孔婷婷,張穎萍,張亞剛,周安寧
(西安科技大學(xué) 化學(xué)與化工學(xué)院, 西安 710054)
鋰鋁基類水滑石的制備及其光催化性能表征*
孔婷婷,張穎萍,張亞剛,周安寧
(西安科技大學(xué) 化學(xué)與化工學(xué)院, 西安 710054)
CO2作為溫室氣體的主要成分,其捕集與光催化利用已成為減排的主要手段。高效節(jié)能的CO2吸附劑和光催化劑的制備成為近年來(lái)研究的熱點(diǎn)。本文采用共沉淀法,制備了一系列類水滑石Li/Al-LDHs(Li/Al- layered double hydroxides)催化劑。通過(guò)原子吸收光譜(AAS)、X射線衍射(XRD)、掃描電鏡(SEM)、熱重分析(TG)、紫外可見(jiàn)分光光度計(jì)(UV)等技術(shù)對(duì)樣品進(jìn)行表征??疾炝瞬煌苽錀l件(pH值、水浴時(shí)間)及Ti4+的添加對(duì)類水滑石的結(jié)構(gòu)、形貌及CO2光催化性能的影響。結(jié)果表明,pH值在7~8,水浴時(shí)間為36 h時(shí)的Li3Al1-LDHs結(jié)晶度最好。不同摩爾比的Li/Al-LDHs均具有光催化反應(yīng)活性;Ti1Li3Al1-LDHs的光催化性能較好,CH4產(chǎn)率較高。
CO2; 光催化; 類水滑石; Li/Al-LDHs; Ti4+; 甲烷
類水滑石,亦被稱為層狀雙金屬氫氧化物(LDHs,layered double hydroxides),因其陽(yáng)離子可替代性及陰離子可交換性,在吸附劑、催化劑的制備等諸多方面應(yīng)用廣泛[1-4]。Walspurger等[5-8]對(duì)Mg基LDHs的CO2捕集性能進(jìn)行了研究,發(fā)現(xiàn)在常壓、中溫條件下,其CO2吸附效果最好。Ye等[9]采用共沉淀法合成了不同摩爾比的Cu/Al-LDHs,并研究了其CO2吸附性能。賀學(xué)智等制備了一系列多金屬類水滑石,并研究其光催化轉(zhuǎn)化CO2-H2O的活性。發(fā)現(xiàn),不同元素組合對(duì)CO2光催化產(chǎn)物的選擇性不同,Ti4+的存在使反應(yīng)產(chǎn)物更多的為CO和CH4。近期研究發(fā)現(xiàn),在LDHs中引入特定的功能離子,可強(qiáng)化其特殊的“記憶效應(yīng)”,較好地實(shí)現(xiàn)材料的回收再利用,達(dá)到節(jié)能環(huán)保的目的[10]。因此,其成為CO2光催化還原中的重要選擇對(duì)象,在環(huán)境治理方面顯示出廣闊的應(yīng)用前景[11]。
因此,本文采用共沉淀法制備了一系列鋰鋁基類水滑石,考察了制備條件對(duì)鋰鋁基類水滑石結(jié)構(gòu)和光催化性能的影響,以及鈦元素的添加對(duì)類水滑石性能的影響,為后期復(fù)合材料的制備打下基礎(chǔ)。
1.1 樣品的制備
鋰鋁基類采用共沉淀法[17]進(jìn)行制備,具體制備方法如下:
用同樣的方法制備Li/Al摩爾比為1∶2、2∶1的水滑石樣品,記為L(zhǎng)i1Al2-LDHs、Li2Al1-LDHs。
1.2 樣品的表征
樣品的金屬元素比例的檢測(cè)均采用德國(guó)耶拿公司的原子吸收光譜儀 AAS Various 6測(cè)定。樣品的晶體結(jié)構(gòu)均采用日本理學(xué)公司的臺(tái)式X射線衍射MiniFlex600測(cè)定,測(cè)定的條件為:Cu靶Kα輻射,管電壓30.0 kV,管電流10.0 mA,步程0.02,掃描范圍3~80°。樣品的微觀形貌采用日本日立冷場(chǎng)發(fā)射SU8010樣品的TG-DSC 分析采用瑞士梅特勒-托利多公司生產(chǎn)的熱分析儀測(cè)定,測(cè)試時(shí)連續(xù)通入氮?dú)?,測(cè)試的溫度范圍為35~700 ℃,升溫速率為10 ℃/min。樣品的紫外-可見(jiàn)漫反射光譜采用美國(guó)Perkin Elmer Lambda 950型紫外可見(jiàn)分光光度計(jì)測(cè)定,將BaSO4作為參比標(biāo)準(zhǔn)白板,進(jìn)而得到紫外-可見(jiàn)漫反射光譜。
