嚴(yán)國(guó)鑫 樊兵 鄒榮海 張健 孫曉峰 童磊 王奇民 韓金宏 魯旭飛 王瑩 周元 何宗軒 廖奕翔 李寧 曹蕾 陳正崗,6
1.無錫市第二人民醫(yī)院口腔科,無錫 214002;
2.青島大學(xué)醫(yī)學(xué)院附屬青島市市立醫(yī)院口腔醫(yī)學(xué)中心,青島 266071;
3.即墨市普東衛(wèi)生院口腔科,青島 266234;4.濰坊醫(yī)學(xué)院口腔醫(yī)學(xué)院,濰坊 261021;
5.大連醫(yī)科大學(xué)研究生院,大連 116044;
6.上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院口腔頜面外科,上海 200011
·腫瘤學(xué)專欄·
沉默RohA基因?qū)ι圜[狀細(xì)胞癌細(xì)胞增殖的影響
嚴(yán)國(guó)鑫1樊兵1鄒榮海1張健1孫曉峰1童磊2王奇民2韓金宏2魯旭飛3王瑩4周元4何宗軒2廖奕翔2李寧5曹蕾5陳正崗2,6
1.無錫市第二人民醫(yī)院口腔科,無錫 214002;
2.青島大學(xué)醫(yī)學(xué)院附屬青島市市立醫(yī)院口腔醫(yī)學(xué)中心,青島 266071;
3.即墨市普東衛(wèi)生院口腔科,青島 266234;4.濰坊醫(yī)學(xué)院口腔醫(yī)學(xué)院,濰坊 261021;
5.大連醫(yī)科大學(xué)研究生院,大連 116044;
6.上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院口腔頜面外科,上海 200011
目的 通過RNA干擾技術(shù)沉默RhoA基因從而探討RhoA對(duì)舌癌細(xì)胞增殖和生長(zhǎng)的影響及其作用機(jī)制。方法 體外培養(yǎng)舌鱗狀細(xì)胞癌SCC-4細(xì)胞,以小分子干擾RNA轉(zhuǎn)染沉默RhoA基因的表達(dá)。實(shí)驗(yàn)分為3組:實(shí)驗(yàn)組(又分為實(shí)驗(yàn)1組和實(shí)驗(yàn)2組,脂質(zhì)體分別轉(zhuǎn)染對(duì)應(yīng)序列1的RhoA-siRNA和序列2的RhoA-siRNA)、陰性對(duì)照組(脂質(zhì)體轉(zhuǎn)染NC-siRNA)和空白對(duì)照組(不轉(zhuǎn)染siRNA)。采用實(shí)時(shí)定量聚合酶鏈反應(yīng)技術(shù)檢測(cè)SCC-4細(xì)胞轉(zhuǎn)染后RhoA mRNA的表達(dá),Western blot檢測(cè)RhoA、Cyclin D1、p21和p27蛋白的表達(dá),四唑鹽比色法檢測(cè)舌癌細(xì)胞生長(zhǎng)水平和倍增時(shí)間。結(jié)果 與陰性對(duì)照組和空白對(duì)照組相比,實(shí)驗(yàn)組舌癌細(xì)胞的RhoA基因及蛋白表達(dá)降低,p21、p27蛋白表達(dá)升高,Cyclin D1蛋白表達(dá)降低,細(xì)胞倍增時(shí)間延長(zhǎng),增殖能力降低(P<0.05)。結(jié)論 沉默RhoA基因可以抑制舌癌細(xì)胞的增殖和生長(zhǎng),RhoA基因通過調(diào)控細(xì)胞周期信號(hào)轉(zhuǎn)導(dǎo)途徑影響舌癌細(xì)胞的增殖,RhoA基因可以成為舌癌基因治療的靶點(diǎn)。
RhoA; 舌癌; 細(xì)胞增殖; RNA干擾
口腔癌是頭頸部常見的惡性腫瘤,其患病率和病死率占常見惡性腫瘤的第6位[1];舌鱗狀細(xì)胞癌(以下簡(jiǎn)稱舌癌)約占口腔癌的30%[2]。近幾十年來,舌癌患者總的生存率并沒有得到顯著提高,其5年生存率仍然不足60%,晚期伴有局部擴(kuò)散或遠(yuǎn)處轉(zhuǎn)移者預(yù)后更差[3]。
