国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

FFT在大型風(fēng)電機(jī)組自適應(yīng)控制中的應(yīng)用

2016-12-19 11:41鄔昌明王文卓
電子科技 2016年11期
關(guān)鍵詞:傳動(dòng)鏈傳動(dòng)系統(tǒng)阻尼

鄔昌明,王文卓,高 昆,蘆 健

(國(guó)電南瑞科技股份有限公司,江蘇 南京 211100)

?

FFT在大型風(fēng)電機(jī)組自適應(yīng)控制中的應(yīng)用

鄔昌明,王文卓,高 昆,蘆 健

(國(guó)電南瑞科技股份有限公司,江蘇 南京 211100)

在大型風(fēng)電機(jī)組傳動(dòng)系統(tǒng)降載控制策略中的濾波和加阻等方法均需要機(jī)組傳動(dòng)鏈扭振頻率,而實(shí)際機(jī)組運(yùn)行過(guò)程中的扭振頻率難以精確獲取。文中通過(guò)FFT實(shí)時(shí)分析發(fā)電機(jī)轉(zhuǎn)速,提出通過(guò)計(jì)算能量密度自動(dòng)判斷振動(dòng)的方法,實(shí)時(shí)監(jiān)測(cè)風(fēng)機(jī)扭振并計(jì)算振動(dòng)頻率。將計(jì)算結(jié)果作為風(fēng)電機(jī)組自適應(yīng)控制濾波和加阻的依據(jù),使用該方法對(duì)實(shí)際的運(yùn)行數(shù)據(jù)進(jìn)行計(jì)算,計(jì)算結(jié)果驗(yàn)證了該方法能有效的監(jiān)測(cè)風(fēng)機(jī)扭振并計(jì)算出振動(dòng)頻率。

FFT;扭振;自適應(yīng)控制;能量密度

隨著風(fēng)電機(jī)組單機(jī)容量不斷增大,葉片、傳動(dòng)系統(tǒng)和塔架等主要部件的柔性顯著增加,主要零部件的固有頻率逐漸下降,機(jī)組運(yùn)行過(guò)程中所受的動(dòng)態(tài)載荷越來(lái)越復(fù)雜,傳動(dòng)系統(tǒng)發(fā)生扭振的幾率呈升高的趨勢(shì)[1]。扭振可能引起傳動(dòng)系統(tǒng)扭矩波動(dòng),造成主要零部件疲勞損傷,降低機(jī)組使用壽命[2]。采取有效措施抑制傳動(dòng)系統(tǒng),減小扭轉(zhuǎn)載荷導(dǎo)致的傳動(dòng)系統(tǒng)疲勞損傷已成為風(fēng)電機(jī)組控制領(lǐng)域的研究熱點(diǎn)。文獻(xiàn)[3]在發(fā)電機(jī)轉(zhuǎn)矩控制器中添加了阻尼濾波器,提高控制器阻尼,降低傳動(dòng)系統(tǒng)扭矩波動(dòng)的幅度;文獻(xiàn)[4]通過(guò)卡爾曼濾波器對(duì)傳動(dòng)系統(tǒng)扭振幅度進(jìn)行估計(jì),進(jìn)而通過(guò)對(duì)發(fā)電機(jī)轉(zhuǎn)矩控制來(lái)抑制傳動(dòng)系統(tǒng)扭振。這兩種方法都是基于傳動(dòng)系統(tǒng)的線(xiàn)性化模型,難以真實(shí)地反映風(fēng)電機(jī)組傳動(dòng)系統(tǒng)的動(dòng)態(tài)響應(yīng),存在一定的局限性。文獻(xiàn)[5]分析了風(fēng)電機(jī)組對(duì)風(fēng)速波動(dòng)的濾波特性,并指出風(fēng)速擾動(dòng)或電網(wǎng)擾動(dòng)都能引起軸系振蕩,且實(shí)際的軸系振蕩頻率因?yàn)槭艿阶枘嵋驍?shù)的影響,不完全等于自然振蕩頻率。所以,固定頻率的阻尼加載或陷波器濾波不能適應(yīng)風(fēng)機(jī)在不同條件下的需求,需要一個(gè)能夠動(dòng)態(tài)檢測(cè)風(fēng)機(jī)傳動(dòng)鏈扭振頻率的方法來(lái)保證附加阻尼或?yàn)V波器的準(zhǔn)確性。

