段倩雯,成 慧,侯扶江
(蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020)
?
景泰綠洲3種小谷物的產(chǎn)草量與牧草營養(yǎng)成分預(yù)測
段倩雯,成 慧,侯扶江
(蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020)
為了預(yù)測景泰綠洲春小麥(Triticumaestivum)、燕麥(Avenasativa)、黑麥(Secalecereale)的產(chǎn)草量和營養(yǎng)品質(zhì),通過田間試驗,測得牧產(chǎn)草量、株高和分蘗,室內(nèi)測定粗蛋白、粗脂肪、中性洗滌纖維、酸性洗滌纖維、粗灰分和可溶性碳水化合物,分析各指標(biāo)之間的相關(guān)性。結(jié)果表明,收獲干草的3種小谷物分蘗和株高均與可溶性碳水化合物之外其它5個營養(yǎng)指標(biāo)存在顯著相關(guān)性(P<0.05),模擬輪牧的春小麥和黑麥株高與營養(yǎng)指標(biāo)均無相關(guān)性(P>0.05),燕麥和黑麥的分蘗與6個營養(yǎng)指標(biāo)均呈顯著相關(guān)(P<0.05)。建立了根據(jù)株高預(yù)測產(chǎn)草量和營養(yǎng)品質(zhì)的模型、用分蘗預(yù)測牧草營養(yǎng)品質(zhì)的模型、用產(chǎn)草量預(yù)測牧草營養(yǎng)品質(zhì)的模型、用分蘗和產(chǎn)草量兩個因子綜合預(yù)測營養(yǎng)品質(zhì)的模型。經(jīng)過與實測值對比,各預(yù)測模型的準(zhǔn)確性均較高。
黑麥;春小麥;燕麥;刈割;放牧;干草
小麥(Triticumaestivum)、燕麥(Avenasativa)、黑麥(Secalecereale)是全球廣泛種植的一年生禾本科作物,對環(huán)境具有廣泛適應(yīng)性、生長快、耐刈割、再生能力強(qiáng)[1-3],產(chǎn)草量、粗蛋白和消化率高[1,4-7]。它們在草地農(nóng)業(yè)發(fā)達(dá)的國家作為多功能作物,既滿足人類對植物性食物需求,通過放牧或刈割通過草食家畜轉(zhuǎn)化為畜產(chǎn)品,滿足人類對動物性食物的需求[8-15]。小谷物常在冬春季或其它作物生長間期用作覆蓋作物,在其生長期間多次刈割或放牧利用,能夠有效控制病蟲害[16-17],阻止水土流失,營養(yǎng)體生產(chǎn)可以延長耕地的生長時間,提高降水、光能和土地利用率[4,18-19]。小谷物參與草田輪作體系[16],豐富農(nóng)業(yè)系統(tǒng)的多樣性,增強(qiáng)其穩(wěn)定性[20],提高經(jīng)濟(jì)和生態(tài)效益[16,21-22]。我國小谷物用于籽實生產(chǎn)歷史悠久,但隨著耕地農(nóng)業(yè)向草地農(nóng)業(yè)轉(zhuǎn)型,國內(nèi)開始研究小谷物的飼草生產(chǎn)[1,23-26]。
國內(nèi)外對飼草作物的產(chǎn)量和營養(yǎng)成分等預(yù)測有大量研究。在大尺度上,常常建立飼草生育期主要氣候因子與飼產(chǎn)草量的關(guān)系模型,以預(yù)測產(chǎn)草量[27-28];或者,使用遙感技術(shù)反演葉面積指數(shù)(LAI)間接獲取生物量信息,建立遙感信息和飼草生育期各指標(biāo)的關(guān)聯(lián)性,預(yù)測牧草飼用成分[29-31]。在中小尺度上,一般通過飼草作物群體指標(biāo)與氮營養(yǎng)狀況預(yù)測牧草種子產(chǎn)量和品質(zhì)[3]。也有利用CROPWAT模型、DSSAT模型和AquaCrop模型等預(yù)測飼產(chǎn)草量[32-34];另外,還有通過飼草的化學(xué)成分和體外發(fā)酵特點來預(yù)測飼草的營養(yǎng)成分[35-39]。但利用飼草作物株高、分蘗等形態(tài)指標(biāo)預(yù)測牧草產(chǎn)草量和品質(zhì)的研究相對較少。為此,在景泰綠洲開展春小麥、燕麥、黑麥的模擬輪牧試驗,建立預(yù)測其產(chǎn)量和品質(zhì)的模型,力圖為我國推進(jìn)糧改飼、三元種植結(jié)構(gòu)提供理論與技術(shù)。
1.1 試驗區(qū)自然概況
景泰綠洲地處甘、寧、蒙三省(區(qū))交匯處,是黃土高原、青藏高原與西北內(nèi)陸干旱區(qū)的交錯地帶,為引黃灌區(qū)。研究區(qū)設(shè)在蘭州大學(xué)景泰草地農(nóng)業(yè)試驗站,位于景泰綠洲中部(103°33′ E,36°43′ N),屬典型溫帶大陸性季風(fēng)氣候,年平均氣溫8.6 ℃,晝夜溫差大,年降水量185 mm,年平均蒸發(fā)量3 081 mm,無霜期159 d,年日照時數(shù)2 718.3 h,≥0 ℃年積溫3 300~3 620 ℃·d,濕潤度K值為0.51。在草原綜合順序分類法中屬微溫干旱溫帶半荒漠類[40],優(yōu)勢農(nóng)業(yè)系統(tǒng)為作物/天然草地-家畜綜合生產(chǎn)系統(tǒng)[16]。
