国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

橡膠廠60 000 m3/h炭黑干燥爐煙氣臭氧脫硝試驗(yàn)研究

2016-12-05 10:29朱燕群黃建鵬林法偉徐超群王智化岑可法
關(guān)鍵詞:炭黑吸收塔當(dāng)量

朱燕群, 楊 業(yè), 黃建鵬, 林法偉, 馬 強(qiáng),徐超群, 王智化, 岑可法

(1.浙江大學(xué) 能源清潔利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 310027;2.杭州中策清泉實(shí)業(yè)有限公司,浙江 杭州 311402)

?

橡膠廠60 000 m3/h炭黑干燥爐煙氣臭氧脫硝試驗(yàn)研究

朱燕群1, 楊 業(yè)1, 黃建鵬2, 林法偉1, 馬 強(qiáng)1,徐超群1, 王智化1, 岑可法1

(1.浙江大學(xué) 能源清潔利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 310027;2.杭州中策清泉實(shí)業(yè)有限公司,浙江 杭州 311402)

為了研究臭氧氧化多種污染物協(xié)同脫除技術(shù)在實(shí)際工業(yè)應(yīng)用中脫硝效率的影響因素,在杭州某橡膠廠中一臺(tái)尾部煙道進(jìn)行臭氧氧化多種污染物協(xié)同脫除改造后的煙氣量為60 000 m3/h的炭黑干燥爐上,開展煙氣臭氧脫硝試驗(yàn)研究.試驗(yàn)結(jié)果表明,在O3/NOx當(dāng)量摩爾比>0.7的情況下,吸收塔前較低的煙氣溫度、煙氣在吸收塔內(nèi)較長(zhǎng)的停留時(shí)間都有利于脫硝效率的提高;當(dāng)O3/NOx當(dāng)量摩爾比=0.73時(shí),脫硝效率隨著漿液pH值的增大而逐步提高;當(dāng)O3/NOx當(dāng)量摩爾比=1.23時(shí),脫硝效率基本不受漿液pH值的影響;在臭氧脫硝改造工程應(yīng)用中,煙氣溫度是影響脫硝效率的重要因素,在洗滌塔前加裝汽水換熱器對(duì)煙氣進(jìn)行降溫處理,是一種提高氮氧化物脫除效率的有效方法.

炭黑干燥爐;臭氧氧化;脫硝;污染;煙道氣

目前,工業(yè)鍋爐由于容量小、分散廣、使用煤種差,煙氣治理和監(jiān)測(cè)存在一定難度,隨著國(guó)家對(duì)大氣環(huán)境的日益重視頒布并實(shí)施了一系列嚴(yán)苛的環(huán)保標(biāo)準(zhǔn),工業(yè)鍋爐煙氣治理面臨巨大的挑戰(zhàn).工業(yè)鍋爐的尾部煙道溫度較低(200 ℃以下),不具備SCR和SNCR所需的溫度區(qū)間.采用臭氧多脫技術(shù)可以有效地避免這一缺陷,進(jìn)而實(shí)現(xiàn)氮氧化物的有效脫除.隨著中國(guó)汽車制造業(yè)的快速興起,作為輪胎生產(chǎn)主要原料的炭黑供應(yīng)量逐年增加.2013年,全國(guó)炭黑產(chǎn)量達(dá)到470萬t,對(duì)全年二氧化硫排放貢獻(xiàn)達(dá)7.9萬t,氮氧化物排放量貢獻(xiàn)達(dá)4.7萬t.

本文針對(duì)臭氧低溫氧化多種污染物同時(shí)脫除技術(shù)在炭黑尾氣爐的應(yīng)用展開研究,重點(diǎn)對(duì)反應(yīng)溫度、O3/NOx當(dāng)量摩爾比、吸收塔停留時(shí)間和吸收漿液pH等參數(shù)對(duì)NOx脫除效率的影響開展試驗(yàn)研究,旨在揭示各參數(shù)對(duì)NOx脫除的影響規(guī)律,以期得到臭氧脫硝機(jī)理,為臭氧多脫技術(shù)進(jìn)一步的工業(yè)化推廣提供指導(dǎo)意義.

