羅雨欣,張曉嵐
(河北醫(yī)科大學(xué)第二醫(yī)院東院區(qū)消化內(nèi)科,河北石家莊050035)
肝星狀細(xì)胞活化、增殖的免疫調(diào)控機(jī)制研究
羅雨欣,張曉嵐
(河北醫(yī)科大學(xué)第二醫(yī)院東院區(qū)消化內(nèi)科,河北石家莊050035)
肝星狀細(xì)胞(hepatic stellate cells,HSCs)的活化和增殖是肝纖維化發(fā)生的中心環(huán)節(jié),HSCs活化后可大量合成細(xì)胞外基質(zhì)(extracellular matrix,ECM),在肝組織內(nèi)異常沉積,從而引起肝纖維化。免疫調(diào)控細(xì)胞分泌的各種免疫調(diào)控因子以及其他活化分子在HSCs活化、增殖中起到重要調(diào)控作用。本文就HSCs活化、增殖的免疫調(diào)控機(jī)制做一綜述。
細(xì)胞;肝星狀細(xì)胞;免疫調(diào)控
肝纖維化是慢性肝損傷的愈合反應(yīng),主要表現(xiàn)為細(xì)胞外間質(zhì)(extracellular matrix,ECM)的生成和降解平衡被破壞,導(dǎo)致ECM在肝臟內(nèi)大量沉積。活化的肝星狀細(xì)胞(hepatic stellate cells,HSCs)是ECM生成的主要來源,在肝纖維化發(fā)生、發(fā)展中起著重要作用[1]。各種慢性肝損傷啟動(dòng)并刺激免疫調(diào)控細(xì)胞分泌各種免疫調(diào)控因子以及其他活化分子,這些化學(xué)信號(hào)可引起HSCs的活化和增殖,進(jìn)而大量合成膠原、糖蛋白和蛋白多糖等,導(dǎo)致ECM的沉積;同時(shí)HSCs自身也可分泌少量轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor-β,TGF-β)等免疫調(diào)控因子[2],一方面可維持自身活化狀態(tài)并激活鄰近HSCs,另一方面也作用于免疫調(diào)控細(xì)胞,通過級(jí)聯(lián)放大反應(yīng),進(jìn)一步促進(jìn)HSCs活化、增殖。因此,免疫調(diào)控在HSCs的活化、增殖過程中發(fā)揮重要作用。本文就HSCs活化、增殖的免疫調(diào)控機(jī)制做一綜述。
巨噬細(xì)胞作為機(jī)體重要的固有免疫細(xì)胞,在HSCs活化、增殖中起到關(guān)鍵調(diào)控作用。定居在肝臟內(nèi)的巨噬細(xì)胞也稱為枯否細(xì)胞(kuffer cells,KCs),在脂多糖(lipopolysaccharides,LPS)等結(jié)合病原體病原相關(guān)分子模式(pathogen-associated molecular patterns,PAMP)侵襲肝臟時(shí),定位于KCs的模式識(shí)別受體(pattern-recognition receptors,PRR),尤其是Toll樣受體4(Toll-like receptor 4,TLR4)可將其識(shí)別并產(chǎn)生應(yīng)答,通過分泌大量TGF-β1、白介素1β(interleukin-1β,IL-1β)、腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)等炎癥因子,進(jìn)一步活化HSCs[3]。
He等[4]利用敲除RBP-J基因的小鼠骨髓來源的巨噬細(xì)胞(bone marrow-derived macrophages,BMMs)的培養(yǎng)上清液干預(yù)HSCs,結(jié)果表明培養(yǎng)上清液中IL-1β、TNF-α及TGF-β1含量比野生型小鼠BMMs培養(yǎng)上清液明顯減少,且HSCs合成的膠原量比野生型小鼠BMMs培養(yǎng)上清液干預(yù)的HSCs大大減少,證實(shí)巨噬細(xì)胞可以通過誘導(dǎo)RBP-J基因的表達(dá),促進(jìn)其炎癥因子的分泌,進(jìn)而促進(jìn)HSCs膠原合成。
