王慧 彭佑銘
·綜述·
慢性腎臟病-礦物質(zhì)和骨異常的藥物治療進(jìn)展
王慧 彭佑銘
2005年改善全球腎臟病預(yù)后組織(Kidney Disease:Improving Global Outcomes,KDIGO)將慢性腎臟病-礦物質(zhì)骨異常(chronic kidney disease-mineral and bone disorders,CKD-MBD)定義為:①生化改變:鈣、磷、甲狀旁腺素(parathyroid hormone,PTH)和維生素D代謝異常;②腎性骨病:骨的轉(zhuǎn)換、礦化、容量、線性生長或強(qiáng)度的異常;③異位鈣化:血管或其他軟組織的鈣化。CKD-MBD這3個部分相互影響,相互制約,治療CKD-MBD需要一個整體的方案,既要維持正常的骨轉(zhuǎn)運(yùn)又要防止血管鈣化。目前治療CKD-MBD的主要措施有:控制高磷血癥,維持血鈣;抗甲狀旁腺功能亢進(jìn);預(yù)防和治療血管鈣化。本文旨在探討CKD-MBD新的藥理進(jìn)展,最近開發(fā)的藥物和治療的趨勢。
一、高磷血癥的治療
腎臟清除磷的能力下降是慢性腎衰竭患者出現(xiàn)高磷血癥最根本的原因。高磷血癥的有害影響從亞臨床動脈粥樣硬化/動脈粥樣硬化到促進(jìn)慢性腎臟病(chronic kidney disease,CKD)的進(jìn)展甚至出現(xiàn)死亡[1-4]。有研究報道指出,即使血清磷在正常范圍,也可以導(dǎo)致心血管疾病或死亡[5]。因此,當(dāng)出現(xiàn)高磷血癥時應(yīng)盡早正確的限制磷飲食,同時使用磷結(jié)合劑。過去嚴(yán)格限制磷的飲食是控制血磷的主要治療手段,但這也帶來了諸多問題。嚴(yán)格限制蛋白質(zhì)和磷的飲食所導(dǎo)致的營養(yǎng)不良,可能引起更高的病死率風(fēng)險[6]。所以,藥物是降低血磷的主要治療。目前的降磷藥物主要有:磷結(jié)合劑、鈉磷協(xié)同轉(zhuǎn)運(yùn)體(sodium(Na)-dependent P co-transporter Npt)抑制劑,成纖維細(xì)胞生長因子23(fibroblast growth factor-23, FGF-23)抑制劑。
1.磷結(jié)合劑 有大量的流行病學(xué)證據(jù)表明,磷結(jié)合劑對透析患者降低血磷濃度有益[7-9],但是現(xiàn)在還沒有一個隨機(jī)對照試驗(yàn)明確的證明有任何一種磷結(jié)合劑可以降低患者的相關(guān)病死率[10]。
(1)不含鈣磷結(jié)合劑(司維拉姆和碳酸鑭):司維拉姆和碳酸鑭是目前臨床上最常用的不含鈣磷結(jié)合劑。司維拉姆或碳酸鑭和含鈣的磷結(jié)合劑相比,在短期研究中顯示對骨組織沒有不良反應(yīng),也不容易出現(xiàn)高血鈣,持續(xù)低水平的血清PTH和無力性骨病(adynamic bone disease,ABD)[11-13]。此外,在一些臨床隨機(jī)對照試驗(yàn)和最近的薈萃分析中顯示不含鈣的磷結(jié)合劑可以延緩血管鈣化(cardiovascular calcification,CVC)的進(jìn)展[14],但能否改善患者的最終預(yù)后仍不清楚。此外,研究并沒能明確不含鈣的磷結(jié)合劑在本質(zhì)上是否比含鈣的磷結(jié)合劑更有益,但不含鈣的磷結(jié)合劑還存在其他優(yōu)勢,這可能可以提高生存率。司維拉姆降脂性能是明確的,其還可能在炎癥、氧化應(yīng)激、血管內(nèi)皮功能障礙、動脈粥樣硬化、多種尿毒癥毒素、尿酸、糖化血紅蛋白水平與晚期糖基化終末產(chǎn)物、細(xì)菌脂多糖、Wnt/β-catenin信號通路與能源相關(guān)的激素(如瘦素)等方面有作用。作為一個局限于腸腔的磷結(jié)合劑,司維拉姆的這些作用凸顯了CKD患者腸道通路的重要性,為CKD及其并發(fā)癥開闊了新的治療思路[15]。
