張夢夢,王萬峰,馬???,張倩,谷慶寶
1.河南師范大學(xué)環(huán)境學(xué)院,河南 新鄉(xiāng) 453007 2.中國環(huán)境科學(xué)研究院土壤污染與控制研究室,北京 100012
?
水泥和活性炭對多環(huán)芳烴污染土壤固化穩(wěn)定化效果的影響
張夢夢1,2,王萬峰1,馬???*,張倩2,谷慶寶2
1.河南師范大學(xué)環(huán)境學(xué)院,河南 新鄉(xiāng) 453007 2.中國環(huán)境科學(xué)研究院土壤污染與控制研究室,北京 100012
固化穩(wěn)定化技術(shù)由于處理費(fèi)用低、操作簡單易行,是污染場地修復(fù)常用的技術(shù)。評估了水泥和活性炭固化穩(wěn)定化多環(huán)芳烴(PAHs)污染土壤的浸出行為和無側(cè)限抗壓強(qiáng)度(UCS)。PAHs污染土壤采用非酸性降水、酸性降水和衛(wèi)生填埋場共處置3種方法分別浸出時(shí),浸出液中PAHs的濃度分別為2.53、2.74和3.88 μgL;當(dāng)水泥添加量為土壤質(zhì)量的20%時(shí),3種方法浸出液中PAHs的濃度分別為8.99、10.12和10.99 μgL;水泥固化穩(wěn)定化會增加污染土壤中PAHs的浸出濃度,不同情景下PAHs的浸出濃度表現(xiàn)為衛(wèi)生填埋場共處置>酸性降水>非酸性降水。當(dāng)水泥添加量為土壤質(zhì)量的20%,活性炭添加量為土壤質(zhì)量的1%時(shí),PAHs的浸出濃度為0.99 μgL,活性炭的加入可有效降低浸出液中PAHs的濃度。當(dāng)水泥添加量分別為土壤質(zhì)量的10%、20%和30%時(shí),固化穩(wěn)定化產(chǎn)物28 d的UCS分別為1.82、5.95和12.06 MPa,UCS隨著水泥添加量的增多而增大;水泥添加量為土壤質(zhì)量的20%,活性炭添加量不大于土壤質(zhì)量的2%時(shí),其UCS與不加活性炭時(shí)相當(dāng)。
多環(huán)芳烴污染土壤;固化穩(wěn)定化;浸出行為;無側(cè)限抗壓強(qiáng)度
多環(huán)芳烴(PAHs)是分子中含有2個(gè)或2個(gè)以上苯環(huán)的碳?xì)浠衔?,迄今已發(fā)現(xiàn)200多種,其中有相當(dāng)一部分具有致癌性,如苯并[a]芘、苯并[a]蒽等。美國國家環(huán)境保護(hù)局(US EPA)將16種PAHs作為優(yōu)先控制污染物[1],我國也將萘、熒蒽、苯并[b]熒蒽、苯并[k]熒蒽、苯并[a]芘、茚苯[1,2,3-cd]芘、苯并[g,h,i]苝7種PAHs列入“中國環(huán)境優(yōu)先污染物黑名單”[2]。在焦化行業(yè)、石油化工及鋼鐵冶煉等工業(yè)中由于化石燃料的不完全燃燒產(chǎn)生的大量PAHs,會對土壤造成嚴(yán)重的污染。土壤中的PAHs可通過食物鏈或呼吸進(jìn)入到人體中,對人類健康造成潛在的危害。
目前PAHs污染土壤的處理處置方法有固化穩(wěn)定化[3]、化學(xué)氧化[4-5]、土壤淋洗[6-7]、熱脫附[8-10]、生物修復(fù)[11-12]等。其中,固化穩(wěn)定化技術(shù)具有處理費(fèi)用低、操作簡單易行的特點(diǎn),是污染場地修復(fù)常用的技術(shù)。基于水泥的固化穩(wěn)定化技術(shù)已經(jīng)廣泛應(yīng)用于重金屬污染土壤的修復(fù)中[13-16]。但有機(jī)污染土壤的固化穩(wěn)定化技術(shù)目前還存在很多問題,主要是由于有機(jī)物在水泥固化穩(wěn)定化過程中基本不發(fā)生化學(xué)反應(yīng),其固化穩(wěn)定化效果主要依賴于物理物化穩(wěn)定化過程,因此有機(jī)污染物往往容易從固化穩(wěn)定化產(chǎn)物中浸出,具有潛在的環(huán)境風(fēng)險(xiǎn)[17-18]。另外,有機(jī)污染物會干擾水泥的水化過程,改變固化穩(wěn)定化產(chǎn)物的強(qiáng)度,使污染物的固化穩(wěn)定化過程變得困難[19-20]。