1.3 (Ti)/Li/Al-LDHs光催化還原CO2的實(shí)驗(yàn)
圖1為光催化還原 CO2的石英固定床反應(yīng)器及在線檢測(cè)系統(tǒng)。在連續(xù)進(jìn)樣式活性評(píng)價(jià)系統(tǒng)中測(cè)試所有的樣品光催化轉(zhuǎn)化CO2-H2O(g)的活性。將1.0 g催化劑均勻平鋪在石英管中間部位,打開(kāi)水汽發(fā)生器,溫度上升至設(shè)定溫度60 ℃后,打開(kāi)CO2氣瓶及流量控制器,流量為80 mL/min,連續(xù)通入CO2氣體10 min以排出管道內(nèi)空氣。在紫外光(光源采用河北旭普瑞電光源制造有限公司生產(chǎn)的型號(hào)為T(mén)8UVC,功率為30 W,波長(zhǎng)為325 nm紫外燈)照射下進(jìn)行CO2光催化還原,還原后的混合氣體由上海靈華儀器有限公司制造的GC9890型氣相色譜儀進(jìn)行在線定量分析。
圖1 光催化還原CO2的裝置圖
Fig 1 Schematic drawing of the apparatus for CO2photoreduction
2.1 XRD分析
類水滑石的結(jié)構(gòu)與性能與其制備方法、原料及其配比、體系酸堿度、晶化時(shí)間等有關(guān),理想的類水滑石制備方法應(yīng)滿足制備方法簡(jiǎn)單、結(jié)晶度好等特點(diǎn)。圖2、3和4為不制備條件下的(Ti)/Li/Al-LDHs的XRD譜圖。由XRD譜圖可知,所有樣品均呈現(xiàn)類水滑石的等晶面衍射峰,為典型的LDHs層狀結(jié)構(gòu)特征衍射峰。其中,Li/Al-LDHs在11.88,23.46,35.58,47.10,63.03和64.74°附近出現(xiàn)該水滑石(003)、(006)、(112)、(118)、(300)、(303)等晶面有特征衍射峰;在(006)晶面有雙峰出現(xiàn),與文獻(xiàn)[18]中報(bào)道的Li/Al-LDHs的XRD譜圖類似,說(shuō)明層間出現(xiàn)一價(jià)Li+電荷。這是因?yàn)長(zhǎng)i+半徑與Mg2+相近,易于替代Mg2+、Al3+形成水滑石陽(yáng)離子層,但其電荷量小,進(jìn)入層板后由于電荷密度不均勻而使晶胞結(jié)構(gòu)產(chǎn)生變形,在(006)晶面處出現(xiàn)峰的分裂[19]。
2.1.1 金屬元素變化對(duì)Li/Al-LDHs結(jié)構(gòu)的影響
圖2為不同物質(zhì)量比的Ti4+、Li+、Al3+的(Ti)/Li/Al-LDHs的XRD圖譜。
圖2 不同物質(zhì)量比的Ti4+、Li+、Al3+的(Ti)/Li/Al-LDHs XRD圖譜
Fig 2 XRD patterns of (Ti)/Li/Al-LDHs with different Ti4+、Li+、Al3+mole ratio
比較圖2(a)和(d)發(fā)現(xiàn),與Li3Al1-LDHs相比,Ti1Li3Al1-LDHs衍射峰寬且峰型彌散,說(shuō)明Ti元素的添加使樣品結(jié)構(gòu)發(fā)生了改變,結(jié)晶度變小。這是因?yàn)樘砑覶i4+會(huì)使層間產(chǎn)生多于的正電荷,使層板間產(chǎn)生排斥,導(dǎo)致結(jié)晶度下降,八面體結(jié)構(gòu)畸變[20]。
