臧茜茜,陳 鵬,張 逸,黃鳳洪,鄧乾春
(1中國(guó)農(nóng)業(yè)科學(xué)院油料作物研究所,武漢 430062; 2油料油脂加工技術(shù)國(guó)家地方聯(lián)合工程實(shí)驗(yàn)室,武漢 430062;3油料脂質(zhì)化學(xué)與營(yíng)養(yǎng)湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430062; 4農(nóng)業(yè)部油料作物生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,武漢 430062)
輔助降血糖功能食品及其功效成分研究進(jìn)展
臧茜茜1,3,陳 鵬1,3,張 逸1,3,黃鳳洪1,2,3,4*,鄧乾春1,2,3,4*
(1中國(guó)農(nóng)業(yè)科學(xué)院油料作物研究所,武漢 430062;2油料油脂加工技術(shù)國(guó)家地方聯(lián)合工程實(shí)驗(yàn)室,武漢 430062;3油料脂質(zhì)化學(xué)與營(yíng)養(yǎng)湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430062;4農(nóng)業(yè)部油料作物生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,武漢 430062)
就糖尿病的產(chǎn)生機(jī)制、功能食品中使用的降血糖功效成分及其作用機(jī)理進(jìn)行了綜述,以期為輔助降血糖功能食品的開(kāi)發(fā)提供科學(xué)依據(jù)。
輔助降血糖;功能食品;功效成分
2型糖尿病(T2DM)占整個(gè)糖尿病比例的93.7%以上,常導(dǎo)致嚴(yán)重并發(fā)癥[1-3]。本文就高血糖、2型糖尿病的發(fā)病機(jī)制及輔助降血糖功能食品的不同功效成分及作用機(jī)制進(jìn)行了綜述,以期為新型輔助降血糖功能食品的開(kāi)發(fā)提供思路和依據(jù)。
外周組織的胰島素抵抗(IR)是高血糖和T2DM的首要發(fā)病機(jī)制。IR的發(fā)生與脂質(zhì)代謝紊亂、氧化應(yīng)激反應(yīng)和細(xì)胞內(nèi)在機(jī)制障礙密切相關(guān)[4-7]。線粒體功能障礙會(huì)導(dǎo)致細(xì)胞內(nèi)脂質(zhì)積聚,阻礙肌肉和肝臟細(xì)胞的胰島素信號(hào)傳導(dǎo)引起IR[8],而缺乏鎂、鉻等在葡萄糖代謝過(guò)程中具有重要作用的微量元素也可能會(huì)導(dǎo)致IR現(xiàn)象[9-10]。越來(lái)越多的研究表明,胰島β細(xì)胞的異常可能是T2DM發(fā)病的核心環(huán)節(jié)[11]。IR啟動(dòng)了T2DM的發(fā)病歷程,而胰島β細(xì)胞功能障礙導(dǎo)致代償能力下降,從而引發(fā)T2DM。除此以外,近年來(lái)大量研究結(jié)果顯示,腸道菌群失調(diào)會(huì)刺激機(jī)體產(chǎn)生大量的炎癥因子,可能引發(fā)全身的慢性炎癥反應(yīng),繼而產(chǎn)生胰島素抵抗[12]。