研究表明,采用水泥固化穩(wěn)定化有機(jī)污染土壤時(shí),加入吸附劑(如有機(jī)黏土、活性炭等)可大幅降低固化穩(wěn)定化產(chǎn)物中污染物的浸出濃度[21-23]。筆者嘗試在水泥固化穩(wěn)定化PAHs污染土壤過程中加入活性炭,考察不同浸出情景下固化穩(wěn)定化產(chǎn)物中PAHs的浸出行為和無側(cè)限抗壓強(qiáng)度(UCS),以期為經(jīng)濟(jì)、高效地處置PAHs污染土壤提供技術(shù)支持。
1.1 固化穩(wěn)定化試驗(yàn)
PAHs污染土壤采自北京某化工廠廢棄廠區(qū),去除植物殘?bào)w和大塊石礫,研磨過4.5 mm篩備用,經(jīng)檢測土壤中PAHs濃度為305.36 mgkg。土壤含水率為12.6%,pH為8.04,容重為1.34 gkg,陽離子交換量為7.83 cmolkg,土壤中黏粒、粉粒和砂粒占比分別為14%、7%和79%。土壤中16種多環(huán)芳烴的濃度如表1所示。
表1 污染土壤中PAHs濃度Table 1 Concentration of PAHs in contaminated soil mgkg
表1 污染土壤中PAHs濃度Table 1 Concentration of PAHs in contaminated soil mgkg
萘苊烯苊芴菲蒽熒蒽芘386297950503181195337992831苯并[a]蒽苯并[b]熒蒽苯并[k]熒蒽苯并[a]芘茚苯[1,2,3?cd]芘二苯并[a,h]蒽苯并[g,h,i]苝128922305102610380231093272537
考察水泥添加量對污染土壤固化穩(wěn)定化效果的影響時(shí),設(shè)置水泥添加量分別為土壤質(zhì)量的10%、20%和30%,水的添加量為固體總質(zhì)量的30%;考察活性炭對污染土壤固化穩(wěn)定化效果的影響時(shí),固定水泥添加量為土壤質(zhì)量的20%,活性炭的添加量分別為土壤質(zhì)量的1%、2%和5%,水的添加量為固體總質(zhì)量的30%,每組參數(shù)設(shè)置3個(gè)平行。待樣品在凈漿攪拌機(jī)上攪拌均勻后,轉(zhuǎn)移至7 cm×7 cm×7 cm模具中,于(20±2)℃、濕度為95%的恒溫恒濕養(yǎng)護(hù)箱中養(yǎng)護(hù)28 d。試驗(yàn)設(shè)置2組,養(yǎng)護(hù)7 d后一組樣品脫模破碎,過9.5 mm篩進(jìn)行浸出試驗(yàn),另一組樣品分別養(yǎng)護(hù)7和28 d后按T 0805—1994《公路工程無機(jī)結(jié)合料穩(wěn)定材料試驗(yàn)規(guī)程》中的方法測定UCS。
1.2 浸出試驗(yàn)
浸出試驗(yàn)是評估固化穩(wěn)定化修復(fù)效果的常用方法。當(dāng)固化穩(wěn)定化產(chǎn)物不規(guī)范填埋處置或堆存時(shí),在非酸性降水或酸性降水的影響下,其中的PAHs會浸出而進(jìn)入到環(huán)境中;另外,當(dāng)固化穩(wěn)定化產(chǎn)物進(jìn)入衛(wèi)生填埋場后,在填埋場滲濾液的影響下,其中的PAHs也會浸出。養(yǎng)護(hù)結(jié)束后,將固化穩(wěn)定化樣品脫模破碎,過9.5 mm篩,選擇去離子水、硫酸硝酸混合溶液[24](pH為3.20±0.05)和醋酸緩沖溶液[25](pH為2.88±0.05)作為浸提劑,分別模擬了非酸性降水、酸性降水和衛(wèi)生填埋場共處置3種浸出情景下固化穩(wěn)定化產(chǎn)物中PAHs的浸出行為。稱取污染土和破碎固化穩(wěn)定化樣品20 g,置于500 mL翻轉(zhuǎn)振蕩瓶中,加入400 mL浸提劑,(30±2)rmin下翻轉(zhuǎn)振蕩(18±2)h,靜置后采用玻璃纖維濾膜抽濾后加入多環(huán)芳烴內(nèi)標(biāo)物,過C18萃取小柱富集,氮?dú)獯蹈?,使?0 mL二氯甲烷洗脫,收集洗脫液于K-D瓶,氮吹濃縮至1 mL待測。
1.3 GC-MS分析
色譜條件:進(jìn)樣口溫度320 ℃;傳輸線溫度300 ℃。質(zhì)譜條件:EI離子源70 eV;離子源溫度230 ℃。溶劑延遲時(shí)間為3 min。程序升溫條件:起始溫度80 ℃,保持3 min;以10 ℃min升至160 ℃;再以5 ℃min升至220 ℃;然后以2 ℃min升至280 ℃,保持3 min。色譜柱為DB-5 MS(30 m×0.25 mm×0.25 μm,Agilent,美國)。載氣為高純氦氣(99.999 9%),采用選擇離子模式,進(jìn)樣量為1 μL。