Rho蛋白具有三磷酸鳥苷(guanosine triphosphate,GTP)酶活性,在細(xì)胞的信號(hào)傳導(dǎo)通路中作為信號(hào)轉(zhuǎn)換器或分子開關(guān),主要通過參與調(diào)節(jié)肌動(dòng)蛋白(細(xì)胞骨架)的活動(dòng)、細(xì)胞分裂增殖、細(xì)胞變性的過程,在細(xì)胞黏附、遷移運(yùn)動(dòng)和增殖凋亡等多種生物學(xué)行為中發(fā)揮著重要的作用[4]。已有研究[5-6]證明,RhoA及其下游效應(yīng)蛋白能夠使細(xì)胞發(fā)生惡性轉(zhuǎn)化、增殖能力增強(qiáng)、抵抗凋亡、易于發(fā)生侵襲和轉(zhuǎn)移;其表達(dá)的改變和腫瘤的惡性程度密切相關(guān);但這些蛋白通過哪些信號(hào)轉(zhuǎn)導(dǎo)途徑來發(fā)揮其生物學(xué)效應(yīng),各個(gè)效應(yīng)蛋白的信號(hào)網(wǎng)絡(luò)之間是否存在交互調(diào)控等,尚待進(jìn)一步闡明[7]。針對(duì)RhoA干擾其功能,有可能為腫瘤的治療提供新的策略和途徑。本研究應(yīng)用RNA干擾技術(shù)(RNA interference,RNAi)沉默舌癌SCC-4細(xì)胞的RhoA基因,觀察腫瘤細(xì)胞RhoA基因和蛋白水平表達(dá)以及腫瘤的增殖活性的變化,并對(duì)相關(guān)信號(hào)通路的蛋白分子進(jìn)行檢測(cè),探討RhoA基因?qū)δ[瘤細(xì)胞增殖的影響,為舌癌針對(duì)RhoA靶向的基因治療提供實(shí)驗(yàn)基礎(chǔ)。
1.1 主要試劑及材料
人舌癌細(xì)胞株SCC-4由山東大學(xué)口腔醫(yī)學(xué)院饋贈(zèng)。DMEM高糖培養(yǎng)基、乙二胺四乙酸(ethylenedi aminetetraacetic acid,EDTA)/胰蛋白酶、Trizol、陽離子脂質(zhì)體試劑Lipofectamine2000(Invitrogen公司,美國(guó)),胎牛血清、青霉素/鏈霉素(Gibco公司,美國(guó)),SYBR Premix Ex TaqTM(Perfect Real Time)試劑盒(Takara公司,日本),RhoA鼠抗人單克隆抗體(Santa Cruz公司,美國(guó)),辣根過氧化物酶(horseradish peroxidase,HRP)標(biāo)記的羊抗鼠二抗(北京中杉金橋生物技術(shù)有限公司),放射免疫沉淀法(radio immunoprecipitation assay,RIPA)蛋白裂解液(江蘇碧云天生物技術(shù)研究所)。小干擾RNA(small interfering RNA,siRNA)序列合成及基因測(cè)序購(gòu)自上海博尚生物技術(shù)有限公司。
1.2 舌癌細(xì)胞培養(yǎng)及傳代
SCC-4細(xì)胞用含10%胎牛血清、青霉素100 mg·mL-1和鏈霉素100 mg·mL-1的DMEM培養(yǎng)基在37 ℃、5% CO2培養(yǎng)箱培養(yǎng),向培養(yǎng)瓶(25 cm2)內(nèi)加入2 mL胰蛋白酶。消化在37 ℃環(huán)境下進(jìn)行,消化2~5 min后把培養(yǎng)瓶放置顯微鏡下觀察,發(fā)現(xiàn)胞質(zhì)回縮、細(xì)胞間隙增大后,立即加入5 mL含有血清的DMEM培養(yǎng)基終止消化。用彎頭吸管吸取瓶?jī)?nèi)培養(yǎng)液,反復(fù)吹打瓶壁細(xì)胞,吹打過程按順序進(jìn)行,確保所有底部均被吹到。動(dòng)作輕柔,盡可能避免出現(xiàn)泡沫。細(xì)胞脫離瓶壁后形成細(xì)胞懸液。計(jì)數(shù),按1∶1比例傳代接種在新的培養(yǎng)瓶中。
1.3 RhoA siRNA的合成
登錄Genebank數(shù)據(jù)庫(kù)確定人RhoA基因序列,序列號(hào)為NM_001664,針對(duì)RhoA的基因序列設(shè)計(jì)2條RhoA-siRNA和1條陰性對(duì)照序列(NC-siRNA)(表1)。
1.4 siRNA轉(zhuǎn)染沉默RhoA基因
轉(zhuǎn)染前1 d按每孔1×105個(gè)分別將舌癌SCC-4細(xì)胞接種于不同的24孔板中,每孔培養(yǎng)基500 μL,不含抗生素。貼壁細(xì)胞融合率達(dá)30%~50%時(shí)進(jìn)行轉(zhuǎn)染。用50 μL Opti-MEI低血清(或無血清)培養(yǎng)基稀釋20 pmol siRNA(轉(zhuǎn)染時(shí)siRNA終濃度為33 nmol·L-1),輕輕混勻;使用前輕輕搖勻Lipofectamine2000,然后取1 μL Lipofectamine2000在50 μL Opti-MEI培養(yǎng)基中稀釋,室溫孵育5 min。將前兩步所稀釋的siRNA和Lipofectamine2000混合(使總體積為100 μL),輕輕混勻,室溫放置20 min。