我國(guó)傳統(tǒng)中醫(yī)學(xué)認(rèn)為高血糖和糖尿病的主要臨床表現(xiàn)為“消渴”[13]。中醫(yī)對(duì)“消渴”的病機(jī)認(rèn)識(shí)主要以陰虛、燥熱為主[14],兩者貫穿整個(gè)消渴病的發(fā)展。除此之外,古代中醫(yī)認(rèn)為血瘀、脾虛、肝郁、腎陽(yáng)虛和氣虛也是消渴癥之病機(jī)[15]。中醫(yī)認(rèn)為糖尿病的發(fā)生與痰、濕、郁、熱、疲關(guān)系密切,五者交互于機(jī)體則發(fā)病[16]。T2DM中IR可能與燥熱偏盛有一定的聯(lián)系[17],心腎陰虛和陽(yáng)氣虛衰癥存在明顯的IR[18],IR大鼠模型具有痰濁、瘀血和內(nèi)毒互結(jié)的中醫(yī)癥候[19]。除此以外,腎虛、脾虛、肝郁均可能導(dǎo)致腸道菌群失調(diào),進(jìn)而引發(fā)“消渴”癥狀[20]。
截至2016年12月14日,國(guó)家食品藥品監(jiān)督管理總局(CFDA)數(shù)據(jù)查詢結(jié)果顯示,獲得批準(zhǔn)的國(guó)產(chǎn)輔助降血糖保健食品共有316個(gè),使用原料種類共174種。其中中藥類原料85種(表1)。使用頻次最高的前四種原料黃芪、蜂膠和桑葉、葛根針對(duì)消渴癥基本病機(jī)“陰虛為本、燥熱為標(biāo)”,分別從“補(bǔ)氣升陽(yáng)、補(bǔ)氣虛、化濁脂”及“生津止渴、清肺潤(rùn)燥”兩方面出發(fā),進(jìn)行配伍起到輔助降血糖的功能目標(biāo)。其中黃芪和葛根配伍的產(chǎn)品數(shù)量最多為47個(gè),其次為黃芪和桑葉的配伍44個(gè)。除此之外,針對(duì)消渴癥的其他病機(jī)如“血瘀、腎陽(yáng)虛”等,使用頻次較高的原料為銀杏葉、丹參、絞股藍(lán)和五味子。獲批保健食品使用的普通食品、營(yíng)養(yǎng)強(qiáng)化劑、功能性添加劑等原料共89種,其中排列在前10位依次為苦瓜、吡啶甲酸鉻、鉻酵母、木糖醇、維生素E、膳食纖維、茶多酚和葡萄籽提取物。所收集的316種國(guó)產(chǎn)保健食品配方類型中含中藥原料的保健食品有305種,占95.9%,其中154種全部以中藥原料或者中藥提取物原料為配方;151種以中藥配伍和普通食品、營(yíng)養(yǎng)強(qiáng)化劑等其他原料為配方;11種以不含中藥提取物的普通食品或營(yíng)養(yǎng)強(qiáng)化劑為配方。根據(jù)以上數(shù)據(jù)可將已獲批的輔助降血糖保健食品大致分為3種。第一種以全中藥配伍為原料,該類型保健食品以傳統(tǒng)中藥組方或者現(xiàn)代中醫(yī)理論為配伍依據(jù),達(dá)到輔助降血糖的功效。第二種以中藥配伍其他營(yíng)養(yǎng)強(qiáng)化劑或普通食品為原料,該類型保健食品在傳統(tǒng)中藥組方和現(xiàn)代中醫(yī)理論結(jié)合現(xiàn)代營(yíng)養(yǎng)醫(yī)學(xué)配伍依據(jù)的基礎(chǔ)上,添加不同類型的原料來(lái)達(dá)到輔助降血糖的功效。第三種為不含中藥提取物的普通食品或營(yíng)養(yǎng)強(qiáng)化劑的產(chǎn)品,該類型產(chǎn)品以現(xiàn)代藥理研究作為配方依據(jù)來(lái)達(dá)到輔助降血糖的功效。
頻次:在1種保健食品中使用過(guò)記為1次;比例:使用該類原料的保健食品占全部輔助降血糖保健食品的比例。
已獲批的具有輔助降血糖功能食品使用的功效成分共35種,累計(jì)頻次646次,其中使用頻次≥3次的功效成分共13個(gè)。由表2可以看出,總黃酮為使用頻次最高的功效成分,其次為總皂苷和吡啶甲酸鉻/鉻/活性鉻,粗多糖位列第四,葛根素作為黃酮類物質(zhì)也是使用頻次較高的功效成分。
3.1 黃酮類