1.4 試驗(yàn)用品
試驗(yàn)所用的16種PAHs混標(biāo)及5種氘代內(nèi)標(biāo)(naphthalene-d8、acenaphthylene-d10、phenanthrene-d10、pyrene-d12、chrysene-d12)均購自AccuStandard(美國),用二氯甲烷逐級稀釋配成標(biāo)準(zhǔn)溶液,于4 ℃密封保存。濃H2SO4、濃HNO3、冰醋酸、粉末活性炭均購自國藥集團(tuán)北京化學(xué)試劑公司;二氯甲烷和丙酮均為色譜級,購自Mreda(美國)。所使用水泥為標(biāo)號425普通硅酸鹽水泥(北京水泥廠有限責(zé)任公司)。C18固相萃取小柱購自Supelco(美國)。
2.1 浸出濃度
3種浸出情景下污染土壤及固化穩(wěn)定化產(chǎn)物中PAHs的浸出濃度如表2所示。由表2可見,PAHs污染土壤采用非酸性降水、酸性降水和衛(wèi)生填埋場共處置分別浸出時(shí),浸出液中PAHs的濃度分別為2.53、2.74和3.88 μgL,衛(wèi)生填埋場共處置浸出情景下,浸出液中PAHs的濃度最大。這是由于衛(wèi)生填埋場共處置浸出時(shí)使用的浸提劑為醋酸緩沖溶液,溶液的酸度最大,對土壤的侵蝕程度最重[26]。衛(wèi)生填埋場共處置浸出時(shí),浸出液的pH為4.06,遠(yuǎn)低于其他2種浸出液,進(jìn)一步證明了醋酸浸提劑對土壤的侵蝕作用。衛(wèi)生填埋場共處置浸出情景下,污染土壤中PAHs的浸出率(污染土壤中PAHs浸出濃度與原始濃度的比值)為0.025%,說明PAHs不易從土壤中浸出。其原因主要是由于多環(huán)芳烴為疏水性有機(jī)物,在浸出過程中更容易吸附到污染土壤表面[27]。
當(dāng)水泥添加量為土壤質(zhì)量的10%,采用非酸性降水、酸性降水和衛(wèi)生填埋場共處置分別浸出時(shí),浸出液中PAHs的濃度分別為10.31、11.04和10.49 μgL,浸出液中PAHs濃度明顯高于未固化穩(wěn)定化時(shí)的污染土壤。這是由于水泥為親水性物質(zhì),水泥的加入增加了固化穩(wěn)定化產(chǎn)物的極性和親水性;另外,有機(jī)污染土壤直接浸出時(shí),土壤顆粒傾向于凝結(jié)成團(tuán),當(dāng)加入水泥時(shí),水泥水化后形成小的空腔將污染顆粒包裹起來,從而阻礙了污染土壤顆粒的凝結(jié),增大了土壤與水的接觸面積[28]。當(dāng)水泥添加量為土壤質(zhì)量的20%,采用非酸性降水、酸性降水和衛(wèi)生填埋場共處置分別浸出時(shí),浸出液中PAHs的濃度分別為8.99、10.12和10.99 μgL。當(dāng)水泥添加量為土壤質(zhì)量的30%時(shí),3種情景下浸出液中PAHs的濃度分別為5.60、5.65和6.61 μgL。隨著水泥添加量的增加,PAHs的浸出濃度逐漸降低,但相應(yīng)的污染土壤中PAHs的浸出率變化不大,說明PAHs浸出濃度的降低主要是由固體總質(zhì)量的增加導(dǎo)致的。不同情景下固化穩(wěn)定化產(chǎn)物中PAHs的浸出濃度順序同樣為衛(wèi)生填埋場共處置>酸性降水>非酸性降水,這與宋敏英等[29-30]的研究結(jié)果相似。代表性致癌物苯并[a]芘的最高浸出濃度為0.11 μgL,低于GB 5085.3—2007《危險(xiǎn)廢物鑒別標(biāo)準(zhǔn) 浸出毒性鑒別》的限值(0.3 μgL)[31]。
污染土壤和固化穩(wěn)定化產(chǎn)物浸出時(shí),浸出液中高環(huán)(4~6環(huán))PAHs的比例最高為21.64%,遠(yuǎn)低于污染土壤中高環(huán)PAHs的比例(83.95%),這是由于高環(huán)PAHs比低環(huán)(2~3環(huán))PAHs的Kow大幾個(gè)數(shù)量級,低水溶性使其更容易吸附在土壤顆粒上[32]。3種浸出情景中衛(wèi)生填埋場共處置的高環(huán)PAHs浸出比例較高,可能是由于醋酸溶液的緩沖作用加強(qiáng)了對土壤顆粒的侵蝕。