(2)含鎂的磷結(jié)合劑:低鎂血癥在CKD患者中也很常見,并且與心血管疾病高風(fēng)險率和高病死率相關(guān)[16]。實(shí)驗(yàn)研究表明,鎂通過對血管壁直接和間接的作用抑制CVC[17]。盡管一些研究結(jié)果顯示,CKD患者補(bǔ)充鎂是有益的,特別是對心血管疾病的發(fā)病率和病死率,但補(bǔ)充的時期尚未明確[18-19]。血清鎂水平還可以顯著改變與血液透析患者高磷血癥相關(guān)的病死率風(fēng)險。血清磷水平≥6 mg/dl的患者中心血管死亡風(fēng)險隨著血清鎂的水平增加而顯著減少[20]?,F(xiàn)在鎂聯(lián)合低劑量的鈣被認(rèn)為是一種經(jīng)濟(jì)適用的治療透析患者高磷血癥方法。除了能避免ABD、高鈣血癥或持續(xù)低PTH水平,還降低血清FGF23水平[21]。
(3)含鐵的磷結(jié)合劑:一項(xiàng)對含鐵的磷結(jié)合劑在治療透析患者高磷血癥中的作用和安全性的薈萃分析[18],含鐵的磷結(jié)合劑的療效與司維拉姆相當(dāng),而且耐受性相對良好,但缺乏司維拉姆的多效性作用[22]。含鐵的磷結(jié)合劑還可以降低FGF23,預(yù)示著鐵與FGF23之間可能存在某種聯(lián)系[23]。自2014年8月起,sucroferric氫氧化物(SFe-OOH,PA21,商品名是Velphoro)被批準(zhǔn)用于慢性腎臟病血液透析或腹膜透析的成年患者。SFe-OOH難溶于水并具有優(yōu)良的磷結(jié)合力,其藥品價格低而且不會造成鐵潴留,胃腸道相關(guān)的不良反應(yīng)少。此外,SFE-OOH與鑭一樣,不影響脂溶性維生素(維生素如A、D、E、K)的吸收和生物活性[24]。另一個含鐵的磷結(jié)合劑檸檬酸鐵,2014年美國食品藥品監(jiān)督管理局批準(zhǔn)檸檬酸鐵用于治療CKD患者的高磷血癥。檸檬酸鐵降磷作用也不次于碳酸司維拉姆和(或)醋酸鈣[25-26]。此外,該藥物提供了一個顯著量的鐵,降CKD患者靜脈注射鐵的需求和長期的促紅細(xì)胞生成素的劑量,尤其適用于需要補(bǔ)充鐵的患者[27]。
(4)其他新的腸道磷結(jié)合劑:考來替蘭是一種新的非金屬不含鈣的陰離子交換樹脂,最開始在日本被用于治療高脂血癥。和司維拉姆一樣,考來替蘭在腸道結(jié)合磷和膽汁酸,可以顯著降低血清磷、鈣磷乘積,減少甲狀旁腺素和降低低密度脂蛋白膽固醇水平[28]。比沙洛姆是一種胺基磷結(jié)合劑,2012年在日本上市,已被證明治療高磷血癥有效,與司維拉姆相比,其胃腸道不良反應(yīng)更少,并且不增高患者代謝性酸中毒的風(fēng)險[29]。
2.鈉磷協(xié)同轉(zhuǎn)運(yùn)體抑制劑 Npt是體內(nèi)無機(jī)磷的一種重要轉(zhuǎn)運(yùn)蛋白,維持礦物質(zhì)和骨代謝穩(wěn)定的成骨細(xì)胞和破骨細(xì)胞表面都有Npt表達(dá),并承擔(dān)著無機(jī)磷的轉(zhuǎn)運(yùn)??刂蒲辶姿降奶娲鷻C(jī)制是通過抑制腸型NaPi-II型協(xié)同轉(zhuǎn)運(yùn)蛋白直接阻斷磷的吸收。眾所周知,限制磷的飲食和所有腸道磷結(jié)合劑都可上調(diào)腸道npt2b的表達(dá)。因此,當(dāng)恢復(fù)磷負(fù)荷飲食或是磷結(jié)合劑治療的間斷時期,腸道磷的吸收會增強(qiáng)[30],這也部分解釋了許多患者血清磷水平控制不佳的原因。因此,npt2b抑制劑不僅可以成為一個重要降磷藥物,還有可能成為增強(qiáng)其他磷結(jié)合劑療效的輔助藥物。