1 炭黑工藝流程

杭州某橡膠廠擁有一臺(tái)煙氣量為60 000 m3/h的炭黑干燥爐,供應(yīng)橡膠行業(yè)所用的炭黑原料,炭黑的生產(chǎn)流程示意圖如圖1所示.燃料在反應(yīng)爐內(nèi)高溫燃燒(1 600~2 100 ℃)產(chǎn)生的煙氣進(jìn)入裂解窯爐對(duì)原料油進(jìn)行高溫裂解,而后流經(jīng)空氣預(yù)熱器和原料油加熱裝置,然后經(jīng)過袋式除塵器除去煙氣中的炭黑.炭黑經(jīng)收集后造粒,最終還需經(jīng)干燥形成成品.由于裂解過程中會(huì)產(chǎn)生一些可燃性氣體,為了充分利用能源,將煙氣中的該部分可燃?xì)怏w在絕熱燃燒爐中點(diǎn)火燃燒后通過干燥爐中干燥炭黑濕球,最終煙氣從干燥爐中排出.對(duì)最終廢氣的脫硝處理出于以下3個(gè)原因考慮,不適用于傳統(tǒng)SNCR或SCR.1)經(jīng)絕熱燃燒爐后進(jìn)入干燥爐的煙氣溫度在1 200℃以上,不具備SNCR的反應(yīng)溫度區(qū)間(850~1 100 ℃);干燥爐出口煙溫為180 ℃,已遠(yuǎn)低于SCR反應(yīng)溫度(300~400 ℃);2)煙氣含有大量的焦油,加裝SCR會(huì)造成SCR催化劑堵塞,導(dǎo)致運(yùn)行不穩(wěn)定,且影響催化劑使用壽命;3)干燥爐內(nèi)炭黑與煙氣是直接接觸換熱,若在爐內(nèi)噴入尿素或者氨水會(huì)影響生產(chǎn)出的炭黑質(zhì)量.此處選用活性分子O3深度氧化NOx,結(jié)合濕法噴淋進(jìn)行脫硝.

圖1 炭黑生產(chǎn)流程示意圖Fig.1 Schematic diagram of carbon black production process

從干燥爐排出的煙氣首先經(jīng)過一級(jí)余熱回收裝置,煙氣溫度降至150 ℃以下,而后噴入活性分子與煙氣中的NOx在特制的反應(yīng)器內(nèi)進(jìn)行充分的混合與反應(yīng),將NOx深度氧化為高價(jià)態(tài)氮氧化物;然后進(jìn)入濕法噴淋塔,實(shí)現(xiàn)脫硫脫硝一體化.

2 試驗(yàn)內(nèi)容及方法

臭氧氧化多種污染物脫除試驗(yàn)系統(tǒng)的示意圖如圖2所示.尾部煙道的煙氣首先經(jīng)過汽水換熱器降溫,由液氧罐提供的純氧經(jīng)臭氧發(fā)生器(北京乾潤(rùn)開元環(huán)??萍加邢薰?QRKY-MIOG-42KG)產(chǎn)生的臭氧噴入煙道中與煙氣進(jìn)行充分混合,而后進(jìn)入特制的煙道反應(yīng)器進(jìn)行充分反應(yīng),隨后進(jìn)入吸收塔開展?jié)穹摮?吸收塔內(nèi)徑為2.8 m,吸收塔煙氣入口中心線至出口高20 m.處理后煙氣經(jīng)塔頂煙囪排放.在試驗(yàn)中,使用德圖煙氣分析儀(德國(guó),Testo 350)和傅里葉紅外煙氣分析儀(芬蘭,Gasmet DX4000)分別測(cè)量尾部煙道臭氧噴入前和吸收塔后的煙氣組分.

煙氣中NOx折算到氧氣體積分?jǐn)?shù)為6%的干煙氣中的質(zhì)量濃度(mg/m3)計(jì)算公式為

(1)

(2)

NOx的脫除效率ηNOx計(jì)算公式為

(3)

圖2 臭氧氧化多種污染物脫除試驗(yàn)系統(tǒng)示意圖Fig.2 Schematic diagram of pollutions removal by ozone oxidization pilot system