1 傳動(dòng)鏈扭振危害及抑制

在大型旋轉(zhuǎn)機(jī)械系統(tǒng)中,傳動(dòng)鏈扭振是一個(gè)普遍存在的問(wèn)題。風(fēng)力發(fā)電機(jī)正常工作時(shí),由于風(fēng)載不是恒定的,風(fēng)速大小和風(fēng)向?qū)崟r(shí)變化,因此,風(fēng)電機(jī)組傳動(dòng)鏈中傳遞的扭矩也隨機(jī)波動(dòng)。同時(shí),風(fēng)電機(jī)組傳動(dòng)鏈較長(zhǎng),功率傳遞需要經(jīng)過(guò)輪轂、主軸、齒輪箱、聯(lián)軸器和發(fā)電機(jī),由于傳遞的載荷較大,聯(lián)軸器是復(fù)合材料制成等因素,傳動(dòng)鏈的扭轉(zhuǎn)剛度相對(duì)較小。傳動(dòng)鏈不能簡(jiǎn)化成剛體,而應(yīng)視為一個(gè)復(fù)雜的彈性連續(xù)體進(jìn)行研究和分析。在非平衡載荷的作用下,柔性傳動(dòng)鏈容易出現(xiàn)扭振。嚴(yán)重的扭振可能會(huì)導(dǎo)致軸類(lèi)零件的疲勞損壞,甚至斷裂;導(dǎo)致齒輪運(yùn)轉(zhuǎn)噪聲增大,出現(xiàn)齒面點(diǎn)蝕、齒與齒的沖擊甚至輪齒斷裂;聯(lián)軸器損壞,表現(xiàn)為彈性元件的過(guò)熱或碎裂等。

傳動(dòng)鏈工作過(guò)程中,當(dāng)系統(tǒng)的激勵(lì)頻率與傳動(dòng)鏈軸系的固有頻率接近時(shí),其扭轉(zhuǎn)振動(dòng)的振幅會(huì)迅速增大,出現(xiàn)共振現(xiàn)象。零部件發(fā)生共振是任何機(jī)械裝備不允許出現(xiàn)的,共振對(duì)機(jī)械設(shè)備的危害極大,強(qiáng)烈的共振可能直接毀壞設(shè)備,圖1所示為由于傳動(dòng)鏈扭振導(dǎo)致的聯(lián)軸器打滑損壞。

圖1 扭振損壞的聯(lián)軸器

所以在控制過(guò)程中,對(duì)傳動(dòng)系統(tǒng)的扭振檢測(cè)和通過(guò)控制降低扭振,是必要的。文獻(xiàn)[6]指出采用發(fā)電機(jī)轉(zhuǎn)速反饋信號(hào)的轉(zhuǎn)速控制模式和采用風(fēng)輪轉(zhuǎn)速反饋信號(hào)的恒功率控制模式能提供良好電氣阻尼,抑制軸系振蕩。文獻(xiàn)[7]討論了在轉(zhuǎn)速控制策略下,控制器參數(shù)對(duì)軸系振蕩的影響。雙饋風(fēng)電機(jī)組通常采用高速軸轉(zhuǎn)速作為控制反饋,通過(guò)陷波器對(duì)反饋轉(zhuǎn)速做相應(yīng)頻率的濾波處理,剔除或減小控制環(huán)對(duì)扭振頻率的響應(yīng)來(lái)避免共振。對(duì)于濾波無(wú)法解決的振動(dòng)問(wèn)題,在發(fā)電機(jī)給定轉(zhuǎn)矩上附加一個(gè)與扭振波動(dòng)反相的額外轉(zhuǎn)矩 ,從而加大整個(gè)傳動(dòng)鏈的等效阻尼,抑制傳動(dòng)鏈扭轉(zhuǎn)振動(dòng)[8]。這兩種方式均需要以傳動(dòng)鏈的扭振頻率作為基礎(chǔ)進(jìn)行添加。

2 分析處理方法

2.1 離散傅里葉變換

通過(guò)離散傅里葉變換(DFT),能用連續(xù)信號(hào)處理不可能使用的方法來(lái)分析、操作和合成信號(hào)。DFT是一個(gè)確定離散信號(hào)序列中所包含的諧波或者頻率成分的數(shù)學(xué)工具。在時(shí)域中對(duì)連續(xù)信號(hào)進(jìn)行周期采樣就能得到離散序列,無(wú)論該序列的實(shí)際意義如何,DFT對(duì)離散序列的分析都是有意義的[9]。

假設(shè)x(t)是一個(gè)包含無(wú)數(shù)個(gè)復(fù)正弦的時(shí)域連續(xù)周期信號(hào),其傅里葉變換為

(1)

其傅里葉反變換為

(2)

