李志宏,吳連順,李玉萍,錢晨亮,劉 杰
(1.武漢理工大學(xué) 自動(dòng)化學(xué)院,武漢 430070;2.武漢船用機(jī)械有限公司,武漢 430084)
基于多算法的永磁同步電機(jī)伺服控制系統(tǒng)
李志宏1,吳連順1,李玉萍1,錢晨亮1,劉 杰2
(1.武漢理工大學(xué) 自動(dòng)化學(xué)院,武漢 430070;2.武漢船用機(jī)械有限公司,武漢 430084)
為了提高伺服控制系統(tǒng)的動(dòng)態(tài)性、魯棒性以及良好的跟蹤性能,以永磁同步電機(jī)數(shù)學(xué)模型為基礎(chǔ)提出了滑模變控制與卡爾曼觀測(cè)器相結(jié)合的控制方案。在伺服控制系統(tǒng)中,位置環(huán)采用滑模變結(jié)構(gòu)控制,速度環(huán)主回路采用PID控制,其反饋回路中使用卡爾曼觀測(cè)器的控制策略,而電流環(huán)采用PI控制。在MATLAB/Simulink環(huán)境中,對(duì)多種控制算法相結(jié)合的控制系統(tǒng)進(jìn)行仿真,證明了此方案的有效性,即電機(jī)在各種擾動(dòng)及不確定因素情況下仍具有較強(qiáng)的適應(yīng)性和魯棒性,發(fā)揮了良好的的動(dòng)態(tài)特性。
永磁同步電動(dòng)機(jī);滑模變結(jié)構(gòu);卡爾曼觀測(cè)器;MATLAB/Simulink
永磁同步電機(jī)以結(jié)構(gòu)簡(jiǎn)單、效率高、力矩大以及高控制精度等優(yōu)良品質(zhì)被廣泛應(yīng)用于伺服控制領(lǐng)域。高品質(zhì)的伺服控制系統(tǒng)需要在各種外界干擾的情況下達(dá)到穩(wěn)定轉(zhuǎn)速、精確的位置跟蹤,而單純的PID控制已經(jīng)不能滿足這一需求。文獻(xiàn)[1]提出了基于自抗擾控制的伺服系統(tǒng),該策略不依賴被控對(duì)象模型,而是通過補(bǔ)償擾動(dòng)來獲得良好的性能,同時(shí)它也適用于非線性系統(tǒng)。文獻(xiàn)[2]提出了基于模糊RBF神經(jīng)網(wǎng)絡(luò)的伺服系統(tǒng),該方法通過在線學(xué)習(xí)進(jìn)行調(diào)整參數(shù),使系統(tǒng)保持良好的控制效果,但是控制算法復(fù)雜。文獻(xiàn)[3]提出了基于抗差擴(kuò)展卡爾曼濾波器的電機(jī)轉(zhuǎn)速估計(jì),該方法減小了粗差對(duì)估計(jì)值狀態(tài)的影響,能準(zhǔn)確地估計(jì)轉(zhuǎn)速。文獻(xiàn)[4]提出了基于卡爾曼濾波器的電機(jī)轉(zhuǎn)速精確控制,該方法算法簡(jiǎn)單,計(jì)算量小,效果很好,適用于低速環(huán)境。文獻(xiàn)[5]提出了基于指數(shù)趨近律的滑模變控制結(jié)構(gòu),該方法能夠減小外界干擾以及參數(shù)變化對(duì)系統(tǒng)的影響,指數(shù)趨近律削弱了滑模切換造成的高頻抖振。在前人的研究基礎(chǔ)上,本文提出了基于多算法相結(jié)合的控制策略,卡爾曼濾波器精確估計(jì)電機(jī)轉(zhuǎn)速,滑模變結(jié)構(gòu)按系統(tǒng)需求設(shè)計(jì)實(shí)現(xiàn)位置環(huán)的快速平滑跟蹤。仿真表明了該伺服系統(tǒng)滿足較高的性能要求。