表2 3種浸出情景下污染土壤及固化穩(wěn)定化產(chǎn)物中PAHs的浸出特征Table 2 Leaching characteristics of PAHs in contaminated soil and solidifiedstabilized materials under three exposure scenarios
表2 3種浸出情景下污染土壤及固化穩(wěn)定化產(chǎn)物中PAHs的浸出特征Table 2 Leaching characteristics of PAHs in contaminated soil and solidifiedstabilized materials under three exposure scenarios
項(xiàng)目污染土污染土+10%水泥污染土+20%水泥污染土+30%水泥非酸性降水酸性降水衛(wèi)生填埋場非酸性降水酸性降水衛(wèi)生填埋場非酸性降水酸性降水衛(wèi)生填埋場非酸性降水酸性降水衛(wèi)生填埋場浸出液pH9158474061162 1156 5151172 1164 55611751166 865低環(huán)PAHs濃度∕(μg∕L)萘091117160180334226252264304216165209苊烯014016009019035026028025020013020024苊015022038107282140170152205061102119芴021020028496117114182189122060050050菲038039042082094169087211191076076073蒽044043047064154147091081110066061069比例∕%881493808351919592037836901091118662878683898230高環(huán)PAHs濃度∕(μg∕L)熒蒽0100 022043041082046051081036040046芘020017022037037061041034054030042036苯并[a]蒽000080030050200020050030020006000110003013000040009008苯并[b]熒蒽0000100020220000200008苯并[k]熒蒽00000003000000苯并[a]芘000000110000100004茚苯[1,2,3?cd]芘000000050000100005二苯并[a,h]蒽000000.02000000苯并[g,h,i]苝000000.08000.01000.04比例∕%11.866.2016.498.057.9721.649.908.8913.3812.1416.1117.70PAHs總浸出濃度∕(μg∕L)2532743881031 11041049 8991012 1099 560565661
注:水泥添加量均為污染土壤質(zhì)量的20%。圖1 活性炭添加量對多環(huán)芳烴浸出濃度的影響Fig.1 Effects of AC dosage on leaching concentration of PAHs
圖1顯示了活性炭添加量對3種浸出情景下PAHs浸出濃度的影響。
由圖1可見,當(dāng)污染土壤僅采用土壤質(zhì)量20%的水泥固化穩(wěn)定化時(shí),采用非酸性降水浸出時(shí)PAHs濃度為8.99 μgL,添加土壤質(zhì)量1%的活性炭時(shí),PAHs的浸出濃度為0.99 μgL,活性炭的添加明顯降低了PAHs的浸出濃度。隨著活性炭添加量的增大,PAHs的浸出濃度進(jìn)一步降低。其中苯并[a]芘的浸出濃度低于檢出限(0.01 μgL),說明在固化穩(wěn)定化PAHs時(shí)添加活性炭,可以有效吸附污染土壤中的PAHs,降低其浸出濃度。
2.2 無側(cè)限抗壓強(qiáng)度(UCS)
為了評估固化穩(wěn)定化產(chǎn)物的最終處置方式,需要測試其機(jī)械強(qiáng)度。UCS是評估固化穩(wěn)定化產(chǎn)物機(jī)械強(qiáng)度常用的指標(biāo)。水泥及活性炭添加量與固化穩(wěn)定化產(chǎn)物的UCS關(guān)系如表3所示。