在肝纖維化過程中TGF-β1是最主要的HSCs激活因子[5-7],通過Smad通路激活HSCs并促進(jìn)其增殖[8-9],誘導(dǎo)HSCsⅠ型及Ⅲ型膠原的m RNA轉(zhuǎn)錄[5,10]。另有學(xué)者研究證明,TGF-β可以抑制自然殺傷(nature killing,NK)細(xì)胞活化,從而減少NK細(xì)胞誘導(dǎo)的HSCs凋亡[11]。
IL-1β是主要由巨噬細(xì)胞分泌的較強(qiáng)效的促炎、促纖維化因子。已有學(xué)者證實(shí),IL-1β可通過c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)/激活蛋白1(activator protein-1,AP-1)通路及JNK/p38絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路維持大鼠HSCs的增殖狀態(tài)[12-13];此外,IL-1β還可通過上調(diào)HSCs的基質(zhì)金屬蛋白酶組織抑制劑-1(tissue inhibitor of metalloproteinase-1,TIMP-1)及下調(diào)骨形成蛋白和激活素的跨膜抑制劑(bone morphogenetic protein and activing membrane-bound inhibit,BAMBI)的表達(dá),進(jìn)而減少ECM的降解,并可延長(zhǎng)HSCs的生命周期。
TNF-α是固有免疫中重要的細(xì)胞因子,主要由單核和巨噬細(xì)胞分泌,一方面可促進(jìn)肝細(xì)胞凋亡,另一方面激活免疫調(diào)控細(xì)胞及HSCs[14],促進(jìn)HSCs合成大量膠原,在肝纖維化發(fā)生、發(fā)展中起著重要作用。有研究證明,缺乏TNF-α及其Ⅰ型受體的小鼠膽汁淤積性肝纖維化的程度明顯比野生型小鼠輕[15],證實(shí)TNF-α的確可以促進(jìn)肝纖維化的發(fā)展。TNF-α同IL-1β一樣,也可能是通過上調(diào)HSCs的TIMP-1、下調(diào)BAMBI以及抑制HSCs凋亡從而促進(jìn)肝纖維化的進(jìn)程,但TNF-α并不能誘導(dǎo)Ⅰ型膠原的合成增多[16-18]。另外,巨噬細(xì)胞產(chǎn)生的IL-1β及TNF-α均可刺激HSCs核轉(zhuǎn)錄因子kappa B(nuclear transcription factor kappa B,NF-κB)的磷酸化并轉(zhuǎn)入胞核,促進(jìn)HSCs轉(zhuǎn)化為肌成纖維細(xì)胞[19-20];清除巨噬細(xì)胞后,HSCs的NF-κB的表達(dá)量明顯下降[21]。此外,巨噬細(xì)胞還可分泌少量最強(qiáng)效促增殖因子-血小板衍生生長(zhǎng)因子(platelet derived growth fator,PDGF),通過MAPK信號(hào)通路、下調(diào)p27基因表達(dá)促進(jìn)HSCs進(jìn)入S期;且HSCs被激活后表面PDGF受體表達(dá)增加,也可以增強(qiáng)PDGF介導(dǎo)的HSCs的增殖,導(dǎo)致大量的ECM合成并在局部沉積。
與此同時(shí),血液中的單核細(xì)胞也在激活后的HSCs分泌的一系列促炎及趨化因子的作用下,向肝臟募集并向Ly6C(Gr1)高表達(dá)的巨噬細(xì)胞亞群分化[22]。這些募集到肝臟的巨噬細(xì)胞可分泌大量的TGF-β1,進(jìn)一步刺激HSCs活化,在促進(jìn)肝纖維化發(fā)生、發(fā)展過程中起主導(dǎo)作用[23]。另一方面,HSCs也可以通過促進(jìn)巨噬細(xì)胞p38 MAPK的活化,從而促進(jìn)巨噬細(xì)胞分泌更多的促炎因子及增殖[24],擴(kuò)大炎癥反應(yīng),進(jìn)而加速肝纖維化的進(jìn)程。