煙酰胺是煙酸在體內(nèi)的代謝衍生物,可通過阻斷腸npt2b直接抑制磷的吸收[31]。煙酰胺可能可以減少腎臟轉(zhuǎn)運(yùn)蛋白NPT2a和NPT2c的表達(dá)。因此,煙酰胺可能是一個有效的替代或輔助治療CKD患者的高磷血癥藥物。腹瀉和血小板減少是其最常見的不良反應(yīng)。煙酰胺不但減少飲食中磷的吸收,降低血清磷水平,還能降低FGF23水平,目前一個以降低血清磷和FGF23水平為目標(biāo)的新的治療方法正在研究測試[32]。其他腸道磷轉(zhuǎn)運(yùn)抑制劑正在進(jìn)行臨床前研究,asp3325是目前正在進(jìn)行的對透析患者高磷血癥治療的I期研究。
3.FGF23受體抑制劑(FGFR) FGF23增高(或Klotho減少)與高血磷有關(guān)。磷失衡的后果要遠(yuǎn)早于血清磷水平升高[33]。高水平的FGF23不僅可反映出磷的不平衡,也通過Klotho獨(dú)立信號路徑直接參與左室肥厚[34]。磷對心血管系統(tǒng)的不良影響可以表明,未來的干預(yù)措施將需要同時把磷和FGF23和(或)減少Klotho作為靶點(diǎn)來減少心血管病死率。磷結(jié)合劑能減少腸道磷的吸收,但并不能持續(xù)抑制FGF23,提示可能有其他因素比血清磷更能影響CKD患者FGF23水平[35]。為減少高血磷和高FGF23水平的有害影響,理論上是可以通過直接阻斷FGF23作用(抗-FGF23 抗體或FGF23受體阻滯劑)來實(shí)現(xiàn)的。直接靶向抑制FGF23的生物制劑還在開發(fā)。用抗-FGF23抗體可以治療動物的CKD相關(guān)高磷血癥。然而,抗-FGF23抗體劑量依賴性血清鈣、磷水平,這一點(diǎn)可能會導(dǎo)致相關(guān)的病死率和主動脈鈣化增加[36]。但抗-FGF23抗體和受體阻滯劑還是可以考慮結(jié)合降磷治療或者應(yīng)用于無明顯殘余腎功能的終末期腎病患者。
血清磷水平可能無法真實(shí)地反映磷的平衡,磷失衡的不良后果在血清磷水平高于正常范圍內(nèi)之前就已經(jīng)出現(xiàn)了。雖然早期治療似乎是最理想的方法,但對于未進(jìn)行透析治療且不存在高磷血癥和高FGF23的患者是否應(yīng)給予降磷治療仍不清楚。在CKD的不同階段,血磷需維持在什么范圍才有利于改善預(yù)后目前也沒有一個明確的答案。
二、繼發(fā)性甲狀旁腺功能亢進(jìn)(shyperparathyroidism, SHPT)治療
SHPT是CKD的常見并發(fā)癥,它不僅引起骨骼疾病,降低生活質(zhì)量而且增加CKD 患者的病死率。理想的血清PTH靶水平在當(dāng)前引起激烈的爭論。KDIGO指南建議,在CKD 5和5D期,血清PTH水平應(yīng)維持在正常上限的2倍和9倍之間[37],這是因?yàn)榈陀赑TH正常上限2倍有可能引起腎性骨病。PTH超過9倍正常上限必須避免,因?yàn)榭赡艹霈F(xiàn)極高的病死率。事實(shí)上,在KDIGO指南建議的PTH范圍是否太寬也一直備受爭議,有學(xué)者擔(dān)心PTH范圍太寬可能會導(dǎo)致甲狀旁腺功能過度抑制,促進(jìn)甲狀旁腺腫瘤進(jìn)展,降低治療的效果[38]。原有的指南只使用血清PTH水平來預(yù)測骨轉(zhuǎn)運(yùn)和(或)生存率,其靈敏度和特異性是有缺陷的,其他因素如鈣、磷、CVC也應(yīng)考慮到。堿性磷酸酶活性的監(jiān)測結(jié)合PTH可能有助于增加特異性[39]。