一些黃酮類化合物具有類胰島素性質(zhì),可以改善胰島素的分泌從而降低血糖,持續(xù)攝入能夠有效降低罹患糖尿病的風(fēng)險(xiǎn)[21]。楊桃提取物芹菜素-6-C-β-l-鹽藻糖苷能夠提高高血糖大鼠的胰島素分泌水平及胰島素敏感性[22]。Kwon等[23]研究表明,桑葉黃酮通過(guò)提高糖尿病小鼠的抗氧化能力,改善胰島素分泌,同時(shí)具有提高肝HK活力等作用。研究顯示,桑葉黃酮類化合物主要有蘆丁、異槲皮素、桑色素和山奈苷。其中山奈苷具有類胰島素性質(zhì),能夠維持血糖穩(wěn)定[24]。一些黃酮類化合物能夠通過(guò)改善IR達(dá)到降低血糖的作用。葛根素可以改善高脂小鼠的胰島素抵抗并且改善脂肪因子的表達(dá)[25],對(duì)糖尿病小鼠的血糖和糖耐量具有一定改善作用[26-27]。不僅如此,另外一些黃酮類化合物能夠通過(guò)調(diào)節(jié)碳水化合物、糖代謝酶類的活性,從而起到降低血糖的作用。山奈酚、槲皮素、楊梅素、蘆丁、兒茶素等通過(guò)抑制α-淀粉酶和α-糖苷酶的活性降低碳水化合物類的降解速度,推遲糖類消化吸收時(shí)間從而達(dá)到降低餐后血糖水平的作用[28-29]。研究表明,桑葉總黃酮通過(guò)抑制蔗糖酶、麥芽糖酶活性,具有顯著的降血糖作用[30]。
頻次:在1種保健食品中使用過(guò)記為1次;比例:使用該類原料的保健食品占全部輔助降血糖保健食品的比例。
3.2 多糖類
植物多糖的降血糖機(jī)制主要表現(xiàn)為:提高外周組織器官對(duì)糖的利用率、抑制升糖激素和促進(jìn)降糖激素分泌的作用、調(diào)節(jié)糖代謝相關(guān)的酶活性、保護(hù)胰島β細(xì)胞、增加胰島素受體或提高其親和力、抑制脂質(zhì)過(guò)氧化等[31-34]。研究證明,山藥多糖可以通過(guò)調(diào)節(jié)血糖濃度和c肽值、刺激胰島素分泌以及改善受損的胰島β細(xì)胞,對(duì)糖尿病起到治療作用[35],還可以通過(guò)顯著提高HK、琥珀酸脫氫酶(SDH)、蘋果酸脫氫酶(MDH)活性起到明顯的降血糖作用[36]。桑葉多糖能抑制糖尿病小鼠空腹血糖值升高,降低糖化血清蛋白,促進(jìn)血清胰島素、肝勻漿蛋白水平及HK的分泌和肝糖元的合成,提高抗氧化能力,使胰島素分泌增加,從而達(dá)到調(diào)節(jié)糖代謝、降低血糖、改善糖尿病癥狀的作用[37]。枸杞多糖能夠通過(guò)抑制腫瘤壞死因子(TNF-α)水平起到緩解T2DM患者的胰島素抵抗,從而降低患者血糖水平[38]。南瓜粗多糖具有抑制α-糖苷酶的作用,而且能夠提高糖尿病大鼠的血清胰島素水平從而降低血糖[39]。W Zhang等[40]研究表明,氧化應(yīng)激壓力過(guò)高可能導(dǎo)致胰島素抵抗,靈芝多糖能夠緩解氧化應(yīng)激壓力進(jìn)而減輕胰島素抵抗。
3.3 皂苷類
皂苷分為三萜皂苷和甾體皂苷,Wu等[41]研究表明,人參皂甙Rb1能夠上調(diào)磷酸化蛋白激酶B(Akt)的表達(dá),通過(guò)激活磷脂酰肌醇(-3)激酶(PI3 K)/Akt通路從而對(duì)糖尿病大鼠的心肌起到保護(hù)作用。Tao等[42]研究顯示,人參皂苷Rb3能夠顯著降低糖尿病小鼠的血脂濃度和提高胰島素含量,其中劑量為30 mg/kg的人參皂苷Rb3具有更好的療效。Quan等[43]研究結(jié)果表明,人參皂苷Re能夠顯著增加胰高血糖素樣肽-1的分泌及血漿中胰島素的含量,降低了血糖和攝食量,改善了糖尿病癥狀??喙峡傇碥站哂薪档脱呛痛龠M(jìn)抗氧化能力的恢復(fù)的作用,其降糖機(jī)制可能為修復(fù)胰島β細(xì)胞[44-45]。綜上所述,皂苷類物質(zhì)能夠通過(guò)改善胰島素抵抗、提高胰島素敏感指數(shù)、改善胰島素分泌、修復(fù)胰島β細(xì)胞、降低空腹血糖等機(jī)制防治糖尿病。
