白宇冰,王秋瑩,呂瑞濤,等
推薦論文摘要
鈣鈦礦太陽能電池研究進(jìn)展
白宇冰,王秋瑩,呂瑞濤,等
鈣鈦礦太陽能電池自2009年被提出以來取得了迅猛的進(jìn)展,其性能甚至超越了其他類型電池多年的積累,在2013年被《Science》評為國際十大科技進(jìn)展之一。截至目前,鈣鈦礦電池已經(jīng)取得了轉(zhuǎn)換效率為20.1%的佳績,并在不久的未來有望繼續(xù)迅速突破。本文主要總結(jié)了2014年至今鈣鈦礦電池研究所取得的部分最新進(jìn)展,從鈣鈦礦太陽能電池的基本結(jié)構(gòu)、工作機(jī)理、界面調(diào)控、制備工藝等方面出發(fā),針對提高電池效率及穩(wěn)定性、環(huán)境友好化等幾個亟待改進(jìn)的問題進(jìn)行概述總結(jié)。本文在現(xiàn)有研究成果的基礎(chǔ)上,對未來仍需努力的方向進(jìn)行展望,有助于我國研究者迅速了解鈣鈦礦太陽能電池研究的最新動向并取得進(jìn)一步突破。
鈣鈦礦太陽能電池;轉(zhuǎn)換效率;穩(wěn)定性;環(huán)境友好
來源出版物:科學(xué)通報, 2016, 61(4-5): 489-500
聯(lián)系郵箱:呂瑞濤,lvruitao@tsinghua.edu.cn
二硒化鐵/還原氧化石墨烯的制備及其在染料敏化太陽能電池中的應(yīng)用
劉學(xué)文,朱重陽,董輝,等
摘要:通過水熱反應(yīng)合成出二硒化鐵/還原氧化石墨烯(FeSe2/rGO)復(fù)合材料,并將其作為對電極材料應(yīng)用于染料敏化太陽能電池(DSSC)。利用X射線衍射、拉曼光譜、場發(fā)射掃描電子顯微鏡和高分辨透射電子顯微鏡對FeSe2/rGO的結(jié)構(gòu)和形貌進(jìn)行了表征。利用循環(huán)伏安法、電化學(xué)阻抗譜和Tafel曲線測試分析了FeSe2/rGO對電極的電催化活性。結(jié)果表明:FeSe2呈納米棒結(jié)構(gòu),長度在100~200 nm之間,且緊密地附著在rGO的表面,F(xiàn)eSe2/rGO對電極對I3-的還原具有很好的催化活性。電池的J-V曲線測試顯示:基于FeSe2/rGO對電極的DSSC的轉(zhuǎn)換效率達(dá)到了8.90%,相比基于單純的FeSe2對電極的DSSC(7.91%)和rGO對電極的DSSC(5.24%)都有了顯著提高,甚至優(yōu)于鉑對電極的DSSC(8.52%)。
關(guān)鍵詞:二硒化鐵;石墨烯;對電極;染料敏化太陽能電池
來源出版物:物理學(xué)報, 2016, 65(11): 118802-118802
聯(lián)系郵箱:孫立濤,slt@seu.edu.cn
高效率鈣鈦礦型太陽能電池的化學(xué)穩(wěn)定性及其研究進(jìn)展
郭旭東,牛廣達(dá),王立鐸
摘要:近幾年來,鈣鈦礦太陽能電池器件光電轉(zhuǎn)換效率的最高紀(jì)錄不斷被刷新,但是關(guān)于鈣鈦礦太陽能電池穩(wěn)定性的研究報道比較缺乏。鈣鈦礦太陽能電池穩(wěn)定性問題已經(jīng)成為制約鈣鈦礦太陽能電池繼續(xù)發(fā)展的瓶頸。簡要討論了水氧氣氛、溫度變化、濕法制備、紫外光照等不同敏感環(huán)境條件下鈣鈦礦太陽能電池的化學(xué)穩(wěn)定性問題,進(jìn)而對一定環(huán)境條件下鈣鈦礦太陽能電池的化學(xué)穩(wěn)定性及其調(diào)控的研究現(xiàn)狀進(jìn)行了綜述,旨在更好地理解鈣鈦礦太陽能電池穩(wěn)定性的基礎(chǔ)理論問題,為實(shí)現(xiàn)鈣鈦礦太陽能電池穩(wěn)定性的調(diào)控提供基本依據(jù)。
關(guān)鍵詞:鈣鈦礦型太陽能電池;高效率;化學(xué)穩(wěn)定性;環(huán)境條件;調(diào)控
來源出版物:化學(xué)學(xué)報, 2014, 73(3): 211-218