為了抑制甲狀旁腺功能亢進(jìn),新的活性維生素D及其類似物和鈣敏感受體激動劑已經(jīng)被應(yīng)用,它們能更早、更有效的控制CKD-MBD相關(guān)生化指標(biāo)。實(shí)驗(yàn)和臨床研究也表明,一些抗甲狀旁腺藥物可能延緩CVC進(jìn)程,從而可能改善生存率。這些藥物還可以減少甲狀旁腺切除術(shù)的數(shù)量[40]。
1.維生素D衍生物 機(jī)體內(nèi)源性活性維生素D是由麥角骨醇(維生素D2前體)或7-去氫膽甾醇(維生素D3前體)在紫外線的作用下轉(zhuǎn)化為麥角骨化醇(維生素D2)或膽鈣化醇(維生素D3),然后再分別在肝臟25-羥化酶及腎臟1-a羥化酶催化下形成的1,25-二羥麥角骨化醇。有報道指出,普通人群和透析患者中循環(huán)骨化二醇的水平與生存率之間存在著密切的關(guān)系[41]。目前大多數(shù)指南建議對CKD患者測量血清骨化二醇的水平[42-43]。CKD患者由于腎功能的不斷下降,1-a羥化酶合成骨化三醇受到限制,最終導(dǎo)致SHPT。所以,骨化三醇一直是治療甲狀旁腺功能亢進(jìn)的經(jīng)典藥物。已有實(shí)驗(yàn)表明,大劑量的骨化三醇可以增加高磷飲食飼養(yǎng)的尿毒癥老鼠腸道的鈣吸收,這是因?yàn)楣腔即龠M(jìn)了鈣結(jié)合蛋白的表達(dá),從而引起高血鈣,加重高磷血癥,導(dǎo)致異位鈣化,最終導(dǎo)致心血管疾病風(fēng)險及病死率增加[44]。為了克服骨化三醇的這些缺點(diǎn),多年來人們一直在尋找既能治療甲狀旁腺功能亢進(jìn),又能不引起高鈣血癥的維生素D衍生物。選擇性維生素D類似物例如帕立骨化醇或馬沙骨化醇可以選擇性作用于甲狀旁腺和腸道,減弱腸道鈣轉(zhuǎn)運(yùn)蛋白的刺激,從而較少引起高鈣血癥[45]。
實(shí)驗(yàn)研究顯示,帕立骨化醇可以減少對血管的影響[46]。Kong等[47]研究單獨(dú)使用氯沙坦、帕立骨化醇、骨化醇,或氯沙坦和帕立骨化醇聯(lián)合,或氯沙坦和度骨化醇聯(lián)合,對左心室肥厚的進(jìn)展的影響。超聲心動圖顯示單獨(dú)使用氯沙坦、帕立骨化醇,或度骨化醇可以減少65%~80%的左心室肥厚,聯(lián)合使用幾乎完全預(yù)防左心室肥大。這些數(shù)據(jù)表明,維生素D類似物有較強(qiáng)的抗心肌肥厚作用,部分是通過抑制腎臟和心臟的腎素表達(dá)來實(shí)現(xiàn)的。
2.新的維生素D衍生物 對于幾種治療SHPT的維生素D受體激動劑在發(fā)展的早期階段,CTAP101、CTAP201、2MD、CTA018/MT2832、CTA091[48]。CTAP101是一種骨化二醇的緩釋膠囊制劑,被設(shè)計來逐漸提高血清25(OH)-維生素D至生理水平,避免CYP24過度誘導(dǎo),目前部分國家已允許使用治療SHPT[49]。CTAP201的I期臨床試驗(yàn)結(jié)果顯示,它使血液透析患者PTH水平下降的作用類似度骨化醇,但具有降低血清鈣和磷的能力[50]。Lunacalcipol(CT 018/mt2832)是一種新的維生素D激素類似物具有雙重機(jī)制,同樣其他化合物如CTA091,它是一種強(qiáng)效CYP24抑制劑(通過降低維生素D清除,增加活性其半衰期)。lunacalcipol不同于cta091,它也有能力激活VDR介導(dǎo)的基因轉(zhuǎn)錄,抑制PTH的合成,而且實(shí)驗(yàn)發(fā)現(xiàn)它并不影響鈣和磷的水平[51]。