1.2 試驗小區(qū)設(shè)置
參試小谷物分別為春小麥“永良四號”、燕麥“林娜”、黑麥“甘引一號”。完全隨機(jī)區(qū)組設(shè)計,每小區(qū)面積為4.5 m×9 m,小區(qū)間距1 m,4次重復(fù),區(qū)組間距2 m。2010年3月23日播種,播種量375 kg·hm-2,行距25 cm,播深2.5 cm。4月6日出苗。
每小區(qū)平均分成兩個裂區(qū)。一個裂區(qū)每20 d刈割一次,以模擬家畜輪牧(simulated grazing,SG),2010年5月23日首次刈割,留茬高度8 cm,7月21日最后1次齊地面刈割,整個生長期間共刈割4次。播種后、每次刈割后灌水,試驗期間共計灌水7 500 m3·hm-2,每次灌水后追施尿素,總計225 kg·hm-2。另一裂區(qū)全株收獲做為干草(making hay,MH),灌水量與施肥量同模擬輪牧裂區(qū),并且與模擬輪牧裂區(qū)每次刈割同步測定生長狀況[20]。其它管理同當(dāng)?shù)剞r(nóng)戶。
1.3 測定指標(biāo)
每次刈割時,在每個裂區(qū)做2個1 m×1 m樣方,SG裂區(qū)刈割高度同上,MH裂區(qū)齊地面刈割。草樣分為兩份:1份105 ℃烘至恒重,測定產(chǎn)草量;另1份65 ℃烘48 h,粉碎后過0.425 mm 篩,分析中性洗滌纖維(NDF)、酸性洗滌纖維(ADF)、粗纖維(crude fiber,CF)、粗蛋白(crude protein,CP)、粗脂肪(ether extract,EE)、可溶性碳水化合物(water soluble carbohydrate,WSC)、粗灰分(crude ash,CA)等[12]。
1.4 數(shù)據(jù)處理
用SPSS 21.0,對3種小谷物的產(chǎn)草量、分蘗、株高、CP、EE、NDF、ADF、CA和WSC進(jìn)行相關(guān)性分析,以及回歸方程斜率和截距的差異顯著性比較,若顯著性無差異將春小麥、燕麥和黑麥的數(shù)據(jù)合并后擬合,用Microsoft Excel 2010軟件繪圖。
2.1 產(chǎn)量和營養(yǎng)成分各指標(biāo)之間的相關(guān)性
春小麥?zhǔn)斋@干草,WSC與產(chǎn)草量、分蘗、CP、EE、CA無顯著相關(guān)性(P>0.05),與株高、NDF和ADF指標(biāo)顯著相關(guān)(P<0.05)或極顯著(P<0.01)(表1)。春小麥模擬輪牧,產(chǎn)草量、分蘗與株高三者之間除產(chǎn)草量與株高相關(guān)性不顯著外(P>0.05),其它均相關(guān)性顯著(P<0.05),分蘗與粗蛋白、粗脂肪、中性洗滌纖維顯著相關(guān)(P<0.05)或極顯著相關(guān)(P<0.01)(表1)。可見,春小麥?zhǔn)斋@干草對WSC與其它營養(yǎng)成分指標(biāo)之間的關(guān)系影響較大。
燕麥?zhǔn)斋@干草,除了和CA與EE,WSC與分蘗、株高、ADF和CA之間相關(guān)關(guān)系不顯著(P>0.05),其余兩兩指標(biāo)間的相關(guān)性均達(dá)到顯著(P<0.05)或極顯著水平(P<0.01)(表2)。燕麥模擬輪牧,產(chǎn)草量除與株高無顯著相關(guān)性外,與其它指標(biāo)均達(dá)到極顯著水平(P<0.01);分蘗除與株高無顯著相關(guān)關(guān)系外,與其它指標(biāo)均達(dá)到極顯著相關(guān)水平(P<0.01);株高除與CP和ADF顯著相關(guān)外(P<0.05),與其它指標(biāo)均無顯著相關(guān)性;其余各營養(yǎng)成分指標(biāo)間均存在顯著(P<0.05)或極顯著(P<0.01)相關(guān)(表2)。 黑麥?zhǔn)斋@干草,產(chǎn)草量除了與WSC無顯著相關(guān)外,與其它指標(biāo)極顯著相關(guān),WSC與分蘗、CP、和CA之間無顯著相關(guān)(P>0.05)外,與株高、NDF和ADF的相關(guān)性均顯著(P<0.05)(表3);模擬家畜輪牧,黑麥產(chǎn)草量和分蘗均除株高外的其它指標(biāo)均極顯著相關(guān)(P<0.01),株高與其它營養(yǎng)成分無顯著相關(guān),其余各營養(yǎng)成分指標(biāo)間均極顯著(P<0.01)相關(guān)(表3)。
2.2 根據(jù)株高預(yù)測產(chǎn)草量和營養(yǎng)成分