肝臟中的樹突狀細(xì)胞(dendritic cells,DCs)是一個(gè)異質(zhì)性群體,包括具有DCs功能的單核細(xì)胞衍生而來的DCs,漿細(xì)胞樣DCs以及骨髓來源的DCs[25],主要分泌IL-10引起Th2反應(yīng)。盡管已有實(shí)驗(yàn)證明DCs能通過IL-1以及TNF上調(diào)NF-κB的相關(guān)基因,但是該作用相對(duì)于巨噬細(xì)胞促進(jìn)HSCs活化的作用來說來相差甚遠(yuǎn);且有研究表明體外DCs與HSCs共培養(yǎng)時(shí),DCs并不能活化HSCs;用氯磷酸鹽二鈉脂質(zhì)體選擇性的使肝內(nèi)DCs細(xì)胞耗竭,在膽管結(jié)扎肝纖維化模型和四氯化碳(carbon tetrachloride,CCl4)誘導(dǎo)的肝纖維化模型中,肝纖維化依舊形成[21],說明DCs細(xì)胞不能促進(jìn)HSCs的激活和肝纖維化的進(jìn)展。
肝臟中富含大量NK細(xì)胞及NKT細(xì)胞,分別占肝臟淋巴細(xì)胞總量的30%~50%、5%~10%[26]。目前認(rèn)為這兩類細(xì)胞在肝纖維化過程中對(duì)HSCs均有影響[26-27]。Gur等[28]在小鼠肝纖維化模型中發(fā)現(xiàn)NK細(xì)胞可通過激活NKp46受體選擇性清除活化的HSCs。同樣,有學(xué)者發(fā)現(xiàn)NK細(xì)胞可以通過腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(tumor necrosis factorrelated apoptosis-inducing ligand,TRAIL)、脂肪酸合成酶配體(fatty acid synthetase ligand,F(xiàn)as L)及NK細(xì)胞活化性受體(natural-killer group 2 member D,NKG2D)來誘導(dǎo)活化的HSCs凋亡[29]。除此之外,NK細(xì)胞還可分泌干擾素-γ(interferon-γ,IFN-γ)[30],它屬于Th1型免疫調(diào)節(jié)細(xì)胞因子,具有較強(qiáng)的免疫調(diào)節(jié)及抗病毒作用。IFN-γ能直接抑制HSCs的增殖及α平滑肌肌動(dòng)蛋白(α-SMA)的表達(dá),具有抑制纖維化的作用;同時(shí)可增強(qiáng)NK細(xì)胞清除活化HSCs的能力,發(fā)揮抗纖維化作用[11]。活化的NK細(xì)胞除了分泌IFN-γ,還分泌IFN-α。已有研究表明IFN-α可通過抑制HSCs活性、誘導(dǎo)HSCs凋亡、降低TGF-βl表達(dá)、增強(qiáng)膠原酶活性,促進(jìn)ECM降解等途徑抑制CCl4所致的大鼠肝纖維化。此外,NK細(xì)胞還可分泌IL-15,其與HSCs表面的IL-15受體結(jié)合后可抑制其活化及分泌膠原[31]。綜上可知,NK細(xì)胞可以誘導(dǎo)活化的HSCs凋亡、抑制活化及其增殖,從而發(fā)揮抗纖維化作用。
NKT細(xì)胞是一群細(xì)胞表面既有T細(xì)胞受體(T cell receptor,TCR),又有NK細(xì)胞受體的特殊T細(xì)胞亞群。有研究者認(rèn)為NKT細(xì)胞可以通過分泌促炎因子或者通過骨橋蛋白及Hedgehog(Hh)配體來活化更多的HSCs,在肝纖維化發(fā)生發(fā)展中起到一定作用[27,32]。但是,也有學(xué)者認(rèn)為NKT細(xì)胞也可以通過清除HSCs、分泌INF-γ,起到抗纖維化的作用[26]。因此,NKT細(xì)胞在肝纖維化發(fā)生發(fā)展中的作用仍有待進(jìn)一步研究。