3 試驗(yàn)結(jié)果與討論

3.1 塔前煙氣溫度對(duì)脫硝效率的影響

臭氧與NO的主要基元反應(yīng)(4)~(9)[27].當(dāng)O3/NOx當(dāng)量摩爾比<0.7時(shí),O3與NO反應(yīng)的主要產(chǎn)物是NO2,該過程基本不受溫度的影響;當(dāng)O3/NOx當(dāng)量摩爾比>0.7時(shí),O3開始與NO2發(fā)生反應(yīng)生成高價(jià)態(tài)氮氧化物(以N2O5為主),該過程受反應(yīng)溫度的影響嚴(yán)重.當(dāng)反應(yīng)溫度小于110 ℃時(shí),O3可以將NO2進(jìn)一步氧化為N2O5.在60~80 ℃的反應(yīng)溫度內(nèi),當(dāng)O3/NOx當(dāng)量摩爾比=1.3時(shí),NO2基本可以完全轉(zhuǎn)化為N2O5.當(dāng)溫度>110 ℃時(shí),即使O3/NOx當(dāng)量摩爾比不斷增加,NO2很難被氧化為N2O5,這主要是由于溫度升高,會(huì)導(dǎo)致O3和N2O5分解加快.在工程應(yīng)用中,煙氣溫度是影響脫硝效率的重要因素.

O3+NO→NO2+O2.

(4)

O3+NO2→NO3+O2.

(5)

NO2+NO3→N2O5.

(6)

O3→O+O2.

(7)

NO+O→NO2.

(8)

NO2+O→NO3.

(9)

該工程在塔前采用汽水換熱器對(duì)煙氣進(jìn)行降溫,將180 ℃的高溫?zé)煔饨档偷胶侠淼臏囟葏^(qū)間,之后噴入臭氧進(jìn)行氧化反應(yīng).已有研究表明,NO2轉(zhuǎn)化為N2O5的反應(yīng)速率較低,平衡需要3 s左右的時(shí)間[12].在該工程中,塔前臭氧噴入煙道后,僅停留0.2 s左右的時(shí)間,即進(jìn)入吸收塔繼續(xù)反應(yīng),煙氣在塔內(nèi)的停留時(shí)間為3.0~4.0 s.塔前的停留時(shí)間足以將NO轉(zhuǎn)化為NO2,而且吸收塔內(nèi)煙氣溫度為70~80 ℃,有利于NO2向N2O5的轉(zhuǎn)化.該方案縮短了O3在高溫?zé)煔庵械耐A魰r(shí)間,延長(zhǎng)了O3與NO的反應(yīng)時(shí)間,既避免了O3和N2O5的高溫分解,又保證了NO2向N2O5轉(zhuǎn)化所需的時(shí)間.

圖3 不同塔前煙氣溫度對(duì)脫硝效率的影響Fig.3 Effect of different gas temperatures before spray tower on denitration efficiency

如圖3所示,當(dāng)O3/NOx當(dāng)量摩爾比<0.7時(shí),塔前煙氣溫度θ對(duì)NOx脫除效率的影響不大;隨著O3/NOx當(dāng)量摩爾比繼續(xù)增大,塔前煙氣溫度對(duì)于脫硝效率的影響開始顯現(xiàn),當(dāng)O3/NOx當(dāng)量摩爾比>0.7時(shí),隨著塔前煙氣溫度從100 ℃增至155 ℃,在相同O3/NOx當(dāng)量摩爾比條件下,溫度越低,脫硝效率越高;當(dāng)O3/NOx當(dāng)量摩爾比=1.3,塔前煙氣溫度為100 ℃時(shí),NOx脫除效率可以達(dá)到94%.

造成塔前煙氣溫度對(duì)脫硝效率影響的原因在于,塔前煙氣溫度越高,反應(yīng)(6)和(9)的逆反應(yīng)速率越快,N2O5不斷分解為NO2和NO3,NO3又不斷分解為NO2,O3繼續(xù)與NO2反應(yīng),生成NO3和N2O5,形成了一個(gè)循環(huán);最終O3耗盡,循環(huán)終止,NOx大部分以NO2形式存在.與NO2相比,N2O5更容易被吸收漿液吸收[11,13],因此,隨著塔前煙氣溫度的升高,相同O3/NOx當(dāng)量摩爾比下的脫硝效率不斷下降.工程中的塔前反應(yīng)時(shí)間短,氧化反應(yīng)在溫度較低的吸收塔中繼續(xù)進(jìn)行,因此,在塔前煙氣溫度較高的工況下能夠取得較好的脫硝效率.