2.2.1 根據(jù)株高預(yù)測產(chǎn)草量 隨株高的增加收獲干草的產(chǎn)草量呈對數(shù)上升,黑麥和春小麥、燕麥的升幅(斜率)差異顯著(P黑麥-春小麥<0.001,P黑麥-燕麥=0.020),春小麥和燕麥差異不顯著(P>0.05);模擬輪牧的3種小谷物產(chǎn)草量隨株高增加呈對數(shù)上升,三者之間的升幅差異不顯著(P>0.05)(圖1)。
2.2.2 根據(jù)株高預(yù)測營養(yǎng)成分 收獲干草的3種小谷物CP和EE隨著株高的增加呈對數(shù)減少趨勢,燕麥和黑麥的降幅差異不顯著(P>0.05),均與春小麥間差異顯著,(CP:P春小麥-燕麥<0.001,P燕麥-黑麥=0.041,P春小麥-黑麥<0.001,EE:P春小麥-燕麥=0.003,P春小麥-黑麥<0.001);NDF隨株高呈冪函數(shù)上升,燕麥和黑麥的升幅沒有顯著差異(P>0.05),二者與春小麥間差異顯著(P春小麥-燕麥=0.024,P春小麥-黑麥<0.001);ADF隨株高呈顯著對數(shù)上升趨勢,春小麥和燕麥的升幅差異顯著(P春小麥、燕麥=0.014);隨株高的增加,CA顯著呈線性下降,3種小谷物間的降幅無顯著差異(P>0.05);3種小谷物的WSC呈指數(shù)上升趨勢,燕麥與春小麥、黑麥的升幅存在顯著性差異(P春小麥-燕麥=0.015,P燕麥-黑麥=0.028),春小麥與黑麥之間差異不顯著(P>0.05)(圖2)。 模擬輪牧下,隨著株高的增加,燕麥和黑麥的CA呈冪函數(shù)上升趨勢,春小麥呈冪函數(shù)下降趨勢;WSC呈線性減少,燕麥和春小麥、黑麥的降幅(斜率)存在顯著性差異(P春小麥-燕麥=0.015,P燕麥-黑麥=0.028),春小麥和黑麥的降幅差異不顯著(P>0.05)(圖3)。
表1 收獲干草和模擬家畜輪牧兩種利用方式下春小麥各指標(biāo)間相關(guān)性分析Table 1 Relationship between the indices of spring wheat under condition of making hay and simulated grazing
注:FY,產(chǎn)草量;TD,分蘗;PH,株高;CP,粗蛋白;EE,粗脂肪;NDF,中性洗滌纖維;ADF,酸性洗滌纖維;CA,粗灰分;WSC,可溶性碳水化合物。*相關(guān)性達(dá)到顯著水平(P<0.05),**相關(guān)性達(dá)到極顯著水平(P<0.01)。右上部分為收獲干草;左下半部分為模擬家畜輪牧。下同。
Note: FY, forage yield; TD, tiller density; PH, plant height; CP, crude protein; EE, ether extract; NDF, neutral detergent fiber; ADF, acid detergent fiber; CA, crude ash; WSC, water soluble carbohydrate. *, significant correlation at 0.05 level, **, significant correlation at 0.01 level. Making hay (MH) in the upper right; Simulated rotational grazing (SG) in the lower left. The same below.
表2 收獲干草和模擬家畜輪牧兩種利用方式下燕麥的各指標(biāo)間相關(guān)性分析Table 2 Relationship between the indices of oat under condition of making hay and simulated grazing
表3 收獲干草和模擬家畜輪牧兩種利用方式黑麥的各指標(biāo)間相關(guān)性分析Table 3 Relationship between the indices of rye under condition of making hay and simulated grazing
圖1 株高與產(chǎn)草量之間關(guān)系Fig.1 The relationship between plant height and forage yield
注:不同大、小寫字母分別表示3種作物的斜率間差異極顯著(P<0.01)或顯著(P<0.05)。若3種作物之間存在顯著相關(guān)性且無斜率差異,則將3種作物數(shù)據(jù)合并后擬合。下同。
Note:Different capital and lower case letters indicate significant difference of slopes of three crops at 0.01 and 0.05 level, respectively. If there is significant correlation among three kinds of crops and slope has not difference, all data will be merged and fitted. The same below.