由于永磁同步電機(jī)是一個(gè)復(fù)雜的系統(tǒng),為了方便地對(duì)它進(jìn)行分析和求解,在允許誤差的范圍內(nèi),通常利用3s/2r變換將三相靜止坐標(biāo)系變換到兩相旋轉(zhuǎn)坐標(biāo)系中。本文采用id=0的矢量控制方式,可以得到在d、q坐標(biāo)系上永磁同步電機(jī)的解耦狀態(tài)方程[6]:
式中,R為電機(jī)繞組等效電阻;Lq為等效q軸電感;np為極對(duì)數(shù);w為轉(zhuǎn)子角速度;Ψr為轉(zhuǎn)子等效磁鏈;TL為負(fù)載轉(zhuǎn)矩;iq為q軸電流;J為轉(zhuǎn)動(dòng)慣量。
此系統(tǒng)采用典型的三環(huán)控制,在各個(gè)控制環(huán)上施以不同的控制策略,從而使控制系統(tǒng)的性能得到優(yōu)化。永磁同步電機(jī)矢量控制總體框圖如圖1所示,主要包括:位置滑模變模塊、轉(zhuǎn)速PID調(diào)節(jié)模塊、電流PI調(diào)節(jié)模塊、卡爾曼濾波模塊、SVPWM發(fā)生器模塊、電壓逆變器模塊以及電機(jī)本體模塊。
2.1卡爾曼濾波器設(shè)計(jì)
卡爾曼濾波器是一種用于時(shí)變線性系統(tǒng)的遞歸濾波器。它以最小均方誤差為最佳估計(jì)的原則,建立信號(hào)與噪聲的狀態(tài)空間模型。
設(shè)離散卡爾曼濾波的線性差分方程及測(cè)量方程如下[7]:
圖1 PMSM矢量控制結(jié)構(gòu)圖
其中xk代表狀態(tài)變量;zk代表觀測(cè)變量;uk代表控制變量;變量wk和vk分別代表過程噪音和測(cè)量噪音,假設(shè)兩者都是均值為零的高斯白噪聲,且不相關(guān)。
卡爾曼濾波器分成兩個(gè)過程:時(shí)間更新方程和測(cè)量更新方程。時(shí)間更新方程負(fù)責(zé)及時(shí)向前推算當(dāng)前狀態(tài)變量和誤差協(xié)方差估計(jì)的值,稱為先驗(yàn)估計(jì)。測(cè)量更新方程是將預(yù)先的估計(jì)值和實(shí)時(shí)測(cè)量值結(jié)合起來得出最優(yōu)估計(jì)值,稱為后驗(yàn)估計(jì)。
時(shí)間更新方程:
測(cè)量更新方程:
其中Kk為卡爾曼增益;R為測(cè)量噪聲協(xié)方差矩陣。
已知永磁同步電機(jī)機(jī)械方程:
對(duì)于隱極式結(jié)構(gòu)的電機(jī)而言,則電磁轉(zhuǎn)矩為:
假設(shè)在恒轉(zhuǎn)矩模式下運(yùn)行,可以得出:
由式(5)~式(8)可以得到永磁同步電機(jī)連續(xù)系統(tǒng)的狀態(tài)方程以及測(cè)量方程:
通常計(jì)算機(jī)在處理信號(hào)系統(tǒng)時(shí),觀測(cè)值是離散的。在滿足離散化的基礎(chǔ)上,得到離散狀態(tài)方程表達(dá)式:
結(jié)合上述推倒公式可知,只要給出系統(tǒng)的初始值x(0)和初始誤差p(0),選擇適當(dāng)?shù)木仃嘠、R,將永磁同步電機(jī)的實(shí)驗(yàn)參數(shù)代入方程中,經(jīng)過多次的迭代計(jì)算,可以得到矯正的卡爾曼濾波增益值Kk,再根據(jù)此時(shí)刻的測(cè)量值y(k),可計(jì)算出最優(yōu)估計(jì)狀態(tài)x(k)。
2.2位置滑模變結(jié)構(gòu)的設(shè)計(jì)