3.2 塔內(nèi)煙氣的停留時(shí)間對(duì)脫硝效率的影響

O3在噴入煙道后,僅停留0.2 s即進(jìn)入吸收塔繼續(xù)反應(yīng),因此煙氣在塔內(nèi)的停留時(shí)間對(duì)NO2向N2O5的轉(zhuǎn)化效率有重要影響,進(jìn)而影響NOx脫除效率.

該工程的吸收塔共有3層噴淋,塔內(nèi)停留時(shí)間通過開啟不同噴淋層實(shí)現(xiàn).開啟上兩層噴淋與下兩層噴淋的煙氣在塔內(nèi)的停留時(shí)間分別為3.43 和2.4 s,結(jié)果如圖4所示.

圖4 煙氣在塔內(nèi)不同停留時(shí)間對(duì)脫硝效率的影響Fig.4 Effect of different residence time in spray tower on denitration efficiency

由圖4可以看出,煙氣在塔內(nèi)的停留時(shí)間對(duì)脫硝效率有顯著的影響.當(dāng)O3/NOx當(dāng)量摩爾比>0.7時(shí),3.43 s停留時(shí)間的工況脫硝效率高于2.4 s停留時(shí)間的工況.原因在于當(dāng)O3/NOx當(dāng)量摩爾比<0.7時(shí),NO被氧化為NO2,該過程的反應(yīng)速率快,基本不受停留時(shí)間的影響,因此,脫硝效率大致相同;當(dāng)O3/NOx當(dāng)量摩爾比>0.7時(shí),NO2開始向N2O5轉(zhuǎn)化,氣相反應(yīng)的平衡時(shí)間需要3.0~4.0 s,停留時(shí)間對(duì)脫硝效率的影響開始顯現(xiàn),相同O3/NOx當(dāng)量摩爾比下,3.43 s停留時(shí)間的工況下生成的N2O5量較2.4 s停留時(shí)間的工況高,故3.43 s停留時(shí)間的脫硝效率明顯高于2.4 s的工況.當(dāng)煙氣在塔內(nèi)的停留時(shí)間為3.43 s時(shí),在O3/NOx當(dāng)量摩爾比>1.3的情況下,脫硝效率均在90%以上.

3.3 漿液pH值對(duì)脫硝效率的影響

在工程實(shí)際中,隨著吸收過程的持續(xù)進(jìn)行,大量酸性氣體被漿液吸收,漿液pH會(huì)逐漸降低,漿液中H+濃度升高,氮氧化物與水的反應(yīng)(10)和(11)[28]平衡左移,進(jìn)而脫硝效率下降.開展不同漿液pH對(duì)脫硝效率影響的試驗(yàn).

NO+NO2+H2O→2HNO2,

(10)

N2O5+H2O→2HNO3.

(11)

如圖5所示,當(dāng)O3/NOx當(dāng)量摩爾比=1.23時(shí),脫硝效率基本不受漿液pH的影響,主要原因在于此時(shí)NO主要的氧化產(chǎn)物是N2O5,而N2O5極易與水反應(yīng)生成HNO3,HNO3是一種強(qiáng)酸,在低pH(低于5甚至4以下)時(shí)可以完全電離生成H+,進(jìn)而與漿液中的CaCO3進(jìn)行反應(yīng),因而此時(shí)NOx的脫除效率幾乎不受漿液pH的影響.當(dāng)O3/NOx當(dāng)量摩爾比=0.73時(shí),脫硝效率隨著漿液pH的增大而逐步提高,主要原因在于NO2溶于水主要生成HNO2,HNO2是一種弱酸,在漿液中電離程度弱,電離平衡更易受到漿液中H+濃度的少量增加的負(fù)向影響,使得HNO2在漿液中溶解量減少,進(jìn)而抑制噴淋液對(duì)NO2的吸收,降低脫硝效率.

依據(jù)不同影響因素的影響,優(yōu)化工況參數(shù)(塔前煙氣溫度為125 ℃,O3/NOx當(dāng)量摩爾比=1.3,煙氣在塔內(nèi)停留時(shí)間為3.43 s)后,最終該橡膠廠炭黑干燥爐煙氣中NOx與SO2的排放濃度均滿足火電廠大氣污染物的國(guó)家燃煤排放標(biāo)準(zhǔn)[29].

