的最大含水率水平。單面浸泡法測(cè)得的24 h吸水含水率低于真空飽和含水率,平均差距d%,分別為:N1:14.42%,N2:22.43%,A1:27.88%d=ωvac-ωcapωvac×100%。實(shí)驗(yàn)水溫24 ℃,重復(fù)性實(shí)驗(yàn)間隔24 h。N1、N2及A1重復(fù)性誤差分別為0.05%、0.93%和1.73%,精確度高。對(duì)比可知,小孔隙率、高密度材料吸水過(guò)程受孔隙內(nèi)氣體含量影響顯著(表2)。表2真空飽和實(shí)驗(yàn)
Table 2 Cacuum saturated experiment試件真空飽和
含水率
ωvac/%單面吸水
24 h含水率
W24ISO/%差距
d/%孔隙
率φ/%密度ρ/
(kg·m-3)N118.9316.2014.4234.071 796.64N220.1515.6322.4335.391 753.03A111.918.5927.8824.092 019.14
3結(jié)論
針對(duì)3種高吸水性多孔陶片分別實(shí)施3種常用材料吸水特性實(shí)驗(yàn),對(duì)比不同方法間差異,探索綜合評(píng)價(jià)此類材料吸水特性的方法。其中,毛細(xì)吸水系數(shù)和毛細(xì)飽和含水率指標(biāo)采用單面浸泡法測(cè)定。對(duì)不同材料而言,在第1吸水階段,孔隙率毛細(xì)吸水系數(shù)和毛細(xì)飽和含水率呈線性正相關(guān)關(guān)系。在第2吸水階段,材料吸水速率與孔隙率無(wú)顯著相關(guān)關(guān)系。說(shuō)明第1階段吸水更快的材料,能在該階段吸收更多液態(tài)水;而材料長(zhǎng)期浸泡情形下的吸水量取決于其內(nèi)部復(fù)雜的孔隙特性。采用單面浸泡法或整體浸泡法對(duì)比測(cè)定的吸水24 h含水率結(jié)果顯示,前者比后者得到含水率低,平均差距為3.25%,差距與孔隙率無(wú)顯著相關(guān)關(guān)系。而由于單面浸泡更接近陶片貼附于圍護(hù)結(jié)構(gòu)外表面的情形,可以認(rèn)為整體浸泡測(cè)值比實(shí)際偏大,該指標(biāo)更宜采用單面浸泡測(cè)定。此外,單面浸泡24 h材料含水率比真空飽和含水率低,平均差距21.58%,說(shuō)明孔隙內(nèi)部氣體顯著阻塞水分遷移。上述所有實(shí)驗(yàn)滿足重復(fù)性條件,重復(fù)性誤差低于2.40%,實(shí)驗(yàn)重復(fù)性好,精確度高。未來(lái)在材料不同含水量下吸水系數(shù)變化、多孔外墻貼面磚周期吸水被動(dòng)蒸發(fā)研究中,將對(duì)現(xiàn)有研究進(jìn)行拓展延伸。
參考文獻(xiàn):
[1] 孟慶林, 胡文斌, 張磊,等. 建筑蒸發(fā)降溫基礎(chǔ) [M]. 北京:科學(xué)出版社, 2006: 120.
MENG Q L, HU W B, ZHANG L, et al. Building evaporation cooling foundation [M]. Beijing: Science Ress, 2006.(in Chinese)
[2] 張磊, 劉習(xí)康, 孟慶林,等. 多孔飾面磚墻體蒸發(fā)降溫效果試驗(yàn)研究[J]. 建筑材料學(xué)報(bào), 2014 (6): 10361042,1048.
ZHANG L, LIU X K, MENG Q L, et al. Experimental study of evaporative cooling capacities of wall with porous face brick [J]. Journal of Building Materials, 2014 (6): 10361042,1048.(in Chinese)
[3] BRANDE T V D, BLOCKEN B, ROELS S. Rain water runoff from porous building facades: implementation and application of a firstorder runoff model coupled to a HAM model [J]. Building and Environment, 2013, 64: 177186.
[4] MUKHOPADHYAYA P, KUMARAN K, NORMANDIN N, et al. Effect of surface temperature on water absorption coefficient of building materials [J]. Journal of Building Physics, 2002, 26(2): 179195.
[5] CARMELIET J, HENS H, ROELS S, et al. Determination of the liquid water diffusivity from transient moisture transfer experiments [J]. Journal of Thermal Envelope and Building Science, 2004, 27(4): 277305.
[6] NIZOVTSEV M I, STANKUS S V, STERLYAGOV A N, et al. Determination of moisture diffusivity in porous materials using gammamethod [J]. International Journal of Heat and Mass Transfer, 2008, 51(17): 41614167.
[7] HANICˇL, KOSEC L, ANEL I. Capillary absorption in concrete and the lucaswashburn equation [J]. Cement and Concrete Composites, 2010, 32(1): 8491.
[8] FENG C, JANSSEN H, FENG Y, et al. Hygric properties of porous building materials: Analysis of measurement repeatability and reproducibility [J]. Building and Environment, 2015, 85:160172.
[9] Hygrothermal performance of building materials and productsdetermination of water absorption coefficient by partial immersion: EN ISO 15148[S].2002 .
[10] ZHU Y G, KOU S C, POON C S, et al. Influence of silanebased water repellent on the durability properties of recycled aggregate concrete [J]. Cement and Concrete Composites, 2013, 35(1): 3238.
[11] CNUDDE V, DE BOEVER W, DEWANCKELE J, et al. Multidisciplinary characterization and monitoring of sandstone (kandla grey) under different external conditions [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2013, 46(1): 95106.
[12] GRILO J, FARIA P, VEIGA R, et al. New natural hydraulic lime mortarsphysical and microstructural properties in different curing conditions [J]. Construction and Building Materials, 2014, 54: 378384.
[13] WALKER R, PAVA S. Moisture transfer and thermal properties of hemplime concretes [J]. Construction and Building Materials, 2014, 64: 270276.
[14] Natural stone test methods determination of water absorption by capillarity: EN 1925[S]. 1999.
[15] 砌墻磚試驗(yàn)方法: GB/T 2542—2012[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2013.
Test methods for wall bricks: GB/T 25422012[S].Beijing:Standerd Press of China,2013.(in Chinese)
[16] Natural strone test methodsDetermination of real density and apparent density, and of total and open porosity: EN 1936[S]. 2006.
[17] Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates: ASTM C 169909 [S].
[18] Accuracy (trueness and precision) of measurement methods and resultsPart 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method: ISO 57252[S].2002.