進(jìn)一步比較圖2(b)和(d)可以看出,隨著Al3+含量的下降和Li+含量的增加,Li/Al-LDHs的特征衍射峰逐漸變?nèi)?,雜峰變多,結(jié)晶度下降。這說(shuō)明由一價(jià)鋰離子取代二價(jià)的鋅、鎂離子,層板間電荷量減小,電荷密度不均勻,隨著電荷密度的減小,二價(jià)和三價(jià)陽(yáng)離子的比例失調(diào),導(dǎo)致晶胞結(jié)構(gòu)變形,此時(shí)的雜質(zhì)主要為L(zhǎng)iO.H2O[21]。
2.1.2 合成條件對(duì)Li/Al-LDHs結(jié)構(gòu)的影響
圖3為L(zhǎng)i3Al1-LDHs分別在pH值在7~8、8~9、9~10、10~11時(shí)的X 射線衍射圖譜。
圖3 不同pH值Li3Al1-LDHs的XRD
Fig 3 The XRD patterns of Li3Al1-LDHs in different pH
從圖中可以看出,不同pH值條件下合成的Li3Al1-LDHs均顯示出水滑石的特征衍射峰(003)、(006)、(009)、(105)、(110)等。比較圖3(a)-(d)發(fā)現(xiàn),隨著pH值的不斷增大,水滑石的衍射峰逐漸變寬,峰形不再尖銳,說(shuō)明Li3Al1-LDHs的結(jié)晶度逐漸下降。
圖4中顯示了Li3Al1-LDHs在不同水浴時(shí)間的X 射線衍射圖譜。從圖中可以看出,隨著水浴時(shí)間的延長(zhǎng),水滑石的特征衍射峰逐漸尖銳、規(guī)整,半峰寬先減小后增大。在水浴時(shí)間為36 h時(shí),Li3Al1-LDHs的層間距較大,d值更符合d(003)=2d(006)=3d(009)的特征,表明在36 h時(shí)水滑石結(jié)晶度最好,層板結(jié)構(gòu)最規(guī)整。
圖4 不同水浴時(shí)間Li3Al1-LDHs的XRD
Fig 4 The XRD patterns of Li3Al1-LDHs on different water bath time
2.2 SEM分析
圖5分別為L(zhǎng)i3Al1-LDHs和Ti1Li3Al1-LDHs的SEM照片。由圖可以知,所有樣品的類水滑石層片結(jié)構(gòu)明顯,圖5(a)、(b)中的Li3Al1-LDHs為六邊形片狀結(jié)構(gòu)。由圖5(c)和(d)可知,添加Ti元素后,Ti1Li3-Al1-LDHs樣品發(fā)生了團(tuán)聚,晶體結(jié)構(gòu)發(fā)生改變,六邊形的層片結(jié)構(gòu)變形,與圖2中XRD的分析結(jié)果一致。
圖5 Li3Al1-LDHs與Ti1Li3Al1-LDHs的SEM檢測(cè)圖
Fig 5 SEM images of Li3Al1-LDHs and Ti1Li3Al1-LDHs sample
2.3 TG分析
圖6 (Ti)/Li/Al-LDHs的TG與DTG檢測(cè)圖
Fig 6 TG and DTG analysis of (Ti)/Li/Al-LDHs sample
2.4 UV分析
圖7為L(zhǎng)i/Al-LDHs及Ti1Li3Al1-LDHs類水滑石樣品的UV-vis漫反射吸收光譜。由圖7可知,所制備的類水滑石均呈現(xiàn)響應(yīng)紫外光的半導(dǎo)體吸收特性,可以參與CO2光催化反應(yīng)。圖中7(a)-(d)的切線分別落在392、370、380和386 nm附近的位置,對(duì)應(yīng)的半導(dǎo)體帶隙分別為3.16、3.35、3.26和3.21 eV。比較圖7(b)-(d)可以發(fā)現(xiàn),隨著Li/Al-LDHs中Li+含量的下降和Al3+含量的上升,對(duì)應(yīng)的半導(dǎo)體帶隙逐漸變窄,價(jià)帶頂?shù)碾娮痈菀总S遷到導(dǎo)帶底成為自由電子,同時(shí)在價(jià)帶頂形成空穴,電導(dǎo)率增高。這是由于Al3+含量的增加,使類水滑石層板間的電荷密度增加,有利于光催化反應(yīng)的進(jìn)行,這與文獻(xiàn)中[23]報(bào)導(dǎo)一致。從圖7(a)中Ti1Li3Al1-LDHs的分析結(jié)果來(lái)看,Ti元素的添加,使紫外-漫反射吸收光譜吸收邊紅移更明顯,進(jìn)一步向可見(jiàn)光區(qū)偏移。因此,理論上Ti元素的添加將會(huì)進(jìn)一步提高鋰鋁基類水滑石的光催化效率。