圖5 不同漿液pH值對(duì)脫硝效率的影響Fig.5 Effect of slurry pH on denitration efficiency

4 結(jié) 論

(1)塔前煙氣溫度降低有利于脫硝效率的提高.當(dāng)O3/NOx當(dāng)量摩爾比<0.7時(shí),塔前煙氣溫度對(duì)NOx脫除效率的影響不大;當(dāng)O3/NOx當(dāng)量摩爾比>0.7時(shí),隨著塔前煙氣溫度從100 ℃增至155 ℃,在相同O3/NOx當(dāng)量摩爾比條件下,溫度越低,脫硝效率越高;當(dāng)O3/NOx當(dāng)量摩爾比=1.3,塔前煙氣溫度為100 ℃ 時(shí),NOx脫除效率可達(dá)94%.

(2)煙氣在塔內(nèi)停留時(shí)間的延長(zhǎng)有利于脫硝效率的提高.當(dāng)O3/NOx當(dāng)量摩爾比<0.7時(shí),停留時(shí)間對(duì)脫硝效率的影響不大;當(dāng)O3/NOx當(dāng)量摩爾比>0.7時(shí),NO2開始向N2O5轉(zhuǎn)化,在相同O3/NOx當(dāng)量摩爾比下,停留時(shí)間為3.43 s的脫硝效率明顯高于2.4 s的工況.當(dāng)煙氣在塔內(nèi)的停留時(shí)間為3.43 s時(shí),在O3/NOx當(dāng)量摩爾比>1.3的情況下,脫硝效率均在90%以上.

(3)當(dāng)O3/NOx當(dāng)量摩爾比=0.73時(shí),脫硝效率隨著漿液pH的增大而逐步提高;當(dāng)O3/NOx當(dāng)量摩爾比=1.23時(shí),脫硝效率基本不受漿液pH的影響.

(4)在臭氧脫硝改造工程的應(yīng)用中,煙氣溫度是影響脫硝效率的重要因素,在洗滌塔前加裝汽水換熱器對(duì)煙氣進(jìn)行降溫處理,是提高氮氧化物脫除效率的手段之一,為工業(yè)化應(yīng)用提供指導(dǎo)意義.

[1] 段振亞.鍋爐煙氣濕法脫硫理論與工業(yè)技術(shù)研究[D].天津:天津大學(xué), 2005.

DUAN Zhen-ya. Wet flue gas desulfurization of boiler and industrial technology research [D]. Tianjin: Tianjin University, 2005.

[2] GAO X, JIANG Y, ZHONG Y, et al. The activity and characterization of CeO2-TiO2catalysts prepared by the Sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials, 2010, 174(1-3): 734-739.

[3] BOYANO A, LAZARO M J, CRISTIANI C, et al. A comparative study of V2O5/AC and V2O5/Al2O3catalysts for the selective catalytic reduction of NO by NH3[J]. Chemical Engineering Journal, 2009, 149(1-3): 173-182.

[4] BURCH R, BREEN J P, MEUNIER F C. A review of the selective reduction of NOx, with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts [J]. Applied Catalysis B-Environmental, 2002, 39(4): 283-303.

[5] HU Y, GRIFFITHS K, NORTON P R. Surface science studies of selective catalytic reduction of NO: progress in the last ten years [J]. Surface Science, 2009, 603(10-12): 1740-1750.

[6] TAYYEB JAVED M, IRFAN N, GIBBS B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction [J]. Journal of Environmental Management, 2007, 83(3): 251-289.

[7] MUZIO L J, QUARTUCY G C. Implementing NOxcontrol: research to application [J]. Progress in Energy and Combustion Science, 1997, 23(3): 233-266.

[8] 祝社民,李偉峰,陳英文,等.煙氣脫硝技術(shù)研究新進(jìn)展[J].環(huán)境污染與防止,2005, 27(9): 699-703.

ZHU She-min, LI Wei-feng, CHEN Ying-wen, et al. New development of controlling NOxpollution from plue gas [J]. Environmental Pollution and Control, 2005,27(9): 699-703.

[9] ZAMANSKY V M, MALY P M, SEEKER W R. Byproducts emissions in reburning and advanced reburning technologies [J]. Combustion Science and Technology, 1998, 134(1-6): 389-405.

[10] HWANG I H, MINOYA H, MATSUTO T, et al. Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators [J]. Chemosphere, 2009, 74(10): 1379-1384.