聯(lián)系郵箱:王立鐸,chldwang@mail.tsinghua.edu.cn
全固態(tài)介觀太陽能電池:從染料敏化到鈣鈦礦
榮耀光,梅安意,劉林峰,等
摘要:介觀太陽能電池(Mesoscopic Solar Cells)作為新一代太陽能電池的突出代表,具有原材料來源豐富,制備工藝簡單,光電轉(zhuǎn)換效率高等優(yōu)點(diǎn),從而具有廣闊的應(yīng)用前景。本工作簡要評述了全固態(tài)介觀太陽能電池從染料敏化太陽能電池(Dye-sensitized solar cells)發(fā)展到鈣鈦礦太陽能電池(Perovskite solar cells)過程中新材料、新技術(shù)和新概念的研究進(jìn)展。1998年,Gr?tzel課題組首次將固態(tài)有機(jī)空穴傳輸材料spiro-OMeTAD應(yīng)用到染料敏化太陽能電池中,制備出全固態(tài)染料敏化太陽能電池,雖然僅獲得了0.74%的光電轉(zhuǎn)換效率,但是卻使得全固態(tài)染料敏化太陽能電池迅速發(fā)展成為介觀太陽能電池的重要研究方向。2012年,Park與Gr?tzel課題組合作,使用鈣鈦礦型吸光材料(CH3NH3)PbI3作為敏化劑,spiro-OMeTAD作為空穴收集層,制備出光電轉(zhuǎn)換效率達(dá)到9.7%的全固態(tài)介觀太陽能電池,又被稱為鈣鈦礦太陽能電池。自此,基于鈣鈦礦材料的介觀太陽能電池迅速成為太陽能電池領(lǐng)域的研究熱點(diǎn)。目前,鈣鈦礦太陽能電池的最高公證效率已經(jīng)達(dá)到20.1%。鈣鈦礦太陽能電池作為介觀太陽能電池商業(yè)化道路上里程碑式的突破,在材料開發(fā)、界面優(yōu)化以及器件穩(wěn)定性方面的研究仍充滿挑戰(zhàn),也期待新的突破。
關(guān)鍵詞:介觀太陽能電池;全固態(tài);染料敏化;鈣鈦礦;對電極
來源出版物:化學(xué)學(xué)報, 2015, 73(3): 237-251
聯(lián)系郵箱:韓宏偉,han@mail.hust.edu.cn
多孔TiO2層厚度對鈣鈦礦太陽能電池性能的影響
朱立峰,石將建,李冬梅,等
摘要:制備了基于不同厚度(100~500 nm)多孔TiO2層的鈣鈦礦太陽能電池,并用SEM、XRD、紫外-可見吸收譜、電壓-電流曲線、電化學(xué)阻抗譜進(jìn)行了表征。研究發(fā)現(xiàn),多孔TiO2薄膜厚度對電池性能有很大影響,即隨著多孔TiO2薄膜厚度的增加,短路電流略有提高,而開路電壓和填充因子呈下降趨勢;但同時,較厚的多孔TiO2薄膜可有效減弱滯回現(xiàn)象。進(jìn)一步采用電化學(xué)阻抗譜和暗態(tài)電流-電壓曲線研究了載流子復(fù)合。電化學(xué)阻抗譜表明,膜厚增加會增大載流子復(fù)合但不會改變二極管理想因子。通過擬合暗態(tài)電流-電壓曲線得到反向飽和電流,隨著膜厚增加,反向飽和電流會增大,從而加劇了載流子復(fù)合。通過優(yōu)化多孔TiO2薄膜厚度,基于150 nm多孔TiO2薄膜鈣鈦礦電池的認(rèn)證效率達(dá)到15.56%。
關(guān)鍵詞:鈣鈦礦;太陽能電池;載流子復(fù)合;二氧化鈦;膜厚度
來源出版物:化學(xué)學(xué)報, 2015, 73(3): 261-266
聯(lián)系郵箱:孟慶波,qbmeng@iphy.ac.cn
聚合物-富勒烯太陽能電池器件物理研究進(jìn)展
劉震,徐豐,嚴(yán)大東,等