每孔細(xì)胞中加入100 μL轉(zhuǎn)染液,輕輕搖勻。37 ℃培養(yǎng)48 h后檢測(cè)基因表達(dá)。實(shí)驗(yàn)分為3組,實(shí)驗(yàn)組、陰性對(duì)照組、空白對(duì)照組,其中實(shí)驗(yàn)組為轉(zhuǎn)染RhoA-siRNA組,脂質(zhì)體轉(zhuǎn)染RhoA-siRNA,又分為實(shí)驗(yàn)1組和實(shí)驗(yàn)2組,分別對(duì)應(yīng)序列1的RhoA-siRNA和序列2的RhoA-siRNA;陰性對(duì)照組為轉(zhuǎn)染NC-siRNA組,脂質(zhì)體轉(zhuǎn)染NC-siRNA;空白對(duì)照組為轉(zhuǎn)染脂質(zhì)體Lipo組,僅加入轉(zhuǎn)染混合液,不轉(zhuǎn)染任何的siRNA。
表1 針對(duì)RhoA基因序列設(shè)計(jì)的2條RhoA-siRNA和1條陰性對(duì)照序列Tab 1 Two RhoA-siRNA sequences and one negative control sequence designed for RhoA gene
1.5 實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(quantitative real- time polymerase chain reaction,qRT-PCR)技術(shù)檢測(cè)各組RhoA mRNA的表達(dá)
按照Trizol試劑盒提取細(xì)胞總RNA,紫外分光光度計(jì)測(cè)定RNA含量,取5 μL總RNA,在M-MLV反轉(zhuǎn)錄酶作用下合成cDNA,再取5 μL反轉(zhuǎn)錄產(chǎn)物進(jìn)行PCR擴(kuò)增反應(yīng),以磷酸甘油醛脫氫酶(glyceraldehyde phosphate dehydrogenase,GAPDH)為內(nèi)參照。RhoA基因的引物序列,上游:5’-TTCCATCGACAGCCCTGATAGTTTA-3’,下游:5’-CACGTTGGGACAGAAATGCTTG-3’;GAPDH基因的引物序列,上游:5’-GCACCGTCAAGGCTGAGAAC-3’,下游:5’-TGGTGAAGACGCCAGTGGA-3’。PCR反應(yīng)條件:95 ℃ 30 s;然后95 ℃ 5 s,60 ℃ 34 s,40個(gè)循環(huán)。熒光信號(hào)實(shí)時(shí)監(jiān)測(cè)和數(shù)據(jù)分析由Stratagene qRTPCR儀自動(dòng)完成,采用2-??Ct公式計(jì)算RhoA mRNA的相對(duì)表達(dá)水平,其中Ct值為循環(huán)閾值。
1.6 蛋白質(zhì)免疫印跡法(Western blot)檢測(cè)目的蛋白的表達(dá)
棄培養(yǎng)液后PBS沖洗細(xì)胞3次,用RIPA蛋白裂解液裂解,操作于冰上進(jìn)行,4 ℃下10 000 r·min-1(離心半徑為4 cm)離心5 min取上清液,聚氰基丙烯酸正丁酯(bicinchoninic acid,BCA)法測(cè)蛋白濃度后,100 ℃變性10 min。用12%聚丙烯酰胺凝膠分離,再電轉(zhuǎn)至硝酸纖維素膜上,5%脫脂奶粉封閉2 h后,單克隆抗體RhoA(1∶200)、細(xì)胞周期素D1(Cyclin D1)(1∶1 000)、細(xì)胞周期蛋白依賴型激酶抑制因子p21(1∶200)、p27(1∶200)、β-actin(1∶1 000)4 ℃孵育過夜,三羥甲基氨基甲烷緩沖鹽水(triethanolamine buffered saline,TBS-T)洗滌,辣根過氧化物酶(horseradish peroxidase,HRP)標(biāo)記的山羊抗小鼠二抗(1∶5 000)室溫孵育2 h,PBS洗滌,加入電化學(xué)發(fā)光(electrochemiluminescence,ECL)發(fā)光液顯色曝光。
1.7 四唑鹽比色法(methyl thiazolyl tetrazolium,MTT)檢測(cè)舌癌細(xì)胞生長(zhǎng)水平和倍增時(shí)間的計(jì)算