滑動(dòng)模態(tài)變結(jié)構(gòu)是一種高速切換的反饋控制系統(tǒng),通過控制量的切換迫使系統(tǒng)狀態(tài)在一定特征下沿著滑模面滑動(dòng),運(yùn)動(dòng)軌跡呈現(xiàn)小幅度、高頻率的上下反復(fù)運(yùn)動(dòng)。這種滑動(dòng)模態(tài)是可以設(shè)計(jì)的,且與系統(tǒng)的參數(shù)及擾動(dòng)無關(guān)[8]。由于滑模變結(jié)構(gòu)調(diào)節(jié)器的設(shè)計(jì)對(duì)系統(tǒng)模型精度要求不是很高,在設(shè)計(jì)最外環(huán)的位置環(huán)時(shí),將速度閉環(huán)(包含電流環(huán))系統(tǒng)近似等效為一階慣性環(huán)節(jié),以此為基礎(chǔ)設(shè)計(jì)出位置環(huán)滑模變結(jié)構(gòu)控制器。
根據(jù)上述狀態(tài)方程將其離散化,則離散系統(tǒng)狀態(tài)方程:
選取位置環(huán)滑模切換函數(shù)為:
滑模變一般指數(shù)趨近律表達(dá)式為:
從而推導(dǎo)出離散指數(shù)趨近律:
由式(12)、式(15)結(jié)合可得:
假設(shè)滑模變結(jié)構(gòu)可控條件CB≠0成立,可以得出滑??刂坡蕿椋?/p>
為了能夠有效地消除離散滑??刂频亩墩?,采用帶有邊界層厚度的飽和函數(shù)sat(s)來替代理想滑模中的符號(hào)函數(shù)sgn(s):
圖2 位置環(huán)滑模結(jié)構(gòu)控制器的結(jié)構(gòu)圖
將已知矩陣A、B、C帶入式(16)得出:
根據(jù)上述公式推導(dǎo),位置環(huán)滑模變結(jié)構(gòu)框圖如圖2所示。
仿真中永磁同步電機(jī)的主要參數(shù)如下:定子繞組電阻Rs=2.875Ω,電樞電感L=Ld=Lq=8.5mH,轉(zhuǎn)子磁鏈Ψr=0.1688Wb,轉(zhuǎn)動(dòng)慣量J=0.0008kg/m2,極對(duì)數(shù)p=4。
在卡爾曼濾波觀測(cè)器中,采樣周期T1為0.1ms,狀態(tài)變量初始值x0=[1 1],濾波協(xié)方差初始值,R=0.001。
在位置滑模變結(jié)構(gòu)中,采樣周期Tc為0.5ms,c=20,k=15,ε=5。
在仿真實(shí)驗(yàn)中,先斷開位置環(huán),電機(jī)給定速度為1500r/min,0~0.15s時(shí)負(fù)載轉(zhuǎn)矩為5N?m,在0.15s時(shí)刻突加負(fù)載至20N?m。由圖3和圖4比較可知,當(dāng)負(fù)載轉(zhuǎn)矩發(fā)生突變時(shí),未加卡爾曼模塊的電機(jī)速度下降幅度大,恢復(fù)到穩(wěn)定轉(zhuǎn)速時(shí)間長(zhǎng),而加卡爾曼模塊的速度明顯下降幅度較小,恢復(fù)穩(wěn)定轉(zhuǎn)速時(shí)間短。因此可以看出卡爾曼觀測(cè)器通過轉(zhuǎn)矩負(fù)載正反饋補(bǔ)償穩(wěn)定了轉(zhuǎn)速,大幅度提高了電機(jī)的抗負(fù)載突變能力。由圖5和圖6比較,同時(shí)結(jié)合上述公式(6),可以得知通過觀測(cè)補(bǔ)償機(jī)制大大提高了電流環(huán)中q軸反應(yīng)時(shí)間和幅值,迅速?gòu)浹a(bǔ)了負(fù)載轉(zhuǎn)矩波動(dòng)帶來的影響。
圖3 未加卡爾曼觀測(cè)器的電機(jī)轉(zhuǎn)速波形
圖4 加卡爾曼觀測(cè)器的電機(jī)轉(zhuǎn)速波形
圖5 未帶卡爾曼的電磁轉(zhuǎn)矩波形
圖6 帶卡爾曼的電磁轉(zhuǎn)矩波形