2.3 根據(jù)分蘗預(yù)測產(chǎn)草量
隨分蘗的增加收獲干草的3種小谷物產(chǎn)草量呈指數(shù)下降,黑麥和春小麥、燕麥的降幅(斜率)差異顯著(P黑麥-春小麥=0.005,P黑麥-燕麥=0.001),春小麥和燕麥差異不顯著(P>0.05)(圖4);模擬輪牧的3種小谷物產(chǎn)草量隨分蘗增加呈對數(shù)下降,黑麥和春小麥、燕麥的降幅(斜率)差異不顯著(P>0.05),春小麥和燕麥有顯著性差異(P燕麥-春小麥=0.024)。
圖2 收獲干草條件下株高與營養(yǎng)成分指標(biāo)之間關(guān)系Fig.2 Relationship between plant height and forage ingredient under condition of making hay
圖3 模擬輪牧條件下株高與營養(yǎng)成分指標(biāo)之間關(guān)系Fig.3 Relationship between plant height and forage ingredient under condition of simulated grazing
圖4 收獲干草和模擬輪牧兩種條件下分蘗與產(chǎn)草量之間關(guān)系Fig.4 Relationship between tiller density and forage yield under condition of making hay and simulated grazing
圖5 收獲干草條件下分蘗與營養(yǎng)成分指標(biāo)之間關(guān)系Fig.5 Relationship between tiller density and forage ingredient under condition of making hay
2.4 根據(jù)分蘗預(yù)測牧草營養(yǎng)成分
隨著分蘗的增加,3種小谷物收獲干草的CP呈對數(shù)上升,燕麥和黑麥的升幅差異不顯著(P>0.05),均與春小麥差異顯著(P春小麥-燕麥=0.002,P春小麥-黑麥=0.002);EE呈指數(shù)增加,春小麥與燕麥、黑麥差異顯著(P春小麥-燕麥=0.004,P春小麥-黑麥=0.002);NDF和ADF隨分蘗數(shù)增加呈線性下降,3種小谷物間均無顯著性差異(P>0.05);CA呈線性上升趨勢,3種小谷物之間的降幅差異不顯著(P>0.05)(圖5)。
隨著分蘗的增加,3種小谷物中CP呈線性上升,三者間升幅(斜率)差異均不顯著(P>0.05)(圖6);EE呈指數(shù)上升趨勢,燕麥和春小麥、黑麥的升幅存在顯著差異(P春小麥-燕麥=0.038,P燕麥-黑麥=0.006),春小麥和黑麥升幅的差異不顯著(P>0.05);NDF呈線性減少,三者間降幅均無顯著性差異(P>0.05);ADF呈線性下降趨勢,三者之間降幅斜率差異不顯著(P>0.05);燕麥和黑麥的CA呈冪函數(shù)增加,春小麥的CA隨分蘗的變化規(guī)律不顯著;WSC呈線性下降趨勢,三者之間的降幅均無顯著性差異(P>0.05)。
圖6 模擬輪牧條件下分蘗與營養(yǎng)成分指標(biāo)之間關(guān)系Fig.6 Relationship between tiller density and forage ingredient under condition of simulated grazing
2.5 根據(jù)產(chǎn)草量預(yù)測營養(yǎng)成分
隨著產(chǎn)草量的增加,牧草的CP和EE呈對數(shù)下降,春小麥和燕麥、黑麥降幅(斜率)差異不顯著(P>0.05),燕麥和黑麥降幅存在極顯著差異(CP:P燕麥-黑麥<0.001,EE:P燕麥-黑麥<0.001);NDF和ADF呈多項式變化,三者之間的增幅差異不顯著(P>0.05);CA呈對數(shù)減少,3種牧草之間差異不顯著(P>0.05);WSC呈多項式變化,先增加后減少,三者之間變化無顯著性差異(P>0.05)(圖7)。
模擬輪牧條件下,隨著產(chǎn)草量的增加3種小谷物中CP和EE呈線性下降趨勢,三者之間的降幅均無顯著性差異(P>0.05);NDF和ADF呈多項式規(guī)律變化,增幅差異不顯著(P>0.05);CA呈對數(shù)減少,三者之間的降幅斜率無顯著性差異(P>0.05);WSC呈線性增加,增幅差異不顯著(P>0.05)(圖8)。
圖7 收獲干草條件下產(chǎn)草量與營養(yǎng)成分指標(biāo)間關(guān)系Fig.7 Relationship between forage yield and forage ingredient under condition of making hay
2.6 根據(jù)株高和分蘗預(yù)測產(chǎn)量和營養(yǎng)成分
通過產(chǎn)草量和分蘗建立營養(yǎng)成分的預(yù)測模型(表4)。
景泰綠洲春小麥、燕麥和黑麥的形態(tài)特征和營養(yǎng)品質(zhì)性狀之間有顯著的相關(guān)性(表1-3)(P<0.05),能夠相互預(yù)測(圖1-圖11,表4)(P<0.05)。美國的學(xué)者[34-35]利用株高預(yù)測NDF,建立紫花苜蓿的NYPQ(New York Predictive Quality)和NYHT(New York Height)預(yù)測模型,用株高預(yù)測NDF[41-42],國內(nèi)一般通過飼草作物群體指標(biāo)與氮營養(yǎng)狀況預(yù)測牧草種子產(chǎn)量和品質(zhì)[3],也有研究利用CROPWAT模型、DSSAT模型和AquaCrop模型等預(yù)測飼產(chǎn)草量[32-34],本研究通過產(chǎn)草量和分蘗擬合的多因子預(yù)測模型預(yù)測3種小谷物的CP結(jié)果與實測值比較(圖9,表4),春小麥(MH:CP=-0.543FY+0.017TD-1.1542;SG:CP=-1.576FY+0.000011TD+21.893)在兩種利用方式下粗蛋白的預(yù)測值與實測值相近,通過產(chǎn)草量和分蘗擬合方程的擬合系數(shù)分別為0.971 4、0.676 1;燕麥(MH:CP=-0.990FY+0.005TD+15.824;SG:CP=-1.028FY-0.001TD+23.133)中MH的預(yù)測值略大于實測值,SG的預(yù)測值與實測值相近;黑麥(MH:CP=-2.130FY-0.002TD+25.314;SG:CP=-0.604FY+0.002TD+15.632)在兩種利用方式的粗蛋白的預(yù)測值與實測值相近,通過產(chǎn)草量和分蘗擬合方程的擬合系數(shù)分別為0.946 5、0.748 4。說明本研究中方程可以很好地預(yù)測3種小谷物的營養(yǎng)品質(zhì),春小麥和黑麥兩種利用方式的實測值均有規(guī)律的分布在直線兩側(cè),而燕麥的實測值與預(yù)測值差距稍大,說明春小麥和黑麥預(yù)測效果更好。