取對(duì)數(shù)生長(zhǎng)期的細(xì)胞,分別以每孔1×103個(gè)的密度接種于96孔板,設(shè)5個(gè)復(fù)孔,轉(zhuǎn)染RhoA-siRNA后分別連續(xù)培養(yǎng)1、2、3 d,每孔加入MTT液(5 g·L-1)20 μL,37 ℃孵育4 h,吸出上清液,加入150 μL二甲基亞砜(dimethyl sulfoxide,DMSO),充分振蕩10 min后于酶聯(lián)免疫檢測(cè)儀上490 nm比色測(cè)吸光度值,以時(shí)間為橫軸、吸光度值為縱軸,繪制細(xì)胞生長(zhǎng)曲線。群體倍增時(shí)間按Patterson公式計(jì)算[8]:Td= T×lg2/lg(NT/N0),Td為倍增時(shí)間(h),T為細(xì)胞數(shù)由N0增至NT所用的時(shí)間,N0為接種時(shí)的細(xì)胞數(shù),NT為培養(yǎng)T小時(shí)后的細(xì)胞數(shù)。
1.8 統(tǒng)計(jì)學(xué)分析
采用SPSS 12.0軟件進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料的組間比較用t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 舌癌細(xì)胞RhoA基因的表達(dá)
實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果(圖1)顯示,與陰性對(duì)照組、空白對(duì)照組相比,實(shí)驗(yàn)組RhoA mRNA表達(dá)降低(P<0.05)。
圖1 siRNA轉(zhuǎn)染沉默RhoA基因48 h后RhoA mRNA的表達(dá)Fig 1 Expression of RhoA mRNA 48 h after RhoA-siRNA transfection
2.2 舌癌細(xì)胞RhoA、Cyclin D1、p21和p27蛋白的表達(dá)
Western blot檢測(cè)結(jié)果顯示,與陰性對(duì)照組、空白對(duì)照組相比,實(shí)驗(yàn)組的RhoA、Cyclin D1蛋白的表達(dá)降低,p21、p27蛋白的表達(dá)升高(圖2)(P<0.05)。
圖2 siRNA轉(zhuǎn)染沉默RhoA基因48 h后RhoA、Cyclin D1、p21和 p27蛋白的表達(dá) Fig 2 Expression of RhoA, Cyclin D1, p21 and p27 protein 48 h after RhoA-siRNA transfection
2.3 舌癌細(xì)胞生長(zhǎng)水平
MTT法對(duì)細(xì)胞活力檢測(cè)結(jié)果表明,與陰性對(duì)照組和空白對(duì)照組相比,實(shí)驗(yàn)組SCC-4細(xì)胞的增殖能力降低(圖3);實(shí)驗(yàn)組的倍增時(shí)間(實(shí)驗(yàn)1組29.7 h± 1.7 h,實(shí)驗(yàn)2組228.4 h±3.5 h)較對(duì)照組(陰性對(duì)照組20.3 h±3.6 h,空白對(duì)照組21.2 h±2.8 h)延長(zhǎng)(P<0.05)。
圖3 siRNA轉(zhuǎn)染沉默RhoA基因各組不同時(shí)間細(xì)胞的增殖活力 Fig 3 MTT assay shows the changes of the cell proliferation ability after RhoA silencing
Rho亞家族是一組相對(duì)分子質(zhì)量為20×103~30×103的鳥苷酸結(jié)合蛋白,具有GTP酶活性。Rho家族蛋白在非活性GDP結(jié)合形式和活性GTP結(jié)合形式之間循環(huán),具有RhoA、RhoB和RhoC三種異構(gòu)體。RhoA、RhoB和RhoC高度同源,約有85%的氨基酸序列相同[9]。RhoA在多種腫瘤組織及細(xì)胞系中如結(jié)腸癌、乳腺癌、肺癌、胰腺癌、頭頸癌等高表達(dá),在口腔鱗癌中的高表達(dá)也已經(jīng)得到證實(shí)[10],推測(cè)RhoA與舌癌的發(fā)生發(fā)展關(guān)系密切。
本研究結(jié)果顯示,RhoA基因沉默后,舌癌細(xì)胞的活力明顯下降,增殖受到抑制。同時(shí)檢測(cè)與細(xì)胞增殖的相關(guān)蛋白表達(dá),發(fā)現(xiàn)Cyclin D1蛋白表達(dá)顯著降低,而p21和p27表達(dá)顯著上升,提示RhoA基因可能通過細(xì)胞周期的調(diào)控而影響腫瘤的生長(zhǎng)。