3.鈣敏感受體調(diào)節(jié)劑 1990年識別并克隆出來鈣受體,從而開始了鈣受體激動劑和鈣受體拮抗劑的發(fā)展。西那卡塞是第一個應(yīng)用于臨床的鈣受體激動劑,代表了一種全新的作用機(jī)制,目前已用于治療透析患者的SHPT。西那卡塞除了能有效的減少血清中顯著增高的PTH、鈣、磷、鈣磷乘積,更重要的還能降低FGF23[52-54]。此外,兩個重要的回顧性研究評價西那卡塞的療效都顯示,西那卡塞能延緩CVC的進(jìn)展(ADVANCE)[55]和減少全因病死率、心血管事件(EVOLVE)[56]。EVOLVE研究還發(fā)現(xiàn),西那卡塞可以減少非動脈粥樣硬化性心血管事件的發(fā)生(包括猝死和心力衰竭的發(fā)生率),減少甲狀旁腺切除術(shù)及高鈣血癥甚至還可以減少骨折的發(fā)生,但并不減少患者的病死率。西那卡塞對患者病死率還存在不確定性[57]。西那卡塞的出現(xiàn)仍為CKD-MBD的治療開闊了新的領(lǐng)域,但因西那卡塞藥品價格高昂,目前仍未被廣泛應(yīng)用。
etelcalcetide代表了一種新的、第三代靜脈用、長效鈣敏感受體選擇性肽激動劑[58]。etelcalcetide允許在透析設(shè)置上靜脈給藥,這樣可以提高藥物監(jiān)測及依從性。一項(xiàng)多中心、雙盲、安慰劑對照研究旨在評價etelcalcetide的療效和安全性,etelcalcetide每周3次在血液透析患者結(jié)束透析時由靜脈推注以治療患者的SHPT,觀察時間為4周。研究表明,有相當(dāng)比例的etelcalcetide治療受試者PTH下降到達(dá)300 ng/ml或PTH從基線值下降30%,支持etelcalcetide持續(xù)發(fā)展,而且它較少引起高鈣血癥,血清磷水平也有下降趨勢。etelcalcetide藥物的動力學(xué)最近也被發(fā)表[59]。
4.新的口服鈣敏感受體調(diào)節(jié)劑 其他兩種口服的鈣敏感受體調(diào)節(jié)劑在II期開發(fā)(khk-7580和asp7991)。asp7991已被證明能顯著降低SHPT大鼠模型的PTH水平,可能可以比西那卡塞更少出現(xiàn)CYP酶介導(dǎo)的藥物相互作用。另一種鈣敏感受體調(diào)節(jié)劑化合物L(fēng)EO27847,已在SHPT治療的I期研究中被評估。
三、結(jié)論
除了生化指標(biāo)和骨異常,CVC是CKD-MBD的突出特征,它直接關(guān)系到臨床預(yù)后。有大量的證據(jù)說明,血清磷與CVC患者的病死率密切相關(guān),控制高磷血癥目前被認(rèn)為是治療CKD-MBD的關(guān)鍵之一[60-61]。新的磷結(jié)合劑不斷出現(xiàn)讓我們選擇更多樣化。另外,腸NA-p轉(zhuǎn)運(yùn)蛋白抑制劑的出現(xiàn)可能成為降磷治療的一種很好替代治療。然而,這些藥物的安全性和遠(yuǎn)期效果有待觀察。對于SHPT的治療,要避免不可接受的和不必要的快速PTH抑制,根據(jù)患者對PTH反應(yīng)考慮單用還是聯(lián)合使用擬鈣劑、活性維生素D、鈣敏感受體調(diào)節(jié)劑以及它們的劑量。作為腎內(nèi)科醫(yī)師,不僅要考慮治療藥物的療效,還要考慮患者的依從性、藥物的毒性及藥物成本。
[1] Ritter CS, Slatopolsky E. Phosphate Toxicity in CKD: the Killer among Us[J]. Clin J Am Soc Nephrol, 2016, 11(6): 1088-10100.
[2] Betriu A, Martinez-Alonso M, Arcidiacono MV, et al. Prevalence of subclinical atheromatosis and associated risk factors in chronic kidney disease: the NEFRONA study[J]. Nephrol Dial Transplant, 2014, 29(7): 1415-1422.