3.4 ω-3 PUFAs
膳食中增加ω-3 多不飽和脂肪酸(PUFA)能夠降低亞洲人群2型糖尿病的發(fā)病風(fēng)險(xiǎn)[46-48],亞麻籽油含有豐富的ω-3 PUFAα-亞麻酸,能夠提高外周組織對(duì)胰島素的敏感性,降低胰島素對(duì)機(jī)體內(nèi)脂肪的過(guò)度水解,可能是通過(guò)促進(jìn)腸道分泌胰高血糖素樣肽-1(GLP-1)實(shí)現(xiàn)的[49-50]。不僅如此,亞麻籽油能夠調(diào)節(jié)脂類代謝,降低血脂,降低酸、酮中毒的機(jī)率,從而對(duì)人體神經(jīng)組織起到保護(hù)作用。不飽和脂肪酸γ-亞麻酸(GLA)在體內(nèi)能夠被代謝形成二高γ-亞麻酸(DGLA)或花生四烯酸(AA),轉(zhuǎn)化為前列腺素E1(PGE1)和白三烯(LTs),其活性物質(zhì)具有降血糖等作用[51-52]。
3.5 膳食纖維類
研究表明,膳食纖維主要通過(guò)提高胰島素敏感水平、減少糖吸收等機(jī)制降低血糖及罹患糖尿病的風(fēng)險(xiǎn)[53-54]。β-葡聚糖能夠改善T2DM小鼠的糖耐量,降低血清胰島素水平[55]。Abbasi等[55]研究表明,燕麥-β-葡聚糖能夠抑制腸上皮細(xì)胞(IEC-6)中鈉-葡萄糖協(xié)同轉(zhuǎn)運(yùn)蛋白1 (SGLT1)和葡萄糖轉(zhuǎn)運(yùn)蛋白2(GLUT 2)的活性,從而抑制其對(duì)葡萄糖的吸收、降低進(jìn)餐后的血糖水平。Post等[56]研究表明,攝入膳食纖維能顯著降低餐后血糖水平及糖化血紅蛋白水平,進(jìn)一步說(shuō)明膳食纖維對(duì)于T2DM具有一定的防治作用。研究顯示,糖尿病人在連續(xù)3~8w服用2.5~3.5 g/d 燕麥-β-葡聚糖后,其空腹血糖水平和糖化血紅蛋白水平顯著降低[57]。
3.6 礦物質(zhì)類
鉻、鋅、鎂、鈣、釩等礦物質(zhì)類微量元素也具有降血糖的功效。Cr3+離子是葡萄糖耐量因子(GTF)的重要組成部分。GTF 能增加細(xì)胞表面胰島素受體的數(shù)量或促進(jìn)胰島素與特定受體的結(jié)合,從而提高組織細(xì)胞對(duì)葡萄糖的利用[58]。為37名2型糖尿病患者補(bǔ)充少量的Cr3+(啤酒酵母1.6 g/d)導(dǎo)致糖化血紅蛋白下降了17%、高密度脂蛋白水平增加了36%[59]。合理補(bǔ)充鋅劑對(duì)于控制血糖、預(yù)防和治療高血糖、糖尿病具有重要作用[60]。Mao等[61]研究結(jié)果表明,硒對(duì)T2DM患者的血糖水平改善有一定療效作用。
綜上所述,目前輔助降血糖保健食品的功效成分主要有以下幾個(gè)大類:黃酮類成分,能夠促進(jìn)胰島素分泌、調(diào)節(jié)肝細(xì)胞糖代謝、改善高血糖及胰島素抵抗,減少胰島β細(xì)胞凋亡。多糖類成分可以改善胰島細(xì)胞形態(tài)和功能,促進(jìn)胰島素分泌,提高外周組織和靶器官對(duì)糖的利用率,改變糖代謝酶系活性,提高免疫,清除自由基,降低血糖。皂苷類成分通過(guò)降低血糖、改善肝功能、促進(jìn)胰島素分泌清除自由基及抗氧化來(lái)防治糖尿病。增加膳食中ω-3 PUFAs可增加外周胰島素的敏感性,改善胰島素抵抗。膳食纖維類成分能夠延長(zhǎng)胃排空時(shí)間,抑制小腸內(nèi)的葡萄糖轉(zhuǎn)化進(jìn)而抑制血糖升高。礦物質(zhì)類成分通過(guò)補(bǔ)充人體必需的微量元素從而達(dá)到調(diào)節(jié)脂質(zhì)代謝、改善糖耐量的作用。