盡管目前對(duì)于HSCs的直接抗原遞呈能力仍有爭(zhēng)議,但HSCs與T淋巴細(xì)胞之間的相互作用以及HSCs可抑制適應(yīng)性免疫的作用卻毋庸置疑。
T淋巴細(xì)胞通過分泌IL-17、IL-22等免疫調(diào)節(jié)因子作用于HSCs,在肝纖維化發(fā)生發(fā)展中發(fā)揮作用。有實(shí)驗(yàn)證明病毒性肝炎、酒精性肝病以及自身免疫性肝炎患者血清IL-17表達(dá)量均增多;在CCl4肝纖維化小鼠模型中,IL-17A通過激活NF-κB和STAT3刺激巨噬細(xì)胞以及HSCs分泌更多的IL-6、TNF-α以及TGF-β等促進(jìn)HSCs的活化與增殖,而敲除小鼠IL-17A或IL-17RA基因后,肝纖維化程度明顯減輕[33-34];另外,IL-17還可直接通過HSCs的STAT3通路誘導(dǎo)HSCs活化,分泌更多的Ⅰ型膠原,導(dǎo)致細(xì)胞外膠原沉積。IL-31是屬于IL-6家族的一類細(xì)胞因子,主要是由Th2細(xì)胞產(chǎn)生,具有促炎作用。在肝纖維化發(fā)生發(fā)展中,TGF-β1通過Smad2/3通路刺激Th2細(xì)胞產(chǎn)生更多的IL-31,而IL-31又可激活下游的JAK-STAT信號(hào)轉(zhuǎn)導(dǎo)通路使得巨噬細(xì)胞等產(chǎn)生更多的TGF-β1[35],從而間接誘導(dǎo)HSCs的活化。
IL-9是主要由Th9細(xì)胞產(chǎn)生的一類促炎因子,應(yīng)用流式細(xì)胞學(xué)檢測(cè)CCl4肝纖維化小鼠模型中脾組織中Th9細(xì)胞數(shù)量,發(fā)現(xiàn)造模前至造模6周Th9細(xì)胞逐漸增多,且在造模第6周時(shí)達(dá)到頂峰;進(jìn)一步應(yīng)用IL-9抗體治療CCl4肝纖維化小鼠模型8周后,肝組織中α-SMA陽(yáng)性HSCs數(shù)量明顯下降,且脾臟中Th9、Th17和Th1細(xì)胞數(shù)量也顯著減少[36],證明Th9/IL-9在活化HSCs及肝纖維化進(jìn)程中發(fā)揮一定的作用。
另一方面,IL-10是一類主要由Th2細(xì)胞產(chǎn)生的具有多種生物學(xué)功能的細(xì)胞因子,具有抑制炎癥反應(yīng)及減輕纖維化的作用[37]?;罨腍SCs可以促進(jìn)巨噬細(xì)胞表達(dá)大量的IL-10,能抑制HSCs中細(xì)胞間黏附分子(intercellular adhesion molecule,ICAM)的表達(dá)[38],減少白細(xì)胞向肝實(shí)質(zhì)浸潤(rùn),減緩肝臟炎癥,從而抑制肝纖維化的發(fā)生發(fā)展。
IL-22是一種特殊的免疫調(diào)節(jié)因子,屬于IL-10家族細(xì)胞因子,主要由Th22、Th17和Th1細(xì)胞分泌。在肝臟中,IL-22通過STAT3-p53-p21通路誘導(dǎo)HSCs衰老,從而限制肝纖維化的進(jìn)程以及促進(jìn)肝纖維化逆轉(zhuǎn)[39-41]。也有其他研究表明,IL-22也可刺激HSCs分泌其他促炎因子,Zhao等[42]發(fā)現(xiàn)在HBV感染患者和小鼠中,IL-22通過募集Th17促進(jìn)慢性肝炎和肝纖維化的發(fā)展。因此,IL-22對(duì)HSCs的作用仍有待進(jìn)一步研究。
此外,已有研究者證實(shí),活化的HSCs可高表達(dá)B7-homolog 1(B7-H1),從而進(jìn)一步誘導(dǎo)T細(xì)胞凋亡[43]。另外,活化的HSCs也可以通過表達(dá)B7-H4,從而抑制早期T細(xì)胞活化,導(dǎo)致T細(xì)胞失去活性[44]。Xing等[45]發(fā)現(xiàn)大鼠HSCs和CD4+T淋巴細(xì)胞在體外共培養(yǎng)時(shí),活化HSCs可通過促進(jìn)Th1凋亡及T細(xì)胞向Th2分化,同時(shí)抑制IFN-γ、促進(jìn)IL-4的分泌,降低Th1/Th2比例,從而促進(jìn)肝纖維化的發(fā)生發(fā)展。