圖8 模擬輪牧條件下產(chǎn)草量與營養(yǎng)成分指標(biāo)間關(guān)系Fig.8 Relationship between forage yield and ingredient under condition of simulated grazing
表4 兩種不同利用方式3種牧草的飼用成分與產(chǎn)量多元回歸方程Table 4 The multiple regression equation of three forages ingredient and yield under condition of making hay and simulated grazing
圖9 三種小谷物粗蛋白的實測值與預(yù)測值關(guān)系Fig.9 Relationship between observed value and predicted value of crude protein of three small grains
References:
[1] 成慧.幾種小谷物和高糖黑麥草飼用價值評價.蘭州:蘭州大學(xué)碩士學(xué)位論文,2011.
Chen H.The evaluation of several small grain crops and high sugar ryegrass.Master Thesis.Lanzhou:Lanzhou University,2011.(in Chinese)
[2] 謝琮.基于小麥群體指標(biāo)及氮營養(yǎng)狀況的籽粒產(chǎn)量和品質(zhì)預(yù)測研究.南京:南京農(nóng)業(yè)大學(xué)碩士學(xué)位論文,2011.
Xie Z.Predicting wheat grain yield and quality based on population indexes and nitrogen nutrient status.Master Thesis.Nanjing:Nanjing Agricultural University,2011.(in Chinese)
[3] 李春喜,葉潤榮,周玉碧,林麗,孫菁,張法偉,彭立新.高寒牧區(qū)不同燕麥品種飼產(chǎn)草量及品質(zhì)的研究.草地學(xué)報,2014,22(4):882-888.
Lin C X,Ye R R,Zhou Y B,Lin L,Sun J,Zhang F W,Peng L X.Research on forage yields and qualities of different oat (Avenasativa) varieties in alpine pastoral regions.Prataculturae Sinica,2014,22(4):882-888.(in Chinese)
[4] 康愛民.論種草養(yǎng)畜的作用與地位.現(xiàn)代農(nóng)業(yè)科技,2010(5):310-311.
Kang A M.The theory of function and status of growing grass and stock breeding.Modern Agricultural Science and Technology,2010(5):310-311.(in Chinese)
[5] 陳艷,王之盛,張曉明,吳發(fā)莉,鄒華圍.常用粗飼料營養(yǎng)成分和飼用價值分析.草業(yè)學(xué)報,2015,24(5):117-125.
Chen Y,Wang Z S,Zhang X M,Wu F L,Zou H W.Analysis of the nutritional components and feeding values of commonly used roughages.Acta Prataculturae Sinica,2015,24(5):117-125.(in Chinese)
[6] 康健,匡彥蓓,盛捷.10種作物秸稈的營養(yǎng)品質(zhì)分析.草業(yè)科學(xué),2014,31(10):1951-1956.Kang J,Kuang Y B,Sheng J.Analysis of nutritive of 10 forages straw.Pratacultural Science,2014,31(10):1951-1956.(in Chinese)
[7] 楊天育,何繼紅,董孔軍,任瑞玉,張磊,柴守璽.6種作物秸稈飼草營養(yǎng)品質(zhì)的分析與評價.西北農(nóng)業(yè)學(xué)報,2011,20(11):39-41.
Yang T Y,He J H,Dong K J,Ren R Y,Zhang L,Chai S X.Analysis and evaluation of nutritive composition of six kinds of crop stalks.Acta Agriculturae Boreali-Occidentalis Sinica,2011,20(11):39-41.(in Chinese)
[8] 陸大彪.世界燕麥生產(chǎn).世界農(nóng)業(yè),1986(3):17-18.