[3] Martin M, Valls J, Betriu A, et al. Association of serum phosphorus with subclinical atherosclerosis in chronic kidney disease[J]. Sex makes a difference, 2015, 241(1): 264-270.
[4] Gracia M, Betriu, Martínez-Alonso M, et al. Predictors of subclinical atheromatosis progression over 2 years in patients with different stages of CKD[J]. Clin J Am Soc Nephrol, 2016, 11(2): 287-296.
[5] Kestenbaum B, Sampson JN, Rudser KD, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease[J]. J Am Soc Nephrol, 2005, 16(2): 520-528.
[6] Shinaberger CS, Greenland S, Kopple JD, et al. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease?[J]. Am J Clin Nutr, 2008, 88(6): 1511-1518.
[7] Fernandez-Martin JL, Martinez-Camblor P, Dionisi MP, et al. Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients: the COSMOS study[J]. Nephrol Dial Transplant, 2015, 30(9): 1542-1551.
[8] Cannata-Andia JB, Fernandez-Martin JL, Locatelli F, et al. Use of phosphate binding agents is associated with a lower risk of mortality[J]. Kidney Int, 2013, 84(5): 998-1008.
[9] Lopes AA, Tong L, Thumma J, et al. Phosphate binder use and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study(DOPPS): evaluation of possible confounding by nutritional status[J]. Am J Kidney Dis, 2012, 60(1): 90-101.
[10]Suki WN, Zabaneh R, Cangiano JL, et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients: results of a randomized clinical trial[J]. J Ren Nutr, 2008, 18(1): 91-98.
[11]Zhai CJ, Yu XS, Sun QL, et al. Effect of lanthanum carbonate versus calciumbased phosphate binders in dialysis patients: a meta-analysis[J]. Clin Nephrol, 2014, 82(6): 372-378.
[12]Bover J, Urena P, Brandenburg V, et al. Adynamic bone disease: from bone to vessels in chronic kidney disease[J]. Semin Nephrol, 2014, 34(6): 626-640.
[13]Liu L, Wang Y, Chen H, et al. The effects of non-calcium-based phosphate binders versus calcium-based phosphate binders on cardiovascular calcification and bone remodeling among dialysis patients: a meta-analysis of randomized trials[J]. Ren Fail, 2014, 36(8): 1244-1252.
[14]Wang C, Liu X, Zhou Y, et al. New conclusions regarding comparison of sevelamer and calcium-based phosphate binders in coronary-artery calcification for dialysis patients: a meta-analysis of randomized controlled trials[J]. PLoS One, 2015, 10(7): e0133938.
[15]Massy ZA, Maizel J. Pleiotropic effects of sevelamer: a model of intestinal tract chelating agent[J]. Nephrol Ther, 2014, 10(6): 441-450.
[16]Matias P, Azevedo A, Laranjinha I, et al. Lower serum magnesium is associated with cardiovascular risk factors and mortality in haemodialysis patients[J]. Blood Purif, 2014, 38(3-4): 244-252.
[17]Massy ZA, Drueke TB. Magnesium and cardiovascular complications of chronic kidney disease[J]. Nat Rev Nephrol, 2015, 11(7): 432-442.
[18]Spiegel DM, Farmer B. Long-term effects of magnesium carbonate on coronary artery calcification and bone mineral density in hemodialysis patients: a pilot study[J]. Hemodial Int, 2009, 13(4): 453-459.
[19]Tzanakis IP, Stamataki EE, Papadaki AN, et al. Magnesium retards the progress of the arterial calcifications in hemodialysis patients: a pilot study[J]. Int Urol Nephrol, 2014, 46(11): 2199-2205.
[20]Sakaguchi Y, Fujii N, Shoji T, et al. Magnesium modifies the cardiovascular mortality risk associated with hyperphosphatemia in patients undergoing hemodialysis: a cohort study[J]. PLoS One, 2014, 9(12): e116273.
[21]Covic A, Passlick-Deetjen J, Kroczak M, et al. A comparison of calcium acetate/magnesium carbonate and sevelamer-hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled, randomized study[J]. Nephrol Dial Transplant, 2013, 28(9): 2383-2392.
[22]Zhai CJ, Yu XS, Yang XW, et al. Effects and safety of iron-based phosphate binders in dialysis patients: a systematic review and meta-analysis[J]. Ren Fail, 2015, 37(1): 7-15.