肝臟中富含B淋巴細(xì)胞,幾乎占到肝內(nèi)淋巴細(xì)胞數(shù)量的一半[46]。目前認(rèn)為B淋巴細(xì)胞可能是通過非抗體依賴方式在肝纖維化中發(fā)揮作用,通過產(chǎn)生免疫調(diào)節(jié)因子,提供給巨噬細(xì)胞、T淋巴細(xì)胞等免疫調(diào)控細(xì)胞協(xié)調(diào)刺激信號(hào),從而促進(jìn)HSCs的活化。有研究表明,特異性敲除B細(xì)胞的CCl4模型小鼠肝纖維化程度明顯低于對(duì)照組,且α-SMA陽(yáng)性的HSCs數(shù)量明顯少于對(duì)照組,提示B淋巴細(xì)胞確實(shí)參與了肝纖維化的發(fā)生并能夠促進(jìn)HSCs的活化[47]。給予CCl4肝纖維化模型小鼠視黃酸受體β特異性抑制劑LE540治療后發(fā)現(xiàn)肝纖維化程度顯著降低,而加入LE540干預(yù)B淋巴細(xì)胞與活化的HSCs共培養(yǎng)液中后發(fā)現(xiàn)培養(yǎng)液上清IgG水平明顯下降,證實(shí)活化HSCs產(chǎn)生的視黃酸可促進(jìn)B細(xì)胞的活化;進(jìn)一步特異性敲除B淋巴細(xì)胞髓樣分化因子88(myloid differentiation factor,MyD88)的CCl4模型小鼠的肝纖維化程度較野生型CCl4模型小鼠減輕;表明活化HSCs產(chǎn)生的視黃酸可能是通過My D88通路促進(jìn)B淋巴細(xì)胞的活化,進(jìn)而加速肝纖維化進(jìn)程[47]。
慢性肝損傷啟動(dòng)的免疫反應(yīng)在參與HSCs的活化與增殖過程中起著重要的作用。目前研究表明,肝臟內(nèi)各種免疫細(xì)胞在損肝因子刺激下通過固有免疫細(xì)胞應(yīng)答或適應(yīng)性免疫細(xì)胞應(yīng)答,產(chǎn)生各種免疫調(diào)節(jié)因子,作用于HSCs,從而影響肝纖維化的發(fā)生的進(jìn)程。因而有關(guān)HSCs活化、增殖過程中的免疫機(jī)制以及阻斷HSCs活化、增殖通路的研究將為肝纖維化的治療提供新的思路與契機(jī)。
[1]Schon HT,Bartneck M,Borkham-Kamphorst E,et al.Pharmacological intervention in hepatic stellate cell activation and hepatic fibrosis[J].Front Pharmacol,2016,7:33.
[2]Yi HS,Jeong WI.Interaction of hepatic stellate cells with diverse types of immune cells:foe or friend?[J].J Gastroenterol Hepatol,2013,28(Suppl 1):99-104.
[3]Marra F,Tacke F.Roles for chemokines in liver disease[J].Gastroenterology,2014,147(3):577-594.
[4]He F,Guo FC,Li Z,et al.Myeloid-specific disruption of recombination signal binding protein Jκameliorates hepatic fibrosis by attenuating inflammation through cylindromatosis in mice[J].Hepatology,2015,61(1):303-314.
[5]Dooley S,ten DP.TGF-βin progression of liver disease[J].Cell Tissue Res,2012,347(1):245-256.