圖7 (Ti)/Li/Al-LDHs的UV-Vis圖
2.5 (Ti)/Li/Al-LDHs光催化活性的探討
由圖8中可以看出,所有樣品的CH4產(chǎn)率隨反應(yīng)時(shí)間的增加而上升,進(jìn)行到3.5 h后CH4產(chǎn)率基本穩(wěn)定。這表明該反應(yīng)中,充足的水蒸氣和充足的光照可以促進(jìn)CO2光催化還原反應(yīng)的進(jìn)行,H2O是光催化反應(yīng)中唯一的氫源,光催化激發(fā)后產(chǎn)生的光生電子與H2O和CO2充分的碰撞和結(jié)合,產(chǎn)生·OH和·CO2-兩種中間態(tài)物質(zhì),促進(jìn)了甲烷的選擇性生成[24]。比較圖8(a)-(d)發(fā)現(xiàn),隨著Li/Al-LDHs中Li+含量的下降和Al3+含量的上升,CH4產(chǎn)率增加,類水滑石的光催化活性增加。其中,圖8(a)中Ti1Li3Al1-LDHs的CH4產(chǎn)率最高為1.30 mmol/g,而Li3Al1-LDHs的CH4產(chǎn)率為0.74 mmol/g,這說(shuō)明Ti元素是一種潛在的光催化元素,Ti4+的添加可以提高類水滑石的光催化性能[25]。
圖8結(jié)合圖2、6和7分析發(fā)現(xiàn),鋰鋁基類水滑石具有層狀結(jié)構(gòu)半導(dǎo)體特性,其光催化還原CO2的反應(yīng)與Cu/Fe/Al-LDHs的光催化反應(yīng)原理類似[26],但CH4產(chǎn)率比Cu/Fe/Al-LDHs增加。該反應(yīng)過(guò)程主要是通過(guò)光催化分解H2O獲得·H,CO2結(jié)合光生電子生成·CO2-(CO2-為可以改變CO2的電子親和性亞穩(wěn)定態(tài)物質(zhì)),·CO2-再通過(guò)與·H的多步反應(yīng)生成CH4,整個(gè)過(guò)程需要8和H+及8個(gè)e-。因此,對(duì)中間產(chǎn)物·H和·CO2-進(jìn)行調(diào)控,抑制逆反應(yīng)的發(fā)生,減少空穴和電子復(fù)合的機(jī)率是該反應(yīng)的關(guān)鍵。
圖8 不同物質(zhì)量比的Ti4+、Li+、Al3+的(Ti)/Li/Al-LDHs的CH4產(chǎn)率
Fig 8 Yields of CH4for (Ti)/Li/Al-LDHs with different Ti4+,Li+、Al3+mole ratio
鋰鋁基類水滑石為典型的近似六邊形的層狀結(jié)構(gòu)半導(dǎo)體材料,最佳合成條件為pH值為7~8,水浴時(shí)間為36 h。在鋰鋁基類水滑石光催化劑存在下,CO2的水蒸氣還原的主要產(chǎn)物為CH4,且CH4產(chǎn)率隨著Li/Al-LDHs中Al3+含量的增加。當(dāng)Li/Al-LDHs層板間引入Ti4+時(shí),類水滑石晶體結(jié)構(gòu)和熱穩(wěn)定性均發(fā)生改變,紫外-漫反射吸收光譜向可見(jiàn)光區(qū)偏移,CH4產(chǎn)率明顯增加。
[1] JiaWei Wang, Lee A. Stevens, Trevor C. Drage, et al. Preparation and CO2adsorption of amine modified Mg-Al LDH via exfoliation route[J]. Chemical Engineering Science, 2012, 68: 424-431.