摘要:近期共軛聚合物-富勒烯太陽能電池的器件效率已突破10%并接近商業(yè)應(yīng)用的標(biāo)準(zhǔn),在科研和產(chǎn)業(yè)領(lǐng)域引起了廣泛關(guān)注。伴隨器件效率的提升,對有機(jī)太陽能電池器件物理過程的認(rèn)識也在不斷深入。本文就近年來聚合物太陽能電池的代表性工作進(jìn)行綜述,著重介紹提高器件效率的新方法,涵蓋三相本體異質(zhì)結(jié)、反向器件、等離激元共振效應(yīng)和疊層器件等熱點(diǎn)技術(shù);并就器件工作的物理過程進(jìn)行探討,介紹熱激子分離理論、非整數(shù)次電荷復(fù)合等新觀點(diǎn)。通過材料設(shè)計、器件表征優(yōu)化和理論計算等方法對聚合物太陽能電池進(jìn)行的綜合研究將有力推進(jìn)這一新興領(lǐng)域的發(fā)展和產(chǎn)業(yè)化。
關(guān)鍵詞:有機(jī)太陽能電池;器件物理;進(jìn)展;聚合物-富勒烯;效率
來源出版物:化學(xué)學(xué)報, 2014, 72(2): 171-184
聯(lián)系郵箱:嚴(yán)大東,yandd@bnu.edu.cn.
非富勒烯小分子有機(jī)太陽能電池電子受體材料的研究進(jìn)展
付鈺,王芳,張燕,等
摘要:富勒烯及其衍生物是一類重要的n-型電子受體材料,在有機(jī)太陽能電池器件中發(fā)揮了至關(guān)重要的作用。但由于富勒烯材料吸光波長較窄、親和能高、溶解性差等,嚴(yán)重限制了富勒烯作為有機(jī)太陽能電池n-型電子受體材料的更廣泛應(yīng)用和器件性能的進(jìn)一步提升。非富勒烯n-型電子受體材料具有能級可調(diào)、合成簡便、加工成本低、溶解性能優(yōu)異等特點(diǎn),更重要的是,此類材料在可見太陽光光譜中比富勒烯及其衍生物材料有更加寬廣的吸收范圍;近年來,受到越來越多的關(guān)注和研究。本文較為系統(tǒng)地闡述了非富勒烯小分子材料作為有機(jī)太陽能電池n-型電子受體材料的研究進(jìn)展,并對其發(fā)展前景作了展望。
關(guān)鍵詞:n-型小分子電子受體材料;寬光譜吸收;可溶液加工;有機(jī)光伏器件
來源出版物:化學(xué)學(xué)報, 2014, 72(2): 158-170
聯(lián)系郵箱:賴文勇,iamwylai@njupt.edu.cn
來源出版物:Nature Nanotechnology, 2016, 11(1): 75-81
聯(lián)系郵箱:You, JB; yangy@ucla.edu
Nonfullerene polymer solar cells with 8.5% efficiency enabled by a new highly twisted electron acceptor dimer
Hwang, YJ; Li, HY; Courtright, BAE; et al.
Abstract:Fullerene-free and processing additive-free 8.5% efficient polymer solar cells are achieved by using a new 3,4-ethylenedioxythiophene-linked arylene diimide dimer with a 76° twist angle. The devices combine high (78%–83%) external quantum efficiency with high (0.91–0.95 V) photovoltages and thus have relatively low optical bandgap energy loss.
來源出版物:Advanced Materials, 2016, 28(1): 124-131
聯(lián)系郵箱:Jenekhe, SA; jenekhe@u.washington.edu
Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature
Albrecht, S; Saliba, M; Baena, JPC; et al.