目前市場(chǎng)上大部分輔助降血糖功能食品配方仍缺乏明確的降血糖機(jī)制及配伍依據(jù),存在原料配伍重復(fù)率高、保健功能不明顯,以及中藥原料的中藥理論、藥效組分理論、使用劑量依據(jù)不足等問(wèn)題。針對(duì)以上存在的問(wèn)題,首先應(yīng)根據(jù)目前糖尿病高血糖的中西醫(yī)理論相互驗(yàn)證的發(fā)病機(jī)制研究結(jié)果,選擇安全、有效的保健食品功能原料,其次應(yīng)明確不同原料的降血糖功效成分、降糖機(jī)制以及不同原料的配伍功效,選擇安全、有效的添加劑量,只有這樣才能開(kāi)發(fā)出更加安全、有效、創(chuàng)新的輔助降血糖功能保健食品,同時(shí)滿足越來(lái)越多具有潛在糖尿病威脅的高血糖人群的健康需求?!?/p>
[1]曼音.糖尿病學(xué)[M].上海科學(xué)技術(shù)出版社,2003.
[2]馬學(xué)毅.現(xiàn)代糖尿病診斷治療學(xué)[M].2007:423-432.
[3]錢榮立.關(guān)于糖尿病的新診斷標(biāo)準(zhǔn)與分型[J]. 中國(guó)糖尿病雜志,2000,8(1):5-6.
[4]廖二元,莫朝暉.內(nèi)分泌學(xué)[M].北京:人民衛(wèi)生出版社,2007.
[5]FAO W.Human Vitamin and Mineral Requirements.Report of a Joint FAO/WHO Expert Consultation,Bangkok,Thailand [J]. Food and Nutrition Division,F(xiàn)AO Rome,2002.
[6]Fridlyand L E,Philipson L H.Reactive species and early manifestation of insulin resistance in type 2 diabetes [J]. Diabetes Obesity & Metabolism,2006,8(2):136-145.
[7]Goldstein B J,et al.Role of Insulin-Induced Reactive Oxygen Species in the Insulin Signaling Pathway [J]. Antioxidants & Redox Signaling,2005,7(8):1021-1031.
[8]Petersen K F,et al.Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes [J]. New England Journal of Medicine,2004,350(350):664-671.
[9]Kleefstra N,Bilo H J,Bakker S J,et al.Chromium and insulin resistance[J]. Nederlands Tijdschrift Voor Geneeskunde,2004,148(5):217-220.
[10]Takaya J,Higashino H,Kobayashi Y.Intracellular magnesium and insulin resistance [J]. Magnesium Research,2004,17(2):126-136.
[11]楊進(jìn),魏蕊,洪天配.2型糖尿病發(fā)病機(jī)制的新視角:胰島β細(xì)胞去分化[J]. 中國(guó)糖尿病雜志,2014,6(9):692-695.