細(xì)胞的增殖周期是一個(gè)連續(xù)的發(fā)展過程,參與細(xì)胞周期調(diào)控的主要分子有:細(xì)胞周期蛋白(Cyclins)、細(xì)胞周期蛋白依賴性激酶(Cyclin-dependent kinases,CDKs)和周期蛋白依賴性激酶抑制物(Cyclin-dependent kinase inhibitor protein,CDKI)。Cyclins對(duì)細(xì)胞周期具有正調(diào)控作用?,F(xiàn)已發(fā)現(xiàn),在Cyclin家族中,Cyclin D1在細(xì)胞增殖過程中的意義最大,是G1期細(xì)胞增殖信號(hào)的關(guān)鍵蛋白[11]。Cyclin D1是最早發(fā)現(xiàn)的原癌基因[12],其表達(dá)與多種腫瘤的發(fā)生密切相關(guān)[13],在口腔癌的研究中,也證實(shí)了Cyclin D1在口腔癌中高表達(dá),與腫瘤的發(fā)生、發(fā)展、臨床分期、病理分級(jí)、淋巴結(jié)轉(zhuǎn)移以及預(yù)后關(guān)系密切,可以成為口腔癌預(yù)后判斷及治療方案選擇的重要生物標(biāo)志物[14-15]。Cyclin D1在G1期的正性調(diào)控作用是通過Cyclin D1與CDK4/CDK6結(jié)合并使之激活,導(dǎo)致視網(wǎng)膜母細(xì)胞瘤蛋白(retinoblastoma protein,pRb)在G1-S期發(fā)生磷酸化,從而使核轉(zhuǎn)錄因子從pRb抑制下解離,進(jìn)一步激活這些基因的表達(dá),啟動(dòng)DNA復(fù)制,推動(dòng)細(xì)胞從G1期進(jìn)入S期[16]。Cyclin D1的基因擴(kuò)增和過表達(dá)可促進(jìn)G1/S期轉(zhuǎn)化,加速細(xì)胞周期,使細(xì)胞持續(xù)增殖導(dǎo)致惡性轉(zhuǎn)化。本研究中RhoA基因沉默后,Cyclin D1的表達(dá)顯著下降,抑制了Cyclin D1在G1期的表達(dá),細(xì)胞將不能進(jìn)入S期,細(xì)胞的增殖和腫瘤的生長(zhǎng)則會(huì)受到明顯的抑制。
作為抑癌基因,CDK抑制因子p21和p27是兩個(gè)重要的細(xì)胞周期調(diào)控因子。p21在正常細(xì)胞DNA受損傷時(shí),被p53誘導(dǎo)產(chǎn)生,隨之抑制DNA復(fù)制,增強(qiáng)DNA修復(fù),確保遺傳物質(zhì)精確地傳遞給下一代,以消除由于DNA損傷的積累而引起腫瘤發(fā)生的隱患[17]。p21的表達(dá)減弱或消失可能使抑制細(xì)胞增殖的作用減弱,或細(xì)胞正常增生轉(zhuǎn)變?yōu)樵錾只涣?,?dǎo)致腫瘤發(fā)生的可能[18]。p27作為細(xì)胞中G1-S期限制點(diǎn)的重要負(fù)性調(diào)控因子,通過與Cyclin競(jìng)爭(zhēng),或直接與CDK或Cyclin-CDK復(fù)合物結(jié)合,抑制CDK催化活性,阻止細(xì)胞周期G1/S期轉(zhuǎn)換,抑制細(xì)胞增生。當(dāng)p27基因表達(dá)異常時(shí),可導(dǎo)致細(xì)胞無限增殖和腫瘤的形成;p27水平的降低會(huì)促進(jìn)G1期的進(jìn)展,增加細(xì)胞增殖的速度。許多研究[19-21]表明,在人類幾乎所有的上皮速度。許多研究[19-21]表明,在人類幾乎所有的上皮性腫瘤中都有p27蛋白表達(dá)的下降或缺失,p27表達(dá)降低已經(jīng)在多種腫瘤中觀察到并得到證實(shí)。本研究中,通過抑制RhoA的基因表達(dá)使p27過度表達(dá),抑制了組蛋白H1的磷酸化,從而抑制了CDK的活性,抑制了細(xì)胞進(jìn)入細(xì)胞周期的S期。從功能上講,p21和p27是調(diào)控細(xì)胞周期的相關(guān)基因,同屬于CDKI,其在氨基酸水平上有著明顯的同源性。本研究證實(shí),RhoA基因通過調(diào)控Cyclin D1、p21和p27來實(shí)現(xiàn)對(duì)細(xì)胞周期的調(diào)控。