[23]Yokoyama K, Hirakata H, Akiba T, et al. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD[J]. Clin J Am Soc Nephrol, 2014, 9(3): 543-552.
[24]Pierce D, Hossack S, Poole L, et al. The effect of sevelamer carbonate and lanthanum carbonate on the pharmacokinetics of oral calcitriol[J]. Nephrol Dial Transplant, 2011, 26(5): 1615-1621.
[25]Lewis JB, Sika M, Koury MJ, et al. Ferric citrate controls phosphorus and delivers iron in patients on dialysis[J]. J Am Soc Nephrol, 2015, 26(2): 493-503.
[26]Lee CT, Wu IW, Chiang SS, et al. Effect of oral ferric citrate on serum phosphorus in hemodialysis patients: multicenter, randomized, double-blind, placebo-controlled study[J]. J Nephrol, 2015, 28(1): 105-113.
[27]Umanath K, Jalal DI, Greco BA, et al. Ferric citrate reduces intravenous iron and erythropoiesis-stimulating agent use in ESRD[J]. J Am Soc Nephrol, 2015, 26 (10): 2578-2587.
[28]Locatelli F, Spasovski G, Dimkovic N, et al. Long-term evaluation of colestilan in chronic kidney disease Stage 5 dialysis patients with hyperphosphataemia[J]. Blood Purif, 2015, 41(4): 247-253.
[29]Akizawa T, Origasa H, Kameoka C, et al. Dose-finding study of bixalomer in patients with chronic kidney disease on hemodialysis with hyperphosphatemia: a double-blind, randomized, placebo-controlled and sevelamer hydrochloride-controlled open-label, parallel group study[J]. Ther Apher Dial, 2014, 18(Suppl 2): 24-32.
[30]Berns JS. Niacin and related compounds for treating hyperphosphatemia in dialysis patients[J]. Semin Dial, 2008, 21(3): 203-205.
[31]Wu-Wong JR, Mizobuchi M. Is there a need for new phosphate binders to treat phosphate imbalance associated with chronic kidney disease?[J]. Expert Opin Investig Drugs, 2014, 23(11): 1465-1475.
[32] Isakova T, Ix JH, Sprague SM, et al. Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD[J]. J Am Soc Nephrol, 2015, 26(10): 2328-2239.
[33]Block GA, Ix JH, Ketteler M, et al. Phosphate homeostasis in CKD: report of a scientific symposium sponsored by the National Kidney Foundation[J]. Am J Kidney Dis, 2013, 62(3): 457-473.
[34]Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy[J]. J Clin Invest, 2011, 121(11): 4393-4408.
[35]Scialla JJ, Wolf M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease[J]. Nat Rev Nephrol, 2014, 10(5): 268-278.
[36]Shalhoub V, Shatzen EM, Ward SC, et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality[J]. J Clin Invest, 2012, 122(7): 2543-2553.
[37]KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder(CKD-MBD)[J]. Kidney Int Suppl, 2009, 113(4): S1-S130.
[38]Ketteler M, Elder GJ, Evenepoel P, et al. Revisiting KDIGO clinical practice guideline on chronic kidney disease-mineral and bone disorder: a commentary from a kidney disease: Improving Global Outcomes controversies conference[J]. Kidney Int, 2015, 87(3): 502-528.
[39]Behets GJ, Spasovski G, Sterling LR, et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism[J]. Kidney Int, 2015, 87(4): 846-856.
[40]Tentori F, Wang M, Bieber BA, et al. Recent changes in therapeutic approaches and association with outcomes among patient: the DOPPS Study[J]. Clin J Am Soc Nephrol, 2015, 10(1): 98-109.
[41]Melamed ML, Michos ED, Post W. Astor B: 25-hydroxyvitamin D levels and the risk of mortality in the general population[J]. Arch Intern Med, 2008, 168(15): 1629-1637.
[42]Martinez-Castelao A, Gorriz JL, Segura-dela MJ, et al. Consensus document for the detection and management of chronic kidney disease[J]. Nefrologia, 2014, 34(2): 243-262.
[43]Torregrosa JV, Bover J, Cannata AJ, et al. Spanish society of nephrology recommendations for controlling mineral and bone disorder in chronic kidney disease patients(SEN-MBD)[J]. Nefrologia, 2011, 31(Suppl 1): 3-32.