Abstract:Tandem solar cells combining silicon and perovskite absorbers have the potential to outperform state-of-the-art high efficiency silicon single junction devices. However, the practical fabrication of monolithic silicon/perovskite tandem solar cells is challenging as material properties and processing requirements such as temperature restrict the device design. Here, we fabricate an 18% efficient monolithic tandem cell formed by a silicon heterojunction bottom- and a perovskite top-cell enabling a very high open circuit voltage of 1.78 V. The monolithic integration was realizedvialow temperature processing of the semitransparent perovskite sub-cell where an energetically aligned electron selective contact was fabricated by atomic layer deposition of tin oxide. The hole selective, transparent top contact was formed by a stack of the organic hole transport material spiro-OMeTAD, molybdenum oxide and sputtered indium tin oxide. The tandem cell design is currently limited by the photocurrent generated in the silicon bottom cell that is reduced due to reflectance losses. Based on optical modelling and first experiments, we show that these losses can be significantly reduced by combining optical optimization of the device architecture including light trapping approaches.
來源出版物:Energy & Environmental Science, 2016, 9(1): 81-88
聯(lián)系郵箱:Albrecht, S; steve.albrecht@helmholtz-berlin.de
A nonfullerene small molecule acceptor with 3D interlocking geometry enabling efficient organic solar cells
Lee, J; Singh, R; Sin, DH; et al.
Abstract:A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the smallmolecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated.
來源出版物:Advanced Materials, 2016, 28(1): 69-76
聯(lián)系郵箱:Cho, K; kwcho@postech.ac.kr
Compositional engineering of perovskite materials for high-performance solar cells
Jeon, NJ; Noh, JH; Yang, WS; et al.
Abstract:Of the many materials and methodologies aimed at producing low-cost, efficient photovoltaic cells, inorganic-organic lead halide perovskite materialsappear particularly promising for next-generation solar devices owing to their high power conversion efficiency. The highest efficiencies reported for perovskite solar cells so far have been obtained mainly with methylammonium lead halide materials. Here we combine the promising—owing to its comparatively narrow bandgap—but relatively unstable formamidinium lead iodide (FAPbI3) with methylammonium lead bromide (MAPbBr3) as the light-harvesting unit in a bilayer solar-cell architecture. We investigated phase stability, morphology of the perovskite layer, hysteresis in current–voltage characteristics, and overall performance as a function of chemical composition. Our results show that incorporation of MAPbBr3into FAPbI3stabilizes the perovskite phase of FAPbI3and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination of 100 milliwatts per square centimetre. These findings further emphasize the versatility and performance potentialof inorganic–organic lead halide perovskite materials for photovoltaic applications.
來源出版物:Nature, 2015, 517(7535): 476-480
聯(lián)系郵箱:Seok, SI; seoksi@krict.re.kr
High-efficiency solution-processed perovskite solar cells with millimeter-scale grains
Nie, WY; Tsai, HH; Asadpour, R; et al.
Abstract:State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies approaching 18%, with little cell-to-cell variability. The devices show hysteresis-free photovoltaic response, which had been a fundamental bottleneck for the stable operation of perovskite devices. Characterization and modeling attribute the improved performance to reduced bulk defects and improved charge carrier mobility in large-grain devices. We anticipate that this technique will lead the field toward synthesis of wafer-scale crystalline perovskites, necessary for the fabrication of high-efficiency solar cells, and will be applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.
來源出版物:Science, 2015, 347(6221): 522-525
聯(lián)系郵箱:Mohite, AD; hwang@lanl.gov
Understanding the rate-dependentJ–Vhysteresis, slow time component, and aging in CH3NH3PbI3perovskite solar cells: the role of a compensated electric field
Tress, W; Marinova, N; Moehl, T; et al.
Abstract:In this work we show that the rate-dependent hysteresis seen in current–voltage scans of CH3NH3PbI3perovskite solar cells is related to a slow field-induced process that tends to cancel the electric field in the device at each applied bias voltage. It is attributed to the build-up of space charge close to the contacts, independent of illumination and most likely due to ionic displacement, which is enhanced when the device undergoes aging. This process can also lead to a reduction of the open-circuit voltage or the steady-state photocurrent and does not directly correlate with the development of the hysteresis if it is measured at a fixed voltage sweep rate.
來源出版物:Energy & Environmental Science, 2015, 8(3): 995-1004
聯(lián)系郵箱:Tress, W; wolfgang.tress@epfl.ch
Single-junction polymer solar cells with high efficiency and photovoltage
He, ZC; Xiao, B; Liu, F; et al.