Lu D B.World Oat production.World Agriculture,1986(3):17-18.(in Chinese)
[9] 趙世鋒,巴圖巴根,任長忠,秦佳濱,滿都拉.阿旗草用燕麥生產(chǎn)調(diào)查及種植前景分析.農(nóng)學(xué)學(xué)報,2015,5(12):86-93.
Zhao S F,Batubagen,Ren C Z,Qin J B,Man D L.Forage oat production investigation and analysis of planting prospect in Ar Horqin.Journal of Agriculture,2015,5(12):86-93.(in Chinese).
[10] 曲祥春,何中國,郝文媛,欒天浩,李玉發(fā).我國燕麥生產(chǎn)現(xiàn)狀及發(fā)展對策.雜糧作物,2006,26(3):233-235.
Qu X C,He Z G,Hao W Y,Luan T H,Li Y F.Productive status and developing countermeasure of oat in China.Rain Fed Crops,2006,26(3):233-235.(in Chinese)
[11] 趙廣才,常旭虹,王德梅,楊玉雙,馮金鳳.中國小麥生產(chǎn)發(fā)展?jié)摿ρ芯繄蟾?作物雜志,2012(3):1-5.
Zhao G C,Chang X H,Wang D M,Yang Y S,Feng J F.Research report on development of China’s wheat production potential.Crops,2012(3):1-5.(in Chinese)
[12] 田莉華.小麥糧飼兼用飼草生產(chǎn)性能和籽粒生產(chǎn)維穩(wěn)機(jī)制的研究.蘭州:蘭州大學(xué)博士學(xué)位論文,2014.
Tian L H.The forage productivity,stability mechanism of the grain production of dual-purposed wheat.PhD Thesis.Lanzhou:Lanzhou University,2014.(in Chinese)
[13] 傅鮮桃,楊春華,陳靈鷙.高效的一年生飼草生產(chǎn)系統(tǒng)研究.中國草學(xué)會牧草育種專業(yè)委員會2007年學(xué)術(shù)研討會論文集.四川:中國草學(xué)會,2007:346-351.
Fu X T,Yang C H,Chen L Z.Study on efficient production rotation systems of annual forages.Proceedings of the Symposium on Chinese Grassland Society Forage Breeding in 2007.Sichuan:Chinese Grassland Society,2007:346-351.(in Chinese)
[14] 史忠恒,律寶春,孫慶亮.小黑麥、黑麥生產(chǎn)在我市種植結(jié)構(gòu)調(diào)整中的戰(zhàn)略地位.北京農(nóng)業(yè),2001(8):32-33.
Shi Z H,Lyu B C,Sun Q L.Strategic position of triticale,rye production in the planting structure adjustment in Beijing.Beijing Agriculture,2001(8):32-33.(in Chinese)
[15] 任繼周.從秸稈說起——兼及牧草、飼草、芻草.草業(yè)科學(xué),2007,24(6):74-75.
[16] 侯扶江,南志標(biāo),任繼周.作物-家畜綜合生產(chǎn)系統(tǒng).草業(yè)學(xué)報,2009,18(5):211-234.
Hou F J,Nan Z B,Ren J Z.Integrated crop-livestock production system.Prataculturae Sinica,2009,18(5):211-234.(in Chinese)
[17] 張英俊,任繼周,王明利,楊高文.論牧草產(chǎn)業(yè)在我國農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)中的地位和發(fā)展布局.中國農(nóng)業(yè)科技導(dǎo)報,2013,15(4):61-71.
Zhang Y J,Ren J Z,Wang M L,Yang G W.Discussion on the position and development distribution of forage industry in China’s agricultural industry structure.Journal of Agricultural Science and Technology,2013,15(4):61-71.(in Chinese)
[18] 曹正梅.黑麥和燕麥覆蓋下表面能的分配平衡.水土保持應(yīng)用技術(shù),1999(3):24-27.
Cao Z M.The distribution balance of the surface energy covered with rye and oats.Technology of Soil and Water Conservation,1999(3):24-27.(in Chinese)
[19] 師尚禮,趙桂琴,姚拓.農(nóng)牧交錯帶特征分析與苜蓿燕麥種植區(qū)域的形成.草原與草坪,2005(6):17-20.
Shi S L,Zhao G Q,Yao T.Features of agro-grassland crossing belt and the formation of alfalfa-oat planting zone.Grassland and Turf,2005(6):17-20.(in Chinese)
[20] 成慧,常生華,陳先江,侯扶江.引黃灌區(qū)模擬輪牧對春小麥、燕麥和黑麥飼草生產(chǎn)的影響.草業(yè)學(xué)報,2015,24(6):92-98.
Cheng H,Chang S H,Chen X J,Hou F J.Influence of simulated rotational grazing on the forage production of spring wheat,oats and rye in the Yellow River irrigation area.Prataculturae Sinica,2015,24(6):92-98.(in Chinese)
[21] 王曉燕.隴東黃土高原作物-家畜綜合系統(tǒng)能量與物質(zhì)平衡特征.蘭州:蘭州大學(xué)碩士學(xué)位論文,2008.