由式(1)和式(2)可知,X(jw)是w的連續(xù)函數(shù),稱(chēng)為信號(hào)x(t)的頻譜密度函數(shù),簡(jiǎn)稱(chēng)頻譜。 計(jì)算機(jī)只能對(duì)離散的有限長(zhǎng)信號(hào)進(jìn)行頻譜分析,對(duì)傅里葉變換對(duì)進(jìn)行時(shí)域和頻域的離散化,即將t=nΔt和w=k2πΔf分別代入式(1)和式(2),可得DFT變換對(duì)為

(3)

(4)

因此,對(duì)任一有限長(zhǎng)時(shí)域序列,都可按式(3)在計(jì)算機(jī)上求其頻譜。

2.2 快速傅里葉變換

雖然DFT是確定時(shí)域序列頻率成分最直接的數(shù)學(xué)過(guò)程,但其運(yùn)算效率較低。例如式(3),求一點(diǎn)X(k),需要計(jì)算N次復(fù)數(shù)乘法,求兩點(diǎn)X(k),則需要計(jì)算N2次復(fù)數(shù)乘法。隨著DFT輸入點(diǎn)數(shù)增加到數(shù)百或數(shù)千,DFT需要的計(jì)算量就更大,這大幅影響了計(jì)算的實(shí)時(shí)性??焖俑道锶~變換(FFT)是DFT的一種快速算法,利用DFT的周期性和對(duì)稱(chēng)性,將一個(gè)N項(xiàng)序列(設(shè)N=2k,k為正整數(shù)),分為兩個(gè)N/2的子序列,這樣變換后運(yùn)算次數(shù)就變成N+N2/2次,以此類(lèi)推將這種一分為二的思想不斷進(jìn)行下去,直至分為兩兩一組的DFT運(yùn)算單元,則N點(diǎn)DFT變換就只需Nlog2次運(yùn)算[10]。FFT能確保在風(fēng)電機(jī)組控制系統(tǒng)內(nèi)實(shí)現(xiàn),且不對(duì)系統(tǒng)的運(yùn)行造成影響。

2.3 能量密度

通過(guò)FFT進(jìn)行時(shí)域到頻域的轉(zhuǎn)換后,為確定特征頻率,通常通過(guò)繪制功率譜來(lái)進(jìn)行分析,考慮到實(shí)際應(yīng)用的需求,本文提出通過(guò)計(jì)算能量密度的方式來(lái)判斷是否存在扭振和計(jì)算扭振頻率。

(5)

考慮到轉(zhuǎn)速波動(dòng)相對(duì)于實(shí)際轉(zhuǎn)速而言比較小,所以在進(jìn)行能量密度分析時(shí)將第一個(gè)值(直流分量)置0,即|F(0)|=0。計(jì)算能量密度

(6)

根據(jù)相應(yīng)能量密度尖峰數(shù)組序號(hào)可以得到相應(yīng)的頻率。

通過(guò)能量密度的大小來(lái)判斷是否存在相應(yīng)頻率的振動(dòng),同時(shí)能量密度將所有的頻率能量折算到相同的百分比內(nèi),有利于通過(guò)設(shè)定固定的閾值來(lái)判斷是否存在扭振現(xiàn)象,進(jìn)而得到相應(yīng)的扭振頻率。

3 分析結(jié)果和仿真驗(yàn)證

根據(jù)上文提出的分析方法在控制程序中實(shí)現(xiàn)并通過(guò)對(duì)現(xiàn)場(chǎng)采樣的數(shù)據(jù)進(jìn)行驗(yàn)證,實(shí)際轉(zhuǎn)速曲線(xiàn)如圖2~圖4所示,曲線(xiàn)的采樣周期為20 ms,為便于計(jì)算,在曲線(xiàn)中分別選取其中的1 024個(gè)連續(xù)點(diǎn)進(jìn)行計(jì)算。

圖2 典型的扭振現(xiàn)象轉(zhuǎn)速曲線(xiàn)

圖3 存在干擾信號(hào)的轉(zhuǎn)速曲線(xiàn)

圖4 正常無(wú)干擾轉(zhuǎn)速曲線(xiàn)

計(jì)算分析結(jié)果如圖5~圖7所示,從圖5可看出,圖2曲線(xiàn)中存在明顯的扭振現(xiàn)象,扭振頻率為2.1 Hz。圖3曲線(xiàn)所示的轉(zhuǎn)速雖然也有上下波動(dòng),但不是固定頻率額波動(dòng),圖4的曲線(xiàn)比較光滑,所以圖6和圖7的分析結(jié)果中均無(wú)明顯的扭振特征頻率。

圖5 扭振曲線(xiàn)能量密度

圖6 干擾信號(hào)曲線(xiàn)能量密度

圖7 正常曲線(xiàn)譜能量密度

4 結(jié)束語(yǔ)