RhoA可以促進(jìn)Cyclin D1的轉(zhuǎn)錄。Cyclin D1表達(dá)水平受多種信號(hào)通路調(diào)控,目前研究比較詳細(xì)的是RAS-RAF-MEK-p42/p44 MAPK信號(hào)通路。p42/p44 MAPK信號(hào)通路的持續(xù)激活可以使Cyclin D1高表達(dá),而高水平的Cyclin D1對(duì)于維持腫瘤的功能十分重要;整聯(lián)蛋白(Integrin)介導(dǎo)的黏著斑復(fù)合物的形成需要與細(xì)胞骨架相連,因此黏著斑復(fù)合物的形成依賴于RhoA蛋白的活性。研究[22]同樣證實(shí),Integrin的聚集和黏著斑復(fù)合物的形成對(duì)于G1/S進(jìn)程相當(dāng)重要。例如在NIH3T3成纖維細(xì)胞中,RhoA可以促進(jìn)黏著斑的形成,同時(shí)也可以被Integrin激活,進(jìn)而激活下游的效應(yīng)分子ROCK激酶,ROCK磷酸化LIM激酶,這一連鎖信號(hào)在G1期促進(jìn)持續(xù)的p42/p44 MAPK激活和Cyclin D1的表達(dá)[23],因此,RhoA在G1期對(duì)于Cyclin D1的適時(shí)表達(dá)起到了至關(guān)重要的調(diào)節(jié)作用。此外,RhoA對(duì)細(xì)胞周期的調(diào)控作用還可以通過調(diào)控p21和p27蛋白來實(shí)現(xiàn)。研究發(fā)現(xiàn),過表達(dá)激活的RhoA可以促進(jìn)促有絲分裂原刺激下的G1期細(xì)胞中p27的降解[23];通過使用抑制素、細(xì)菌毒素和過表達(dá)顯性失活的RhoA,都可使p27在細(xì)胞中聚集,使細(xì)胞周期進(jìn)程停滯[24]。p27蛋白的降解通常是通過CDK2在G1后期介導(dǎo)的磷酸化引起的,所以RhoA蛋白可能并不是直接與p27蛋白發(fā)生相互作用,而是通過影響G1蛋白例如Cyclin D1的表達(dá),進(jìn)而激活Cyclin E/CDK2,最終導(dǎo)致p27蛋白降解[25];抑制RhoA的活性還可以增加p27基因的轉(zhuǎn)錄[26]。通過使用Rho蛋白異戊烯化抑制劑GGTI不僅可以阻礙G1/S進(jìn)程而且還伴有p21蛋白的表達(dá)上調(diào),但是RhoA信號(hào)對(duì)于p21蛋白表達(dá)調(diào)控的精確機(jī)制還有待于進(jìn)一步研究[27]。RhoA可能在轉(zhuǎn)錄水平抑制p21蛋白表達(dá),也可能是通過Ras介導(dǎo)p42/p44 MAPK信號(hào)途徑的激活[28]。
綜上所述,RhoA蛋白在舌癌的發(fā)生發(fā)展中具有重要的作用,可以參與細(xì)胞周期的調(diào)控,通過調(diào)節(jié)Cyclin D1、p21和p27來促進(jìn)腫瘤細(xì)胞的增殖。RhoA蛋白有可能成為舌癌治療的新的靶點(diǎn)。但本研究尚存在一定的不足,本研究?jī)H從體外實(shí)驗(yàn)的角度探討了RhoA基因調(diào)控細(xì)胞周期的可能機(jī)制,尚需體內(nèi)實(shí)驗(yàn)來進(jìn)一步加以闡明和證實(shí)。
[1] Humphrey PA, Wong AJ, Vogelstein B, et al. Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts[J]. Cancer Res, 1988, 48 (8):2231-2238.
[2] Ferrari D, Codecà C, Fiore J, et al. Biomolecular markers in cancer of the tongue[J]. J Oncol, 2009, 2009:412908.
[3] Bodner L, Manor E, Friger MD, et al. Oral squamous cell carcinoma in patients twenty years of age or younger—review and analysis of 186 reported cases[J]. Oral Oncol, 2014, 50 (2):84-89.
[4] Kutys ML, Yamada KM. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration[J]. Nat Cell Biol, 2014, 16(9):909-917.