[6]Wang P,Koyama Y,Liu X,et al.Promising therapy candidates for liver fibrosis[J].Front Physiol,2016,7:47.
[7]Huang Y,Liu W,Xiao H,et al.Matricellular protein periostin contributes to hepatic inflammation and fibrosis[J].Am J Pathol,2015,185(3):786-797.
[8]Xu F,Liu C,Zhou D,et al.TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis[J].J Histochem Cytochem,2016,64(3):157-167.
[9]Schon HT,Weiskirchen R.Immunomodulatory effects of transforming growth factor-βin the liver[J].Hepatobiliary Surg Nutr,2014,3(6):386-406.
[10]Chen N,Geng Q,Zheng J,et al.Suppression of the TGF-β/Smad signaling pathway and inhibition of hepatic stellate cell proliferation play a role in the hepatoprotective effects of curcumin against alcohol-induced hepatic fibrosis[J].Int J Mol Med,2014,34(4):1110-1116.
[11]Jeong WI,Park O,Suh YG,et al.Suppression of innate immunity(natural killer cell/interferon-γ)in the advanced stages of liver fibrosis in mice[J].Hepatology,2011,53(4):1342-1351.
[12]Tang N,Zhang YP,Ying W,et al.Interleukin-1βupregulates matrix metalloproteinase-13 gene expression via c-Jun N-terminal kinase and p38 MAPK pathways in rat hepatic stellate cells[J].Mol Med Rep,2013,8(6):1861-1865.
[13]Zhang Y,Wang Y,Di L,et al.Mechanism of interleukin-1βinduced proliferation in rat hepatic stellate cells from different levels of signal transduction[J].APMIS,2014,122(5):392-398.
[14]Yang YM,Seki E.TNFαin liver fibrosis[J].Curr Pathobiol Rep,2015,3(4):253-261.
[15]Tarrats N,Moles A,Morales A,Garcia-Ruiz C,et al.Critical role of tumor necrosis factor receptor 1,but not 2,in hepatic stellate cell proliferation,extracellular matrix remodeling,and liver fibrogenesis[J].Hepatology,2011,54(1):319-327.
[16]Liu C,Chen X,Yang L,et al.Transcriptional repression of the TGF-βPseudoreceptor BAMBI by NF-κB p50 enhances TGF-βsignaling in hepatic stellate cells[J].J Biol Chem,2014,289(10):7082-7091.
[17]Osawa Y,Hoshi M,Yasuda I,et al.Tumor necrosis factor-α promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells[J].PLoS One,2013,8(6):e65251.
[18]Hozawa S,Nakamura T,Nakano M,et al.Induction of matrix metalloproteinase-1 gene transcription by tumour necrosis factor alpha via the p50/p50 homodimer of nuclear factor-κB in activated human hepatic stellate cells[J].Liver Int,2008,28(10):1418-1425.
[19]Tacke F,Zimmermann HW.Macrophage heterogeneity in liver injury and fibrosis[J].J Hepatol,2014,60(5):1090-1096.
[20]He F,Guo FC,Li Z,et al.Myeloid-specific disruption of recombination signal binding protein Jkappa ameliorates hepatic fibrosis by attenuating inflammation through cylindromatosis in mice[J].Hepatology,2015,61(1):303-314.
[21]Pradere JP,Kluwe J,De Minicis S,et al.Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice[J].Hepatology,2013,58(4):1461-1473.
[22]Karlmark KR,Zimmermann HW,Roderburg C,et al.The fractalkine receptor CX(3)CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes[J].Hepatology,2010,52(5):1769-1782.
[23]Wynn TA,Barron L.Macrophages:master regulators of inflammation and fibrosis[J].Semin Liver Dis,2010,30(3):245-257.
[24]Chang J,Hisamatsu T,Shimamura K,et al.Activated hepatic stellate cells mediate the differentiation of macrophages[J].Hepatol Res,2013,43(6):658-669.
[25]Aloman C,Tacke F.Dendritic cells in liver fibrosis:conductor of the inflammatory orchestra[J].Hepatology,2010,51(3):1070-1072.