由表3可見,當(dāng)水泥添加量為土壤質(zhì)量的10%時(shí),固化穩(wěn)定化產(chǎn)物7和28 d的UCS分別為0.51和1.82 MPa;當(dāng)水泥添加量為土壤質(zhì)量的20%時(shí),UCS分別為2.45和5.95 MPa;當(dāng)水泥添加量為土壤質(zhì)量的30%時(shí),UCS分別為5.23和12.06 MPa,可見,UCS隨著水泥添加量的增多而增大。這是由于水泥的添加量越多,水化生成的膠結(jié)物質(zhì)也越多,固化穩(wěn)定化產(chǎn)物的抗壓強(qiáng)度越高[33]。固化穩(wěn)定化產(chǎn)物用作填埋處置時(shí),US EPA建議標(biāo)準(zhǔn)養(yǎng)護(hù)28 d的固化穩(wěn)定化產(chǎn)物的UCS大于350 kPa[34];荷蘭和法國建議標(biāo)準(zhǔn)養(yǎng)護(hù)28 d的固化穩(wěn)定化產(chǎn)物的UCS大于1 MPa[35];本研究中,水泥添加量為土壤質(zhì)量的10%時(shí),固化穩(wěn)定化產(chǎn)物標(biāo)準(zhǔn)養(yǎng)護(hù)28 d的UCS滿足填埋處置的要求。CJJ 01—2008《城鎮(zhèn)道路工程施工與質(zhì)量驗(yàn)收規(guī)范》[36]中規(guī)定水泥穩(wěn)定土類材料用作城市快速路、主干路底基層時(shí)7 d UCS為1.5~2.5 MPa,用作其他等級道路底基層時(shí)7 d UCS為1.5~2.0 MPa。水泥添加量為土壤質(zhì)量的20%時(shí),其固化穩(wěn)定化產(chǎn)物的UCS大于2 MPa,滿足道路底基層對建筑材料UCS的要求。
表3 固化穩(wěn)定化產(chǎn)物的無側(cè)限抗壓強(qiáng)度Table 3 UCS of solidifiedstabilized materials MPa
表3 固化穩(wěn)定化產(chǎn)物的無側(cè)限抗壓強(qiáng)度Table 3 UCS of solidifiedstabilized materials MPa
時(shí)間∕d10%水泥20%水泥20%水泥+1%活性炭20%水泥+2%活性炭20%水泥+5%活性炭30%水泥7051245261253186523281825956226095011206
為了評估活性炭的加入對固化穩(wěn)定化產(chǎn)物機(jī)械強(qiáng)度的影響,固定水泥添加量為土壤質(zhì)量的20%,考察不同活性炭添加量下固化穩(wěn)定化產(chǎn)物的UCS變化。當(dāng)活性炭添加量分別為土壤質(zhì)量的1%、2%和5%時(shí),固化穩(wěn)定化產(chǎn)物養(yǎng)護(hù)28 d后的UCS分別為6.22、6.09及5.01 MPa,當(dāng)活性炭添加量不高于土壤質(zhì)量的2%時(shí),其UCS與不加活性炭時(shí)相當(dāng);當(dāng)活性炭添加量為土壤質(zhì)量的5%時(shí),其UCS明顯低于不加活性炭時(shí),這是因?yàn)榛钚蕴繛槎嗫仔晕镔|(zhì),活性炭的加入增加了固化穩(wěn)定化產(chǎn)物的總孔容,使其結(jié)構(gòu)疏松,進(jìn)而影響固化穩(wěn)定化產(chǎn)物的強(qiáng)度。
(1)水泥固化穩(wěn)定化PAHs污染土壤會增加浸出液中污染物的濃度,PAHs濃度明顯高于未處理時(shí)。不同情景下PAHs的浸出濃度表現(xiàn)為衛(wèi)生填埋場共處置>酸性降水>非酸性降水。
(2)活性炭的加入可有效降低浸出液中PAHs的濃度。
(3)UCS隨著水泥添加量的增多而增大,水泥添加量為土壤質(zhì)量的20%,活性炭添加量不大于土壤質(zhì)量的2%時(shí),其UCS與不加活性炭時(shí)相當(dāng)。
[1] US EPA.Priority pollutant list:40 CFR Part 423,appendix A[EBOL].Washington DC:US Environmental Protection Agency.Office of Water,2014[2015-12-27].http:www3.epa.govregion1npdespermitsgenericprioritypollutants.pdf.