通過(guò)FFT對(duì)發(fā)電機(jī)轉(zhuǎn)速進(jìn)行處理,使用能量密度的計(jì)算后能準(zhǔn)確的檢測(cè)傳動(dòng)鏈扭振并獲取扭振頻率,為傳動(dòng)鏈降載控制所需的濾波和加阻提供了數(shù)據(jù)依據(jù),并可提高控制精度,有效延長(zhǎng)風(fēng)機(jī)使用壽命。同時(shí),本文將不同頻率的能量密度折算到相同的比例之下,也便于在控制系統(tǒng)內(nèi)進(jìn)行量化的判斷和對(duì)比分析。

[1] 姚興佳,王曉東,單光坤,等.雙饋風(fēng)電機(jī)組傳動(dòng)系統(tǒng)扭振抑制自抗擾控制[J].電工技術(shù)學(xué)報(bào),2012,27(1):136-141.

[2] Burton T,Sharpe D,Jenkins N,et al.Wind energy handbook[M].New York: John Wiley & Sons,Ltd,2001

[3] 邢作霞,劉穎明,鄭瓊林,等.基于阻尼濾波的大型風(fēng)電機(jī)組柔性振動(dòng)控制技術(shù)[J].太陽(yáng)能學(xué)報(bào),2008,29(11):1425-1431.

[4] Eric Van Der Hooft,Schaak P.Wind turbine control algorithm[R].Netherlands:Energy Research Center of the Netherlands,2003.

[5] Akhmatov V,Knudsen H,Nielsen A H.Advanced simulation of windmills in the electric power supply [J].Electrical Power and Energy Systems,2000,22(6):421-434.

[6] 張琛,李征,高強(qiáng),等.雙饋風(fēng)電機(jī)組的不同控制策略對(duì)軸系振蕩的阻尼作用[J].中國(guó)電機(jī)工程學(xué)報(bào),2013,33(27):135-144.

[7]AkhmatovV.Variable-speedwindturbineswithdoubly-fedinductiongeneratorsPartII:powersystemstability[J].WindEngineering,2002,26(3):171-188.

[8] 何玉林,蘇東旭,黃帥,等.變速變槳風(fēng)力發(fā)電機(jī)組的槳距控制及載荷優(yōu)化[J].電力系統(tǒng)保護(hù)與控制,2011,39(16):95-100.

[9] 王世一.數(shù)字信號(hào)處理[M].北京:北京理工大學(xué)出版社,1997.

[10]GenmtlemanWM,SandeG.Fastfouriertransformforfunandprofit[C].Germany:AFIPSProceedingFallJointComputerConference,1966.

Application of FFT in Adaptive Control of Large Wind Turbines

WU Changming, WANG Wenzhuo, GAO Kun, LU Jian

(NARI Technology Development Co. Ltd., Nanjing 211100, China)

The filtering and damping in the control strategies of drive train load reduction in large wind turbines requires the acquisition of the accurate torsional vibration frequency, which is difficult to obtain in running wind turbines. The article proposes a method for detecting the torsional vibration and obtaining the vibration frequency by analyzing the generator speed by FFT and calculating the energy density. Finally, actual data are calculated by this method, and the results verify that the method can effectively monitor torsional vibration and calculate the vibration frequency.

FFT; Torsional vibration; adaptive control; energy density

2016- 01- 18

鄔昌明(1982-),男,碩士,工程師。研究方向:風(fēng)力發(fā)電機(jī)組控制技術(shù)。

10.16180/j.cnki.issn1007-7820.2016.11.019

TM614

A

1007-7820(2016)11-062-04

猜你喜歡
傳動(dòng)鏈傳動(dòng)系統(tǒng)阻尼
佛蘭德傳動(dòng)系統(tǒng)有限公司
汽車(chē)的大動(dòng)脈
拖拉機(jī)內(nèi)燃電傳動(dòng)系統(tǒng)
N維不可壓無(wú)阻尼Oldroyd-B模型的最優(yōu)衰減
關(guān)于具有阻尼項(xiàng)的擴(kuò)散方程
具有非線(xiàn)性阻尼的Navier-Stokes-Voigt方程的拉回吸引子
動(dòng)力刀架傳動(dòng)鏈動(dòng)力學(xué)研究及影響因素分析
阻尼連接塔結(jié)構(gòu)的動(dòng)力響應(yīng)分析
ACS6000中壓傳動(dòng)系統(tǒng)在鋼管軋制中的應(yīng)用
6MW海上風(fēng)機(jī)不同傳動(dòng)鏈布置分析