Wang X Y.Chatacteristics of energy and matter balance in the integrated crop-livestock production system in Loess Plateau of eastern Gansu.Master Thesis.Lanzhou:Lanzhou University,2008.(in Chinese)
[22] 牛伊寧.隴東黃土高原作物-家畜系統(tǒng)生產(chǎn)力研究.蘭州:蘭州大學(xué)博士學(xué)位論文,2010.
Niu Y N.Productivity of crop-livestock production system in the Longdong Loess Plateau,China.PhD Thesis.Lanzhou:Lanzhou University,2010.(in Chinese)
[23] 謝崇文.提高秸稈飼用價值的原理和方法.寧夏農(nóng)林科技,1987(3):50-53.
[24] 喬玉梅.禾本科牧草與大豆秸稈飼用產(chǎn)量和營養(yǎng)品質(zhì)的研究.沈陽:沈陽農(nóng)業(yè)大學(xué)博士學(xué)位論文,2008.
Qiao Y M.Yield and quality of soybean straw and gramineal forage.PhD Thesis.Shenyang:Shenyang Agricultural University,2008.(in Chinese)
[25] 曹志軍,史海濤,李德發(fā),李勝利.中國反芻動物飼料營養(yǎng)價值評定研究進(jìn)展.草業(yè)學(xué)報,2015,24(3):1-19.
Cao Z J,Shi H T,Li D F,Li S L.Progress on nutritional evaluation of ruminant feedstuff in China.Acta Prataculturae Sinica,2015,24(3):1-19.(in Chinese)
[26] 孫小凡.麥類作物青貯飼料營養(yǎng)價值研究.楊凌:西北農(nóng)林科技大學(xué)碩士學(xué)位論文,2003.
Sun X F.Study on the nutritive value of triticeae crops.Master Thesis.Yangling:Northwest Sci-Tech University of Agriculture and Forestry,2003.(in Chinese)
[27] 吳發(fā)莉,王之盛,楊勤,石紅梅,申俊華,胡瑞,鄒華圍.甘南碌曲和合作地區(qū)冬夏季高寒天然牧草生產(chǎn)特性、營養(yǎng)成分和飼用價值分析.草業(yè)學(xué)報,2014,23(4):31-38.
Wu F L,Wang Z S,Yang Q,Shi H M,Shen J H,Hu R,Zou H W.Analysis of growth characteristics,nutritional components and feeding values of native forage grass from the high-cold steppes in the Luqu and Hezuo region of Gannan in summer and winter.Acta Prataculturae Sinica,2014,23(4):31-38.(in Chinese)
[28] 李國軍,張勝智,吉哲君.瑪曲草原氣候生態(tài)環(huán)境變化及牧產(chǎn)草量灰色預(yù)測.干旱氣象,2009,27(1):61-65.
Li G J,Zhang S Z,Ji Z J.Environment variation characteristic and gray-relation forecast on pasture’s yield in Maqu grassland.Arid Meteorology,2009,27(1):61-65.(in Chinese)
[29] 龐亞娟,劉興波,賈玉山,格根圖,金花.遙感技術(shù)應(yīng)用于天然草地牧草飼用價值評價系統(tǒng)中的探討.草原與草業(yè),2006,18(3):8-10.
Pang Y J,Liu X B,Jia Y S,Gegengtu,Jin H.The discussion of application of remote sensing technology on natural grassland forage value evaluation system.Grassland and Prataculture,2006,18(3):8-10.(in Chinese)
[30] 安海波,李斐,趙萌莉,劉亞俊.基于優(yōu)化光譜指數(shù)的牧草生物量估算.光譜學(xué)與光譜分析,2015(11):3155-3160.
An H B,Li F,Zhao M L,Liu Y J.Optimized spectral indices based estimation of forage grass biomass.Spectroscopy and Spectral Analysis,2015(11):3155-3160.
[31] 杜文勇,何雄奎,Shamaila Z,胡振方,曾愛軍,Muller J.冬小麥生物量和產(chǎn)量的AquaCrop模型預(yù)測.農(nóng)業(yè)機(jī)械學(xué)報,2011(4):174-178.
Du W Y,He X K,Shamaila Z,Hu Z F,Zeng A J,Muller J.Yield and biomass prediction testing of AquaCrop model for winter wheat.Transactions of the Chinese Society for Agricultural Machinery,2011(4):174-178.(in Chinese)
[32] Dirk R,Pasquale S,Theodorec H,Elias F.AquaCrop——The FAO crop model to simulate yield response to water:Ⅱ.Main algorithms and software description.Agronomy Journal,2009,101(3):438-447.
[33] Pasquale S,Theodorec H,Dirk R,Elias F.AquaCrop——The FAO crop model to simulate yield response to water:Ⅰ.Concepts and underlying principles.Agronomy Journal,2009,101(3):426-437.