[2] 周文敏,傅德黔,孫宗光.水中優(yōu)先控制污染物黑名單[J].中國環(huán)境監(jiān)測,1990,6(4):1-3.
[3] 申坤.多環(huán)芳烴污染土壤固化穩(wěn)定化修復(fù)研究[D].北京:輕工業(yè)環(huán)境保護(hù)研究所,2011.
[4] 趙丹,廖曉勇,閻秀蘭,等.不同化學(xué)氧化劑對焦化污染場地多環(huán)芳烴的修復(fù)效果[J].環(huán)境科學(xué),2011,32(3):857-863. ZHAO D,LIAO X Y,YAN X L,et al.Chemical oxidants for remediation of soils contaminated with polycyclic aromatic hydrocarbons at a coking site[J].Environmental Science,2011,32(3):857-863.
[5] 郭涓,楊玉盛,楊紅玉,等.高錳酸鉀氧化修復(fù)污染土壤中菲和芘的研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(3):471-475. GUO J,YANG Y S,YANG H Y,et al.Potassium permanganate oxidation of phenanthrene and pyrene in contaminated soils[J].Journal of Agro-environment Science,2010,29(3):471-475.
[6] 王宏光,鄭連偉.表面活性劑在多環(huán)芳烴污染土壤修復(fù)中的應(yīng)用[J].化工環(huán)保,2006,26(6):471-474. WANG H G,ZHENG L W.Application of surfactant in remediation of polycyclic aromatic hydrocarbons contaminated soil[J].Environmental Protection of Chemical Industry,2006,26(6):471-474.
[7] 鞏宗強(qiáng),李培軍,臺培東,等.污染土壤的淋洗法修復(fù)研究進(jìn)展[J].環(huán)境污染治理技術(shù)與設(shè)備,2002,3(7):45-50. GONG Z Q,LI P J,TAI P D,et al.Advancement of soil washing process for contaminated soil[J].Techniques and Equipment for Environmental Pollution Control,2002,3(7):45-50.
[8] 耿春雷,顧軍,於定新.高溫?zé)峤馕鲈诙喹h(huán)芳烴污染土修復(fù)中的應(yīng)用[J].材料導(dǎo)報(bào),2012,26(3):126-129. GENG C L,GU J,YU D X.Application of high temperature thermal decomposition in repairing PAHs polluted soil[J].Materials Review,2012,26(3):126-129.
[9] HARMON T C,BURKS G A,AYCAGUER A C,et al.Thermally enhanced vapor extraction for removing PAHs from lampblack-contaminated soil[J].Journal of Environmental Engineering,2001,127(11):986-993.
[10] 魏萌.焦化污染場地土壤中PAHs的賦存特征及熱脫附處置研究[D].北京:首都師范大學(xué),2013.
[11] 侯梅芳,潘棟宇,黃賽花,等.微生物修復(fù)土壤多環(huán)芳烴污染的研究進(jìn)展[J].生態(tài)環(huán)境學(xué)報(bào),2014,23(7):1233-1238. HOU M F,PAN D Y,HUANG S H,et al.Microbial remediation of polycyclic aromatic hydrocarbons contaminated soil:a review[J].Ecology and Environmental Sciences,2014,23(7):1233-1238.