[44]Cardús A, Panizo S, Parisi E, et al. Differential effects of vitamin D analogs on vascular calcification[J]. Bone Miner Res, 2007, 22(6): 860-866.
[45]Mittman N, Desiraju B, Meyer KB, et al. Treatment of secondary hyperparathyroidism in ESRD: a 2-year, single-center crossover study[J]. Kidney Int Suppl, 2010, 8(117): S33-S36.
[46]Lopez I, Mendoza FJ, Aguilera-Tejero E, et al. The effect of calcitriol paricalcitol, and a calcimimetic on extraosseous calcifications in uremic rats[J]. Kidney Int, 2008, 3(3): 300-307.
[47]Kong J, Kim GH, Wei M, et al. The rapeutic effects of vitamin D analogues on cardiac hypertrophy in spontaneously hypertensive rats[J]. Am J Pathol, 2010, 177(7): 622-631.
[48]Cozzolino M, Tomlinson J, Walsh L, et al. Emerging drugs for secondary hyperparathyroidism[J]. Expert Opin Emerg Drugs, 2015, 20(2): 197-208.
[49]Sprague SM, Silva AL, Al-Saghir F, et al. Modified-release calcifediol effectively controls secondary hyperparathyroidism associated with vitamin D insufficiency in chronic kidney disease[J]. Am J Nephrol, 2014, 40(6): 535-545.
[50]Cozzolino M, Tomlinson J, Walsh L, et al. Emerging drugs for secondary hyperparathyroidism[J]. Expert Opin Emerg Drugs, 2015, 20(2): 197-208.
[51]Posner GH, Helvig C, Cuerrier D, et al. Vitamin D analogues targeting CYP24 in chronic kidney disease[J]. J Steroid Biochem Mol Biol, 2010, 121(1-2): 13-19.
[52]Bover J, Urena P, Ruiz-Garcia C, et al. Clinical and practical use of calcimimetics in dialysis patients with secondary hyperparathyroidism[J]. Clin J Am Soc Nephrol, 2016, 11(1): 161-174.
[53]Wetmore JB, Gurevich K, Sprague S, et al. A randomized trial of cinacalcet versus vitamin D analogs as monotherapy in secondary hyperparathyroidism(PARADIGM)[J]. Clin J Am Soc Nephrol, 2015, 10(6): 1031-1040.
[54]Moe SM, Chertow GM, Parfrey PS, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events(EVOLVE) trial[J]. Circulation, 2015, 132(1): 27-39.
[55]Raggi P, Chertow GM, Torres PU, et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis[J]. Nephrol Dial Transplant, 2011, 26(4): 1327-1339.
[56]Moe SM, Abdalla S, Chertow GM, et al. Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial[J]. J Am Soc Nephrol, 2015, 26(6): 1466-1475.
[57]Goldsmith D, Covic A, Vervloet M, et al. Should patients with CKD stage 5D and biochemical evidence of secondary hyperparathyroidism be prescribed calcimimetic therapy? An ERA-EDTA position statement[J]. Nephrol Dial Transplantation, 2015, 30(5), 698-700.
[58]Martin KJ, Bell G, Pickthorn K, et al. Velcalcetide(AMG 416), a novel peptide agonist of the calcium-sensing receptor, reduces serum parathyroid hormone and FGF23 levels in healthy male subjects[J]. Nephrol Dial Transplant, 2014, 29(2): 385-392.
[59]Chen P, Melhem M, Xiao J, et al. Population pharmacokinetics analysis of AMG416, an allosteric activator of the calcium-sensing receptor, in subjects with secondary hyperparathyroidism receiving hemodialysis[J]. J Clin Pharmacol, 2015, 55(6): 620-628.
[60]Tentori F, Blayney MJ, Albert JM, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS)[J]. Am J Kidney Dis, 2008, 52(3): 519-530.
[61]Young EW, Albert JM, Satayathum S, et al. Predictors and consequences of altered mineral metabolism: the Dialysis Outcomes and Practice Patterns Study[J]. Kidney Int, 2005, 67(3): 1179-1187.
10.3969/j.issn.1671-2390.2017.05.012
410000 長沙,長沙市第一醫(yī)院腎臟內(nèi)科(王慧);中南大學(xué)湘雅二醫(yī)院腎內(nèi)科(彭佑銘)
彭佑銘,E-mail:870285298@qq.com
2017-02-09
2017-04-20)