[12]Shi H,et al.TLR4 links innate immunity and fatty acid-induced insulin resistance[J]. The Journal of Clinical Investigation,2006,116(11):3015-3025.
[13]項(xiàng)磊,劉菊妍.金元四大家論治消渴思想探析[J]. 江蘇中醫(yī)藥,2009,41(8):7-8.
[14]竇攀,王學(xué)美.糖尿病前期中醫(yī)病因病機(jī)和證候研究近況[J]. 環(huán)球中醫(yī)藥,2010,3(4):302-306.
[15]馬艷春,周波,張立凈,等.中藥治療糖尿病腎病的作用機(jī)制研究進(jìn)展[J]. 中醫(yī)藥學(xué)報(bào),2009,37(6):23-27.
[16]趙展榮,黃飛,閆曉光,等.2型糖尿病病程與中醫(yī)證候相關(guān)性研究[J]. 陜西中醫(yī),2015,12(6):667-669.
[17]葉程程,黃琦,王東.代謝綜合征中醫(yī)證候分析及與胰島素抵抗相關(guān)性研究[J]. 中華中醫(yī)藥學(xué)刊,2011,1(8):1873-1875.
[18]李思霖,郭力,常健菲,等.中醫(yī)對(duì)胰島素抵抗的認(rèn)識(shí)及實(shí)驗(yàn)研究[J]. 吉林中醫(yī)藥,2011,31(12):1172-1175.
[19]徐江紅,朱立春,吳中秋,等.2型糖尿病胰島素抵抗的中醫(yī)證型分布規(guī)律[J]. 臨床薈萃,2013,28(2):201-203.
[20]李吉武,等.2型糖尿病的中醫(yī)病機(jī)與腸道菌群的研究進(jìn)展[J]. 世界中西醫(yī)結(jié)合雜志,2016(4):585-589.
[21]Wedick N M,et al.Dietary flavonoid intakes and risk of type 2 diabetes in US men and women [J]. American Journal of Clinical Nutrition,2012,95(4):925-933.
[22]Cazarolli L H,F(xiàn)olador P,Moresco H H,et al.Stimulatory effect of apigenin-6-C-beta-L-fucopyranoside on insulin secretion and glycogen synthesis [J]. European Journal of Medicinal Chemistry,2009,44(11):4668-4673.
[23]Kwon T-O,Choi J-W,Lee H-S,et al.Anti-diabetic effects of Mori folium extract on high-fat diet and streptozotocin-induced type II diabetes mellitus in mice [J]. The Korea Journal of Herbology,2015,30(1):1-9.
[24]陳雨微,徐茂義,趙豐權(quán),等.桑葉黃酮類化合物提取工藝及其降血糖作用研究進(jìn)展[J]. 中華中醫(yī)藥學(xué)刊,2012,30(9):2084-2088.
[25]Cazarolli L H,,et al.Insulin signaling:a potential signaling pathway for the stimulatory effect of kaempferitrin on glucose uptake in skeletal muscle [J]. European Journal of Pharmacology,2013,712(1):1-7.
[26]Zhang W,et al.Puerarin improves insulin resistance and modulates adipokine expression in rats fed a high-fat diet [J]. European Journal of Pharmacology,2010,649(1):398-402.
[27]She S,et al.Effects of puerarin in STZ-induced diabetic rats by oxidative stress and the TGF-β1/Smad2 pathway [J]. Food & Function,2014,5(5):944-950.
[28]Han P,et al.Puerarin suppresses high glucose-induced MCP-1 expression via modulating histone methylation in cultured endothelial cells [J]. Life Sciences,2015,130(1):103-107.
[29]Oboh G,et al.Comparative effect of quercetin and rutin on α-amylase,α-glucosidase,and some pro-oxidant-induced lipid peroxidation in rat pancreas [J]. Comparative Clinical Pathology,2015,24(5):1103-1110.
[30]Figueiredo-González M,,et al.α-Glucosidase and α-amylase inhibitors from Myrcia spp.:a stronger alternative to acarbose? [J]. Journal of Pharmaceutical and Biomedical Analysis,2016,118(1):322-327.