[12] 潘聲旺.多環(huán)芳烴污染土壤的生態(tài)修復(fù)研究[D].重慶:西南大學(xué),2009.
[13] KANTAR C,CETIN Z,DEMIRAY H.In situ stabilization of chromium(Ⅵ) in polluted soils using organic ligands:the role of galacturonic,glucuronic and alginic acids[J].Journal of Hazardous Materials,2008,159(23):287-293.
[14] KUMPIENE J,LAGERKVIST A,MAURICE C.Stabilization of As,Cr,Cu,Pb and Zn in soil using amendments:a review[J].Waste Management,2008,28:215-225.
[15] BASTA N T,MCGOWEN S L.Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J].Environmental Pollution,2004,127(1):73-82.
[16] YOON I H,MOON D H,KIM K W,et al.Mechanism for the stabilizationsolidification of arsenic-contaminated soils with Portland cement and cement kiln dust[J].Journal of Environmental Management,2010,91(11):2322-2328.
[17] SORA I N,PELOSATO R,BOTTA D,et al.Chemistry and microstructure of cement pastes admixed with organic liquids[J].Journal of the European Ceramic Society,2002,22(9):1463-1473.
[18] VIPULANANDAN C.Effect of clays and cement on the solidificationstabilization of phenol-contaminated soils[J].Waste Management,1995,15(56):399-406.
[19] BOTTA D,DOTELLI G,BIANCARDI R,et al.Cement-clay pastes for stabilizationsolidification of 2-chloroaniline[J].Waste Management,2004,24(2):207-216.
[20] VIPULANANDAN C,KRISHNAN S.Solidificationstabilization of phenolic waste with cementitious and polymeric materials[J].Journal of Hazardous Materials,1990,24(2):123-136.
[21] LEONARD S A,STEGEMANN J A.Stabilizationsolidification of petroleum drill cuttings:leaching studies[J].Journal of Hazardous Materials,2010,174(123):463-472.
[22] HEBATPURIA V M,ARAFAT H A,HONG S R,et al.Immobilization of phenol in cement-based solidifiedstabilized hazardous wastes using regenerated activated carbon:leaching studies[J].Journal of Hazardous Materials,2000,70(3):139-156.
[23] MONTGOMERY D,SOLLARS C,PERRY R.Optimization of cement-based stabilizationsolidification of organic-containing industrial wastes using organophilic clay[J].Waste Management & Research,1991,9(1):21-34.
[24] 國家環(huán)境保護(hù)總局.固體廢物浸出毒性浸出方法 硫酸硝酸法:HJT 299—2007[S].北京:中國環(huán)境科學(xué)出版社,2007.
[25] 國家環(huán)境保護(hù)總局.固體廢物浸出毒性浸出方法 醋酸緩沖溶液法:HJT 300—2007[S].北京:中國環(huán)境科學(xué)出版社,2007.
[26] LIU J G,NIE X Q,ZENG X W,et al.Long-term leaching behavior of phenol in cementactivated-carbon solidifiedstabilized hazardous waste[J].Journal of Environmental Management,2013,115:265-269.
[27] HEBATPURIA V M,ARAFAT H A,BISHOP P L,et al.Leaching behavior of selected aromatics in cement-based solidificationstabilization under different leaching tests[J].Environmental Engineering Science,1999,16(6):451-463.
[28] KARAMALIDIS A K,VOUDRIAS E A.Cement-based stabilizationsolidification of oil refinery sludge:leaching behavior of alkanes and PAHs[J].Journal of Hazardous Materials,2007,148(12):122-135.
[29] 宋敏英.含硝基苯危險(xiǎn)廢物固化穩(wěn)定化技術(shù)研究[D].北京:北京工商大學(xué),2010.
[30] 周德杰,劉鋒,孫思修,等.固體廢物中多環(huán)芳烴類化合物(PAHs)的浸出特性研究[J].環(huán)境科學(xué)研究,2005,18(增刊):31-35. ZHOU D J,LIU F,SUN S X,et al.Study on leaching characteristics of polycyclic aromatic hydrocarbons (PAHs) of solid waste[J].Research of Environmental Sciences,2005,18(Suppl):31-35.