[5] Fujita M, Imadome K, Endo S, et al. Nitric oxide increases the invasion of pancreatic cancer cells via activation of the PI3K-AKT and RhoA pathways after carbon ion irradiation [J]. FEBS Lett, 2014, 588(17):3240-3250.
[6] Hwang H, Kim EK, Park J, et al. RhoA and Rac1 play independent roles in lysophosphatidic acid-induced ovarian cancer chemotaxis[J]. Integr Biol (Camb), 2014, 6(3):267-276.
[7] Wacker I, Behrens J. Activin B antagonizes RhoA signaling to stimulate mesenchymal morphology and invasiveness of clear cell renal cell carcinomas[J]. PLoS ONE, 2014, 9(10): e111276.
[8] 錢靜, 陳不尤, 劉賢稱, 等. 人肺腺癌厄洛替尼耐藥細(xì)胞系PC-9/ER的建立及其特性[J]. 臨床與病理雜志, 2015, 35(6):1080-1086.
Qian J, Chen BY, Liu XC, et al. Establishment and characterization of a erlotinib-drug resistant variant of human lung adenocarcinoma cell line PC-9/ER[J]. Int J Pathol Clin Med, 2015, 35(6):1080-1086.
[9] Ridley AJ. RhoA, RhoB and RhoC have different roles in cancer cell migration[J]. J Microsc, 2013, 251(3):242-249.
[10] 周峻, 何勇, 董紹忠, 等. RhoA小干擾RNA對(duì)舌癌細(xì)胞Tca8113增殖、侵襲影響的體外實(shí)驗(yàn)[J]. 中華口腔醫(yī)學(xué)雜志, 2010, 45(9):520-524.
Zhou J, He Y, Dong SZ, et al. Effects of rhoa sirna on the proliferation, adhesion, migration and invasion of tongue squamous cell carcinoma tca8113 cells in vitro[J]. Chin J Stomatol, 2010, 45(9):520-524.
[11] Casimiro MC, Velasco-Velázquez M, Aguirre-Alvarado C, et al. Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present[J]. Expert Opin Investig Drugs, 2014, 23(3):295-304.
[12] Bartkova J, Lukas J, Strauss M, et al. Cell cycle-related variation and tissue-restricted expression of human cyclin D1 protein[J]. J Pathol, 1994, 172(3):237-245.
[13] Pestell RG. New roles of cyclin D1[J]. Am J Pathol, 2013, 183(1):3-9.
[14] Zhao Y, Yu D, Li H, et al. Cyclin D1 overexpression is associated with poor clinicopathological outcome and survival in oral squamous cell carcinoma in Asian populations: insights from a meta-analysis[J]. PLoS ONE, 2014, 9(3): e93210.
[15] Ramakrishna A, Shreedhar B, Narayan T, et al. Cyclin D1 an early biomarker in oral carcinogenesis[J]. J Oral Maxillofac Pathol, 2013, 17(3):351-357.
[16] Jirawatnotai S, Hu Y, Livingston DM, et al. Proteomic identification of a direct role for cyclin d1 in DNA damage repair [J]. Cancer Res, 2012, 72(17):4289-4293.
[17] Yousefi B, Rahmati M, Ahmadi Y. The roles of p53R2 in cancer progression based on the new function of mutant p53 and cytoplasmic p21[J]. Life Sci, 2014, 99(1/2):14-17.
[18] Ohashi K, Nemoto T, Eishi Y, et al. Expression of the cyclin dependent kinase inhibitor p21WAF1/CIP1 in oesophageal squamous cell carcinomas[J]. Virchows Arch, 1997, 430(5): 389-395.
[19] Bochis OV, Irimie A, Pichler M, et al. The role of Skp2 and its substrate CDKN1B (p27) in colorectal cancer[J]. J Gastrointestin Liver Dis, 2015, 24(2):225-234.
[20] Okutur K, Bassulu N, Dalar L, et al. Predictive and prognostic significance of p27, Akt, PTEN and PI3K expression in HER2-positive metastatic breast cancer[J]. Asian Pac J Cancer Prev, 2015, 16(7):2645-2651.
[21] Ouyang Y, Gao P, Zhu B, et al. Downregulation of micro-RNA-429 inhibits cell proliferation by targeting p27Kip1 in human prostate cancer cells[J]. Mol Med Rep, 2015, 11 (2):1435-1441.
[22] Zscheppang K, Kurth I, Wachtel N, et al. Efficacy of beta1 integrin and EGFR targeting in sphere-forming human head and neck cancer cells[J]. J Cancer, 2016, 7(6):736-745.
[23] Croft DR, Olson MF. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms[J]. Mol Cell Biol, 2006, 26(12):4612-4627.