[2] Aschenbrenner O, McGuire P, Alsamaq S, et al. Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions[J]. Chemical Engineering Research and Design, 2011, 89(9): 1711-1721.
[3] Hadnadjev-Kostic M, Vulic T, Ranogajec J, et al. Thermal and photocatalytic behavior of Ti/LDH nanocomposites[J]. J Therm Anal Calorim, 2013, 111:1155-1162.
[4] Khaled Hosni, OmarAbdelkarim, Najoua Frini-Srasra, et al. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides[J]. Korean J Chem Eng, 2015, 32(1), 104-112.
[5] Walspurger S, Cobden P D, Safonova O V, et al. High CO2storage capacity in alkali-promoted hydrotalcite-based material:Insitu detection of reversible formation of magnesium carbonate[J]. Chemistry A European Journal, 2010, 16: 12694 -12700.
[6] Yang X F,Zhao L F, Xiao Y H. Effect of NaNO3on MgO-CaCO3absorbent for CO2capture at warm temperature[J]. Energy & Fuels, 2013, 27: 7645-7653.
[7] Zhang K L, Li X H, Duan Y H, et al. Roles of double salt formation and NaNO3in Na2CO3-promoted MgO absorbent for intermediate temperature CO2removal[J]. International Greenhouse Gas Control, 2013, 12: 351-358.
[8] Halabi M H, De Croon M H J M, Vander S J, et al. High capacity potassium- promoted hydrotalcite for CO2capture in H2production[J]. International Journal of Hydrogen Energy, 2012, 37(5): 4516-4525.
[9] Lwin Y, Abdullah F. High temperature adsorption of carbon dioxide on Cu-Al hydrotalcite-derived mixed oxides: kinetics and equilibria by thermogravimetry[J]. Therm Anal Calorim,2009, 97: 885-889.
[10] Katsumata K, Sakai K, Ikeda K, et al. Preparation and photocatalytic reduction of CO2on noble metal(Pt, Pd, Au) loaded Zn-Cr layered double hydroxides[J]. Mater Lett, 2013, 107: 138.
[11] Olivares-Marín M, Maroto-Valer M M. Development of adsorbents for CO2capture from waste materials: a review[J]. Greenhouse Gases Sci Technol, 2012, (1)2: 20-35.
[12] IPCC. Special report on renewable energy sources and climate change mitigation [EB/OL]. http://www.ipcc.ch/report/srren/, 2011.
[13] Bhown A S, Freeman B C. Analysis and status of post-combustion carbon dioxide capture technologies[J]. Environ Sci Technol, 2011, 45: 8624-8632.
[14] Wang S L, Lin C H, Yan Y Y, et al. Synthesis of Li/Al LDH using aluminum and LiOH[J]. Appl Clay Sci, 2013, 72: 191-195.
[15] Hang L, Wang J, Gao Y, et al. Synthesis of LiAl2-layered double hydroxides for CO2capture over a wide temperature range[J]. J Mater Chem A, 2014, 43(2): 18454-18462.
[16] Cheng Ya, Zhou Jiabin, Wang Lei, etal. Adsorption of fluorion from aqueous solution by calcined layered lithium/aluminum hydroxides[J]. Environmental Pollution and control, 2012, 3(2):34-38. 成 婭, 周家斌, 王 磊,等. 焙燒態(tài):鋰鋁水滑石對(duì)水中氟離子吸附性能研究[J]. 環(huán)境污染與防治, 2012, 3(2): 34-38.