[26]Gao B,Radaeva S.Natural killer and natural killer T cells in liver fibrosis[J].Biochim Biophys Acta,2013,1832(7):1061-1069.
[27]Wehr A,Baeck C,Heymann F,et al.Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis[J].J Immunol,2013,190(10):5226-5236.
[28]Gur C,Doron S,Kfir-Erenfeld S,et al.NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis[J].Gut,2012,61(6):885-893.
[29]Glassner A,Eisenhardt M,Kramer B,et al.NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-,F(xiàn)asL-and NKG2D-dependent manner[J].Lab Invest,2012,92(7):967-977.
[30]Zimmermann HW,Mueller JR,Seidler S,et al.Frequency and phenotype of human circulating and intrahepatic natural killer cell subsets is differentially regulated according to stage of chronic liver disease[J].Digestion,2013,88(1):1-16.
[31]Jiao J,Ooka K,F(xiàn)ey H,et al.Interleukin-15 receptorαon hepatic stellate cells regulates hepatic fibrogenesis in mice[J].J Hepatol,2016,65(2):344-353.
[32]Syn WK,Agboola KM,Swiderska M,et al.NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholicfatty liver disease[J].Gut,2012,61(9):1323-1329.
[33]Tan Z,Qian X,Jiang R,et al.IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation[J].J Immunol,2013,191(4):1835-1844.
[34]Meng F,Wang K,Aoyama T,et al.Interleukin-17 signaling in inflammatory,Kupffer cells,and hepatic stellate cells exacerbates liver fibrosis in mice[J].Gastroenterology,2012,143(3):765-776.
[35]Ming D,Yu X,Guo R,et al.Elevated TGF-beta1/IL-31 Pathway Is Associated with the Disease Severity of Hepatitis B Virus-Related Liver Cirrhosis[J].Viral Immunol,2015,28(4):209-216.
[36]Qin SY,Lu DH,Guo XY,et al.A deleterious role for Th9/IL-9 in hepatic fibrogenesis[J].Sci Rep,2016,5(6):18694.
[37]Sziksz E,Pap D,Lippai R,et al.Fibrosis related inflammatory mediators:role of the il-10 cytokine family[J].Mediators Inflamm,2015,2015:764641.
[38]Zhong B,Huang MP,Yin GQ,et al.Effects of costimulation on intrahepatic immunopathogenesis in patients with chronic HBV infection[J].Inflamm Res,2014,63(3):217-229.
[39]Kronenberger B,Rudloff I,Bachmann M,et al.Interleukin-22 predicts severity and death in advanced liver cirrhosis:a prospective cohort study[J].BMC Med,2012,10(11):102.
[40]Kong X,F(xiàn)eng D,Wang H,et al.Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice[J].Hepatology,2012,56(3):1150-1159.
[41]Lu DH,Guo XY,Qin SY,et al.Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines[J].World J Gastroenterol,2015,21(5):1531-1545.
[42]Zhao J,Zhang Z,Luan Y,et al.Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment[J].Hepatology,2014,59(4):1331-1342.
[43]Charles R,Chou HS,Wang L,et al.Human hepatic stellate cells inhibit T-cell response through B7-H1 pathway[J].Transplantation,2013,96(1):17-24.
[44]Chinnadurai R,Grakoui A.B7-H4 mediates inhibition of T cell responses by activated murine hepatic stellate cells[J].Hepatology,2010,52(6):2177-2185.
[45]Xing ZZ,Huang LY,Wu CR,et al.Activated rat hepatic stellate cells influence Th1/Th2 profile in vitro[J].World J Gastroenterol,2015,21(23):7165-7171.
[46]Seki E,Schwabe RF.Hepatic inflammation and fibrosis:functional links and key pathways[J].Hepatology,2015,61(3):1066-1079.
[47]Thapa M,Chinnadurai R,Velazquez VM,et al.Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity[J].Hepatology,2015,61(6):2067-2079.
R392
:A
:1004-583X(2017)03-0272-05
10.3969/j.issn.1004-583X.2017.03.023
2016-11-07 編輯:王秋紅
張曉嵐,Email:xiaolanzh@126.com