[31] 國家環(huán)境保護(hù)總局,國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局.危險(xiǎn)廢物鑒別標(biāo)準(zhǔn) 浸出毒性鑒別:GB 5085.3—2007[S].北京:中國環(huán)境科學(xué)出版社,2007.
[32] MULDER E,BROUWER J P,BLAAKMEER J,et al.Immobilisation of PAH in waste materials[J].Waste Management,2001,21(3):247-253.
[33] 王建華,肖佳,陳雷,等.粉煤灰對水泥水化與強(qiáng)度的影響[J].粉煤灰綜合利用,2009,22(5):34-36. WANG J H,XIAO J,CHEN L,et al.Influence on cement hydration and strength of fly ash[J].Fly Ash Comprehensive Utilization,2009,22(5):34-36.
[34] US EPA.Prohibition on the disposal of bulk liquid hazardous waste in landfills:statutory interpretive guidance:Office of Solid Waste and Emergency Response (OSWER) Policy Directive:No.9487.00-2A,EPA530-SW-016[R].Washington DC:US EPA,1986.
[35] PERERA A,AL-TABBAA A,REID J,et al.State of practice report UK stabilizationsolidification treatment and remediation:part Ⅳ.testing and performance criteria[C]Proceedings of the International Conference on StabilizationSolidification Treatment and Remediation.London:Balkema,2005:415-435.
[36] 住房與城鄉(xiāng)建設(shè)部.城鎮(zhèn)道路工程施工與質(zhì)量驗(yàn)收規(guī)范:CJJ 01—2008[M].北京:中國建筑工業(yè)出版社,2008. ?
Effect of cement and activated carbon on solidificationstabilization of PAHs contaminated soil
ZHANG Mengmeng1,2, WANG Wanfeng1, MA Fujun2, ZHANG Qian2, GU Qingbao2
1.School of Environment, Henan Normal University, Xinxiang 453007, China 2.Department of Soil Pollution and Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
As a low cost and easy to operate technology, the solidificationstabilization is widely used for remediating contaminated sites. PAHs leachability and unconfined compressive strength (UCS) of cement-based solidifiedstabilized materials with or without activated carbon were evaluated. When the contaminated soil was leached under three scenarios of neutral precipitation, acid precipitation, and co-disposal, the leaching concentrations of PAHs were 2.53, 2.74 and 3.88 μgL, respectively. After treated by cement of 20% soil weight, the leaching concentrations of PAHs were 8.99, 10.12 and 10.99 μgL, respectively under the three scenarios. The leachability of PAHs increased when contaminated soil was solidifiedstabilized by cement. PAHs concentrations in leachates were in the order of co-disposal scenario>acid-precipitation scenario>neutral-precipitation scenario. When the contaminated soil was treated by 20% cement and 1% activated carbon of soil weight, the leaching concentrations of PAHs was 0.99 μgL; the addition of activated carbon can significantly lower PAHs concentrations in leachates. 28 d UCS of solidifiedstabilized materials was 1.82, 5.95 and 12.06 MPa when the contaminated soil was treated by cement of 10%, 20% and 30% of soil weight, respectively. UCS of solidifiedstabilized materials increased with the adding amounts of cement. When the contaminated soil was treated by 20% cement, UCS of solidifiedstabilized materials was not affected by the amount of activated carbon when adding no more than 2% of soil weight.
PAHs contaminated soil; solidificationstabilization; leaching behavior; unconfined compressive strength
2016-06-16
國家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)項(xiàng)目(2013AA06A207)
張夢夢(1991—),女,碩士研究生,主要從事有機(jī)污染土壤固化穩(wěn)定化修復(fù)研究,15138037707@163.com
*責(zé)任作者:馬???1985—),男,博士,主要從事污染場地污染修復(fù)研究,mafj@craes.org.cn
X53
1674-991X(2017)01-0059-06
10.3969j.issn.1674-991X.2017.01.009
張夢夢,王萬峰,馬福俊,等.水泥和活性炭對多環(huán)芳烴污染土壤固化穩(wěn)定化效果的影響[J].環(huán)境工程技術(shù)學(xué)報(bào),2017,7(1):59-64.
ZHANG M M, WANG W F, MA F J, et al.Effect of cement and activated carbon on solidificationstabilization of PAHs contaminated soil[J].Journal of Environmental Engineering Technology,2017,7(1):59-64.