[31]Wang Z,Wang J,Chan P.Treating type 2 diabetes mellitus with traditional Chinese and Indian medicinal herbs [J]. Evidence-Based Complementary and Alternative Medicine,2013,20(1):22-27.
[32]Yan J-K,Wang W-Q,Wu J-Y.Recent advances in Cordyceps sinensis polysaccharides:Mycelial fermentation,isolation,structure,and bioactivities:A review [J]. Journal of Functional Foods,2014,6(1):33-47.
[33]Ma X,et al.A polysaccharide from Grifola frondosa relieves insulin resistance of HepG2 cell by Akt-GSK-3 pathway [J]. Glycoconjugate Journal,2014,31(5):355-363.
[34]Zhang Y,et al.Anti-diabetic effect of mulberry leaf polysaccharide by inhibiting pancreatic islet cell apoptosis and ameliorating insulin secretory capacity in diabetic rats [J]. International Immunopharmacology,2014,22(1):248-257.
[35]Go H-K,Rahman M M,Kim G-B,et al.Antidiabetic effects of yam (Dioscorea batatas)and its active constituent,allantoin,in a rat model of streptozotocin-induced diabetes [J]. Nutrients,2015,7(10):8532-8544.
[36]Liang X,Huang Y,Chen J,et al.Antioxidant Activity of Polysaccharides in Yam Bulbils and Their Hypoglycemic Effect in Diabetic Mice [J]. Agricultural Science & Technology,2015,16(7):1332-1332.
[37]Ren C,Zhang Y,Cui W,et al.A polysaccharide extract of mulberry leaf ameliorates hepatic glucose metabolism and insulin signaling in rats with type 2 diabetes induced by high fat-diet and streptozotocin [J]. International Journal of Biological macromolecules,2015,72(2):951-959.
[38]Zhu J,et al.Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lycium barbarum L [J]. Carbohydrate Polymers,2013,98(1):8-16.
[39]Song Y,Zhang Y,Zhou T,et al.A preliminary study of monosaccharide composition and α‐glucosidase inhibitory effect of polysaccharides from pumpkin (Cucurbita moschata)fruit [J]. International Journal of Food Science & Technology,2012,47(2):357-361.
[40]Zhang W,Zheng L,Zhang Z,et al.Protective effect of a water-soluble polysaccharide from Salvia miltiorrhiza Bunge on insulin resistance in rats [J]. Carbohydrate Polymers,2012,89(3):890-898.
[41]Wu Y,Xia Z-Y,Dou J,et al.Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats [J]. Molecular Biology reports,2011,38(7):4327-4335.
[42]Tao Bu Q,Yun Zhang W,Cheng Chen Q,et al.Anti-diabetic Effect of Ginsenoside Rb3 in Alloxan-induced Diabetic Mice [J]. Medicinal Chemistry,2012,8(5):934-941.
[43]Quan H-Y,Yuan H-D,Jung M S,et al.Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice [J]. International Journal of Molecular Medicine,2012,29(1):73-73.
[44]Joseph B,Jini D.Antidiabetic effects of Momordica charantia (bitter melon)and its medicinal potency [J]. Asian Pacific Journal of Tropical Disease,2013,3(2):93-102.
[45]Keller A C,et al.Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro [J]. Phytomedicine,2011,19(1):32-37.
[46]Villegas R,et al.Fish,shellfish,and long-chain n? 3 fatty acid consumption and risk of incident type 2 diabetes in middle-aged Chinese men and women [J]. The American Journal of Clinical Nutrition,2011,94(2):543-551.
[47]Nanri A,Mizoue T,Noda M,et al.Fish intake and type 2 diabetes in Japanese men and women:the Japan Public Health Center-based Prospective Study [J]. The American Journal of Clinical Nutrition,2011:ajcn.012252.
[48]Brostow D P,Odegaard A O,Koh W-P,et al.Omega-3 fatty acids and incident type 2 diabetes:the Singapore Chinese Health Study [J]. The American journal of clinical nutrition,2011,94(2):520-526.