[17] Tomohito Kameda, Testu Shinmyou, To Shioka. Kinetic and equilibrium studies on the uptake of Nd3+and Sr2+by Li-Al layered double hydroxide intercalated with 1- hydroxyethane -1, 1- diphonicacid[J]. Journal of Industrial and Engineering Chemistry, 2016, 36: 96-101.
[18] Azzou A, Arus V A, Platon N, et al. Polyol-modified layered double hydroxides with attenuated basicity for a truly reversible capture of CO2[J]. Adsorption, 2013, 19: 909-918.
[19] Shao M, Han J, Wei M, et al. The synthesis of hierarchical Zn-Ti layered double hydroxide for efficient visible-light photocatalysis[J]. Chem Eng J, 2011, 168: 519-524.
[20] Teruel L, Bouizi Y, Atienzar P. Hydrotalcities of zinc and titanium as precursors of finely dispersed mixed oxide semiconductors for dye-sensitized solar cells[J]. Energy Environ Sci, 2010, 3: 154-159.
[21] Jun Q, Xiaoman H, Bentao W. Synthesis of Li-Al Layered double hydroxides via a mechanochemical route[J]. Applid Clay Sci, 2016, 120: 24-27.
[22] Saber O,Tagaya H. New layered double hydroxide, Zn-Ti LDH: preparation and intercalation reactions[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 45 (1-2): 107-115.
[23] Iguchi S, Teramura K, Hosokawa S, et al. Photocatalytic conversion of CO2in an aqueous solution using variouskinds of layered double hydroxides[J]. Catalysis Today, 2015, 251: 140-144.
[24] Centi G,Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels[J]. Catalysis Today, 2009, 148(3/4): 191-205.
[25] Hosni K, Abdelkarim O, Frini-Srasra N. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered doublehydroxides[J]. Korean J Chem Eng, 2015, 32(1): 104-112.
[26] Kong Tingting, Zhang Yingping, Zhou Anning. The preparation of Cu/Fe/Al-LDHs and photocatalytic reduction of CO2to prepare CH4[J]. Journal of Xi’an University of Science and Technology, 2015, 36(1):86-91. 孔婷婷, 張穎萍, 周安寧. Cu/Fe/Al-LDHs的制備及其光催化還原CO2制備CH4研究[J]. 西安科技大學(xué)學(xué)報(bào), 2015, 36(1): 86-91.
Preparation and photocatalytic properties of hydrotalcite- like Li/Al-LDHs
KONG Tingting, ZHANG Yingping, ZHANG Yagang, ZHOU Anning,
(College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology,Xi’an 710054, China)
CO2(Carbon dioxide) is the main greenhouse gases. The capture and photocatalysis is considered to be one of the effective approaches for reducing carbon dioxide emission. So, the preparation of CO2adsorption and photocatalysis materials is being a research hot spot, which is of high efficiency and low enregy consumption. A series of Hydrotalcite like Li/Al-LDHs catalytic materials were prepared by coprecipitation method and characterized by atoimc absorption spectrophotometer (AAS), X ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and ultraviolet visible spectrophotometer (UV), etc. The influence of preparation condition(contain ph and water bath time) and adding Ti4+on the structure, morphology and CO2photocatalytic properties of LDHs was discussed. The results showed that, the Li3Al1-LDHs displays the highest crystallinity when the ph in 7-8 and water bath time for 36 h. Meanwhile, all the moles ratios of Li/Al-LDHs were photocatalytic activities. The photocatalytic activity and the productivity of CH4were improved of Ti1Li3Al1-LDHs obtained by adding Ti4+.
carbon dioxide; photocatalysis; layered double hydroxides; Li/Al-LDHs; titanium; methane
1001-9731(2016)12-12255-06
國(guó)家自然科學(xué)基金資助項(xiàng)目(51074122)
2016-10-09
2016-11-25 通訊作者:周安寧,E-mail: psu564@139.com
孔婷婷 (1981-),女,湖南常德人,博士,師承周安寧教授,從事新型環(huán)保材料研究。
TQ424.1
A
10.3969/j.issn.1001-9731.2016.12.045