后斷開速度環(huán),分別加上位置PID控制以及滑模變結(jié)構(gòu),構(gòu)成完整的三環(huán)伺服控制系統(tǒng),其中電機(jī)位置給定為8rad,負(fù)載轉(zhuǎn)矩給定為5N?m,仿真時(shí)間為0.5s。由圖7和圖8比較可知,PID控制實(shí)現(xiàn)的位置追蹤出現(xiàn)超調(diào)現(xiàn)象,而滑??刂瓶梢詫?shí)現(xiàn)位置信號(hào)的準(zhǔn)確跟蹤,并且快速、無超調(diào),使整個(gè)系統(tǒng)具有較高的跟蹤精度和較好的動(dòng)態(tài)性能。
圖7 PID控制位置追蹤波形
圖8 滑模變控制位置追蹤波形
針對(duì)永磁同步電機(jī)伺服系統(tǒng)的控制,本文給出了多算法控制的設(shè)計(jì)方案并進(jìn)行了MATLAB/Simulink仿真。仿真結(jié)果表明,在外界干擾情況下,將卡爾曼濾波器應(yīng)用到速度環(huán),有效地穩(wěn)定了轉(zhuǎn)速,提高了抗負(fù)載突變能力;將滑模變結(jié)構(gòu)應(yīng)用到位置環(huán),實(shí)現(xiàn)了位置的快速跟蹤同時(shí)提高了跟蹤精度。二者的有效結(jié)合,使系統(tǒng)具有很強(qiáng)的魯棒性,同時(shí)發(fā)揮出良好的動(dòng)態(tài)性能。
[1] 孫凱,許鎮(zhèn)琳,蓋廓,等.基于自抗擾控制器的永磁同步電機(jī)位置伺服系統(tǒng)[J].中國(guó)電機(jī)工程學(xué)報(bào),2007,27(15):43-46.
[2] 邵明玲,于海生.基于模糊RBF神經(jīng)網(wǎng)絡(luò)的永磁同步電機(jī)位置控制[J].青島大學(xué)學(xué)報(bào)(工程技術(shù)版),2014,29(4):27-31.
[3] 尹忠剛,張瑞峰,鐘彥儒,等.基于抗差擴(kuò)展卡爾曼濾波 器的永磁同步電機(jī)轉(zhuǎn)速估計(jì)策略[J].控制理論與應(yīng)用,2012,29(7):921-927.
[4] 章瑋,姚衛(wèi)忠,梁文毅.基于卡爾曼濾波器的永磁同步電動(dòng)機(jī)轉(zhuǎn)速精確控制[J].微電機(jī),2008,41(1):4-6.
[5] 黃飛.永磁同步電機(jī)位置伺服控制的滑??刂芠J].重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,30(4):860-863.
[6] 李華德,李擎,白晶.電力拖動(dòng)自動(dòng)控制系統(tǒng)[M].北京:機(jī)械工業(yè)出版社,2008.9.
[7] 洪乃剛,等.電力電子和電力拖動(dòng)控制系統(tǒng)的MATLAB仿真[M].北京機(jī)械工業(yè)出版社,2006
[8] Welch G,Bishop G.Introduction to the Kalman Filter [D].Chapel Hill:Department of Computer Science University of North Carolina,2006:2-6.
Permanent magnet synchronous motor servo control system based on multi-algorithms
LI Zhi-hong1, WU Lian-shun1, LI Yu-ping1, QIAN Chen-liang1, LIU Jie2
TP273
A
1009-0134(2016)07-0025-05
2016-04-05
李志宏(1970 -),男,副教授,本科,主要從事船舶自動(dòng)化研究等。