[49]Guimar?es R D C A,Macedo M L R,Munhoz C L,et al.Sesame and flaxseed oil:nutritional quality and effects on serum lipids and glucose in rats [J]. Food Science and Technology (Campinas),2013,33(1):209-217.
[50]Investigators O T.n-3 Fatty acids and cardiovascular outcomes in patients with dysglycemia [J]. N Engl J Med,2012,2012(367):309-318.
[51]Omran O M.Histopathological study of evening primrose oil effects on experimental diabetic neuropathy [J]. Ultrastructural pathology,2012,36(4):222-227.
[52]Kim D-H,et al.Gamma linolenic acid exerts anti-inflammatory and anti-fibrotic effects in diabetic nephropathy [J]. Yonsei medical journal,2012,53(6):1165-1175.
[53]Yao B,et al.Dietary fiber intake and risk of type 2 diabetes:a dose-response analysis of prospective studies [J]. European journal of epidemiology,2014,29(2):79-88.
[54]Raninen K,et al.Dietary fiber type reflects physiological functionality:comparison of grain fiber,inulin,and polydextrose [J]. Nutrition reviews,2011,69(1):9-21.
[55]Abbasi N N,et al.Oat β-glucan depresses SGLT1-and GLUT2-mediated glucose transport in intestinal epithelial cells (IEC-6)[J]. Nutrition Research,2016,36(6):541-552.
[56]Post R E,et al.Dietary fiber for the treatment of type 2 diabetes mellitus:a meta-analysis [J]. The Journal of the American Board of Family Medicine,2012,25(1):16-23.
[57]Zheng J,Shen N,Wang S,et al.Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet [J]. Food & nutrition research,2013,57.
[58]Sahin K,Tuzcu M,Orhan C,et al.Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin [J]. British Journal of Nutrition,2013,110(2):197-205.
[59]Racek J,Sindberg C,Moesgaard S,et al.Effect of chromium-enriched yeast on fasting plasma glucose,glycated haemoglobin and serum lipid levels in patients with type 2 diabetes mellitus treated with insulin [J]. Biological trace element research,2013,155(1):1-4.
[60]Chimienti F.Zinc,pancreatic islet cell function and diabetes:new insights into an old story [J]. Nutrition research reviews,2013,26(01):1-11.
[61]Mao S,et al.S.Selenium supplementation and the risk of type 2 diabetes mellitus:a meta-analysis of randomized controlled trials [J]. Endocrine,2014,47(3):758-763.
(責(zé)任編輯 李婷婷)
Development of Hyperglycemic Functional Foods and Its Functional Components
ZANG Xi-xi1,3,CHEN Peng1,3,ZHANG Yi1,3,HUANG Feng-hong1,2,3,4*,DENG Qian-chun1,2,3,4*
(1Oil Crops Research Institute,Chinese Academy of Agricultural Sciences,Wuhan 430062,China;2Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory,Wuhan 430062,China;3Hubei Key Laboratory of Lipid Chemistry and Nutrition,Wuhan 430062,China;4Key Laboratory of Biology and Genetic Improvement of Oil Crops,Ministry of Agriculture,Wuhan 430062,China;)
The pathology of diabetes mellitus,the main functional components of hypoglycemic functional and its mechanisms of antidiabetics were reviewed in order to assist the research and development of the hyperglycemic functional foods.
hyperglycemic;functional food;functional component
國(guó)家自然科學(xué)基金(項(xiàng)目編號(hào):31371766);中國(guó)農(nóng)業(yè)科學(xué)院油料作物研究所所長(zhǎng)基金(項(xiàng)目編號(hào):1610172014006);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(項(xiàng)目編號(hào):CAAS-ASTIP-2013-OCRI);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系 (項(xiàng)目編號(hào):CARS-17)。
臧茜茜(1988— ),女,碩士,研究方向:功能性食品研究與開(kāi)發(fā)。
*共同通信作者:黃鳳洪(1965— ),男,博士,研究員,研究方向:糧油加工利用;鄧乾春(1979— ),男,博士,副研究員,研究方向:脂質(zhì)化學(xué)與營(yíng)養(yǎng)。