[24] Zhong WB, Hsu SP, Ho PY, et al. Lovastatin inhibits proliferation of anaplastic thyroid cancer cells through upregulation of p27 by interfering with the Rho/ROCK-mediated pathway[J]. Biochem Pharmacol, 2011, 82(11):1663-1672.
[25] Hu W, Bellone CJ, Baldassare JJ. RhoA stimulates p27(Kip) degradation through its regulation of cyclin E/CDK2 activity[J]. J Biol Chem, 1999, 274(6):3396-3401.
[26] Hsu YH, Chang CC, Yang NJ, et al. RhoA-mediated inhibition of vascular endothelial cell mobility: positive feedback through reduced cytosolic p21 and p27[J]. J Cell Physiol, 2014, 229(10):1455-1465.
[27] Hamada M, Miki T, Iwai S, et al. Involvement of RhoA and RalB in geranylgeranyltransferase I inhibitor-mediated inhibition of proliferation and migration of human oral squamous cell carcinoma cells[J]. Cancer Chemother Pharmacol, 2011, 68(3):559-569.
[28] Olson MF, Paterson HF, Marshall CJ. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/ Cip1[J]. Nature, 1998, 394(6690):295-299.
(本文編輯 李彩)
Effects of RhoA silencing on proliferation of tongue squamous cancer cells
Yan Guoxin1, Fan Bing1, Zou Ronghai1, Zhang Jian1, Sun Xiaofeng1, Tong Lei2, Wang Qimin2, Han Jinhong2, Lu Xufei3, Wang Ying4, Zhou Yuan4, He Zongxuan2, Liao Yixiang2, Li Ning5, Cao Lei5, Chen Zhenggang2,6. (1. Dept. of Stomatology, Wuxi No 2. People’s Hospital, Wuxi 214002, China; 2. Center of Stomatology, Qingdao Municipal Hospital Affiliated to Qingdao University Medical College, Qingdao 266071, China; 3. Dept. of Stomatology, Pudong Healthcare Center of Jimo County, Qingdao 266234, China; 4. College of Stomatology, Weifang Medical University, Weifang 261021, China; 5. Postgraduate School, Dalian Medical University, Dalian 116044, China; 6. Dept. of Oral and Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China)
Supported by: The National Natural Science Foundation of China (81372908); Major Project of Science and Technology Grant of Nanjing Medical University (2012NJMU248); Project of Qingdao Municipal Health and Family Planning Commission (2014-WJZD009, 2013-WSZD011). Correspondence: Chen Zhenggang, E-mail: chenzhg1973@163.com.
Objective This study investigated the effect of RhoA silencing through RNA interference on proliferation and growth of tongue cancer cells, as well as explored the possible mechanisms of this effect. Methods SSC-4 tongue cancer cells were cultured in vitro and then transfected with small interfering RNA to knock down RhoA expression. The tested cells were divided into three groups: experimental group (experimental group 1: transfected with RhoA-siRNA-1; experimental group 2: transfected with RhoA-siRNA-2), negative control group (transfected by random sequence NC-siRNA), and blank control group (transfected with Lipofectamine).The expression levels of RhoA mRNA were respectively measured by quantitative real-time polymerase chain reaction and western blot assay. Moreover, the expression levels of cyclin D1, p21, and p27 and RhoA protein were evaluated by Western blot assay. Proliferation and growth potentiality were analyzed through evaluation of doubling times and methyl thiazolyl tetra-zolium assessment. Results The expression levels of RhoA gene and protein of experimental groups significantly decreased following siRNA transfection compared with those in the negative and blank control groups. The expression of cyclin D1 decreased significantly and that of p21 and p27 increased significantly. The doubling time was extended and the growth potentiality decreased. Conclusion The results indicated that RhoA silencing can inhibit proliferation of tongue cancer cells, whereas RhoA affects cell proliferation by regulating the cell cycle pathway. Thus, RhoA is a potential target in gene therapy for tongue cancer.
RhoA; tongue cancer; cell proliferation; RNA interference
R 739.86
A
10.7518/hxkq.2016.06.014
2016-02-16;
2016-06-10
國(guó)家自然科學(xué)基金(81372908);南京醫(yī)科大學(xué)科技發(fā)展基金重點(diǎn)項(xiàng)目(2012NJMU248);青島市衛(wèi)計(jì)委計(jì)劃項(xiàng)目(2014-WJZD009,2013-WSZD011)
嚴(yán)國(guó)鑫,副主任醫(yī)師,碩士,E-mail: yanguo_xin2015@ 163.com
陳正崗,副主任醫(yī)師,博士,E-mail: chenzhg1973@163. com