[34] Moujahed1 N,Lhelfa A,Bouaziz Y,Ch.Ben Mustapha C,Kayouli C.Prediction of feeding value of some Tunisian hays using chemical composition and in vitro fermentation characteristics.In:Ranilla M J,Carro M D,Ben Salem H,Morand-Fehy P.(eds).Challenging Strategies to Promote the Sheep and Goat Sector in the Current Global Context.Zaragoza:CIHEAM/CSIC/Universidad de Len/FAO,2011,99:239-243.
[35] Varadyova Z,Baran M,Zelenak I.Comparison of two in vitro fermentation gas production methods using both rumen fluid and faecal inoculum from sheep.Animal Feed Science & Technology,2005,123-124:81-94.
[36] García J,Pérez-Alba L,Alvarez C,Rocha R,Ramos M,de Blas C.Prediction of the nutritive value of lucerne hay in diets for growing rabbits.Animal Feedence&Technology,1995,54(1):33-44.
[37] Hill W G.A Century of corn selection.Science,2005,307:683-684.
[38] 沈建輝,邱澤森,王龍俊,紀(jì)從亮,金建松.稻麥棉高產(chǎn)群體質(zhì)量的主要指標(biāo).中國農(nóng)學(xué)通報,1998(5):43-45.
Shen J H,Qiu Z S,Wang L J,Ji C L,Jin J S.The main measure of cotton,rice and wheat group yield quality.Chinese Agricultural Science Bulletin,1998(5):43-45.(in Chinese)
[39] 趙桂琴,慕平,魏黎明.飼用燕麥研究進(jìn)展.草業(yè)學(xué)報,2007,16(4):116-125.
Zhao G Q,Mu P,Wei L M.Research progress inAvenasativa.Acta Prataculturae Sinica,2007,16(4):116-125.(in Chinese)
[40] 任繼周,胡自治,牟新待,張普金.草原的綜合順序分類法及其草原發(fā)生學(xué)意義.中國草地學(xué)報,1980(1):12-38.
Ren J Z,Hu Z Z,Mou X D,Zhang P J.Prairie comprehensive sequence classification and its genetic significance.Chinese Journal of Grassland,1980(1):12-38(in Chinese)
[41] Parsons D,Cherney J H,Gauch H G.Alfalfa fiber estimation in mixed stands and its relationship to plant morphology.Crop Science,2006,46(6):2446-2452.
[42] Parsons D,Cherney J H,Gauch H G.Estimation of spring forage quality for alfalfa in New York State.Forage and Grasslands,2006,4:doi:10.1094/FG-2006-0323-01-RS.
(責(zé)任編輯 武艷培)
Prediction of forage yield and nutrition of three small grains in Jingtai oasis
Duan Qian-wen, Cheng Hui, Hou Fu-jiang
(State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China)
To predict forage yield and nutritional quality of spring wheat(Triticumaestivum), oat(Avenasativa) and rye(Secalecereale), the field experiment was conducted in Jingtai oasis and hay yield. Plant height, tiller density, crude protein, crude fat, NDF, ADF, crude ash and water soluble carbohydrate were determined in 2010, then the relationships among these indicators were analyzed. Under condition of hay harvest of three crops, there were significant relationship among growth indicators (plant height, tiller density, hay yield) and five nutritional indicators (except soluble carbohydrates). Undersimulated grazing, there were no significant relationships between plant height and nutritional indicators for both spring wheat and rye, but there were significant relationships between tiller density and nutritional indices for oats and rye. In terms of the above, multi-variable regression equations were established to predict the nutritional quality on basis of tiller density and forage yield, which were considerably accurate while being compared with the observed values.
rye; spring wheat; oat; cutting; grazing; hay
Hou Fu-jiang E-mail:cyhoufj@lzu.edu.cn
10.11829/j.issn.1001-0629.2016-0284
2016-05-26 接受日期:2016-08-30
973國家重點基礎(chǔ)研究計劃課題(2014CB138706);教育部創(chuàng)新團(tuán)隊“草地農(nóng)業(yè)系統(tǒng)耦合與管理”(IRT13019);公益性行業(yè)(農(nóng)業(yè))科研專項(201403071-6)第一作者:段倩雯(1992-),女,甘肅蘭州人,在讀碩士生,研究方向為草業(yè)農(nóng)場管理。E-mail:duanqw15@lzu.edu.cn
侯扶江(1971-),男,河南扶溝人,教授,博導(dǎo),博士,研究方向為草畜互作。E-mail:cyhoufj@lzu.edu.cn
文獻(xiàn)標(biāo)志碼:A 文章編號:1001-0629(2016)10-2041-13*
段倩雯,成慧,侯扶江.景泰綠洲3種小谷物的產(chǎn)草量與牧草營養(yǎng)成分預(yù)測.草業(yè)科學(xué),2016,33(10):2041-2053.
Duan Q W,Cheng H,Hou F J.Prediction of forage yield and nutrition of three small grains in Jingtai oasis.Pratacultural Science,2016,33(10):2041-2053.