Abstract:Polymer solar cells are an exciting class of nextgeneration photovoltaics, because they hold promise for the realization of mechanically flexible, lightweight, large-area devices that can be fabricated by room- temperature solution processing. High power conversion efficiencies of 10% have already been reported in tandem polymer solar cells. Here, we report that similar efficiencies are achievable in single-junction devices by reducing the tail state density below the conduction band of the electron acceptor in a high-performance photoactive layer made from a newly developed semiconducting polymer with a deepened valence energy level. Control over band tailing is realized through changes in the composition of the active layer and the structure order of the blend, both of which are known to be important factors in cell operation. The approach yields cells with high power conversion efficiencies (9.94% certified) and enhanced photovoltage.
來源出版物:Nature Photonics, 2015, 9(3): 174-179
聯(lián)系郵箱:Wu, HB; hbwu@scut.edu.cn
Interface engineering of highly efficient perovskite solar cells
Zhou, HP; Chen, Q; Li, G; et al.
Abstract:Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.
來源出版物:Science, 2014, 345(6196): 542-546
聯(lián)系郵箱:Yang, Y; yangy@ucla.edu
Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells
Jeon, NJ; Noh, JH; Kim, YC; et al.
Abstract:Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH3NH3Pb(I1?xBrx)3(x= 0.1–0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluenedropcasting leads to extremely uniform and dense perovskite layers via a CH3NH3I–PbI2–DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solutionprocessing in the realization of low-cost and highly efficient perovskite solar cells.
來源出版物:Nature Materials, 2014, 13(9): 897-903
聯(lián)系郵箱:Il Seol, S; seoksi@krict.re.kr
Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques
Liu, DY; Kelly, TL
Abstract:Organic–inorganic hybrid solar cells that combine a mesoporous scaffold, a perovskite light absorber and an organic hole transporter have emerged at the forefront of solution-processable photovoltaic devices; however, they require processing temperatures of up to 500 °C to sinter the mesoporous metal-oxide support. Here, we report the use of a thin film of ZnO nanoparticles as an electron-transport layer in CH3NH3PbI3-based solar cells; in contrast to mesoporous TiO2, the ZnO layer is both substantially thinner and requires no sintering. We took advantage of these facts to prepare flexible solar cells with power-conversion efficiencies in excess of 10%. The use of ZnO also results in improvements to device performance for cells prepared on rigid substrates. Solar cells based on this design exhibit power-conversion efficiencies as high as 15.7% when measured under AM1.5G illumination, which makes them some of the highest-performing perovskite solar cells reported to date.
來源出版物:Nature Photonics, 2014, 8(2): 133-138
聯(lián)系郵箱:Kelly, TL; tim.kelly@usask.ca
Anomalous hysteresis in perovskite solar cells
Snaith, HJ; Abate, A; Ball, JM
Abstract:Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current–voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme. We also demonstrate stabilized power output under working conditions and suggest that this is a useful parameter to present, alongside the current-voltage scan derived power conversion efficiency. We hypothesize three possible origins of the effect and discuss its implications on device efficiency and future research directions. Understanding and resolving the hysteresis is essential for further progress and is likely to lead to a further step improvement in performance.
關(guān)鍵詞:current?voltage curves; hysteresis; perovskite; photovoltaics; solar cell; stability
來源出版物:The Journal of Physical Chemistry Letters, 2014, 5(9): 1511-1515
聯(lián)系郵箱:Snaith, HJ; h.snaith1@physics.ox.ac.uk
Single-junction polymer solar cells exceeding 10% power conversion efficiency
Chen, JD; Cui, CH; Li, YQ; et al.
Abstract:A single-junction polymer solar cell with an efficiency of 10.1% is demonstrated by using deterministic aperiodic nanostructures for broadband light harvesting with optimum charge extraction. The performance enhancement is ascribed to the self-enhanced absorption due to collective effects, including pattern-induced anti-reflection and light scattering, as well as surface plasmonic resonance, together with a minimized recombination probability.
來源出版物:Advanced Materials, 2015, 27(6): 1035-1041
聯(lián)系郵箱:Li, YQ; yqli@suda.edu.cn
編輯:王微
Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers
You, JB; Meng, L; Song TB; et al.
Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOxand n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p–i–n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thuspreventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6?±?1.5%, with an uncertified maximum value of 16.1%.