[11] WANG Z, ZHOU J, ZHU Y, et al. Simultaneousremoval of NOx, SO2and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results [J]. Fuel Processing Technology, 2007, 88(8): 817-823.

[12] STAMATE E, IRIMIEA C, SALEWSKI M. Investigation of NOxreduction by low temperature oxidation using ozone produced by dielectric barrier discharge [J]. Japanese Journal of Applied Physics, 2013, 52: 05EE03-1-5.

[13] SKALSKA K, MILLER J S, LEDAKOWICZ S L. Kinetic model of NOxozonation and its experimental verification [J]. Chemical Engineering Science, 2011,66(14): 3386-3391.

[14] SUN C L, ZHAO N, ZHUANG Z K, et al. Mechanisms and reaction pathways for simultaneous oxidation of NOxand SO2by ozone determined by in Situ IR measurements [J]. Journal of Hazardous Materials, 2014, 274: 376-383.

[15] YUMII T, YOSHIDA T, DOI K, et al. Oxidation of nitric oxide by atmospheric pressure plasma in a resonant plasma reactor [J]. Journal of Physics D: Applied Physics, 2013, 46(13): 1-7.

[16] 王智化.燃煤多種污染物一體化協(xié)同脫除機(jī)理及反應(yīng)射流直接數(shù)值模擬DNS的研究[D].浙江: 浙江大學(xué), 2005.

WANG Zhi-hua. Mechanism study on multi-pollution control simultaneously during coal combustion and direct numerical simulation of reaction jets flow [D]. Zhejiang: Zhejiang University, 2005.

[17] HIROTA K, KOJIMA T. Decomposition behavior of PCDD/F isomers in ncinerator gases under electron-beam irradiation [J]. Bulletin of the Chemical Society of Japan, 2005, 78(9): 1685-1690.

[18] WANG Q, YAN J H, TU X, et al. Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma [J]. Fuel, 2009, 88(5): 955-958.

[19] 張相,朱燕群,王智化,等.臭氧氧化多種污染物協(xié)同脫除及副產(chǎn)物提純的試驗(yàn)研究[J].工程熱物理學(xué)報(bào), 2012, 33(7): 1259-1262.

ZHANG Xiang, ZHU Yan-qun, WANG Zhi-hua, et al. Experimental research for multi-pollution control by ozone and by-product purification [J]. Journal of Engineering Thermophysics, 2012, 33(7): 1259-1262.

[20] SKALSKA K, MILLER J S, WILK M, et al. Nitrogen oxides ozonation as a method for NOxemission abatement [J]. Ozone: Science and Engineering, 2012, 34(4): 252-258.

[21] SKALSKA K, MILLER J S, LEDAKOWICZ S. Kinetics of nitric oxide oxidation [J]. Chemical Papers, 2010, 64(2): 269-272.

[22] MOK Y S, LEE H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique [J]. Fuel Processing Technology, 2006, 87(7): 591-597.

[23] STAMATE E, CHEN W, LORGENSEN L, et al. IR and UV gas absorption measurements during NOxreduction on an industrial natural gas fired power plant [J]. Fuel, 2010, 89(5): 978-985.

[24] 林法偉,朱燕群,徐超群,等.臭氧多脫過程中殘留臭氧的分解試驗(yàn)研究[J].浙江大學(xué)學(xué)報(bào):工學(xué)版,2015,49(7): 1249-1254.

LIN Fa-wei, ZHU Yan-qun, XU Chao-qun, et al.Experimental study on residual ozone decomposition in process of multi-pollutants removal by ozone [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(7): 1249-1254.

[25] WANG Z, LIN F, JIANG S, et al. Ceria substrate-oxide composites as catalyst for highly efficient catalytic oxidation of NO by O2[J]. Fuel, 2016, 166: 352-360.

[26] 楊業(yè),徐超群,朱燕群,等.臭氧氧化結(jié)合硫代硫酸鈉溶液噴淋同時(shí)脫硫脫硝[J].化工學(xué)報(bào), 2016, 67(5): 2041-2047.

YANG Ye, XU Chao-qun, ZHU Yan-qun, et al. Simultaneous removal of SO2and NOxby combination of ozone oxidation and Na2S2O3solution spray [J]. Journal of Chemical Industry and Engineering, 2016, 67(5): 2041-2047.

[27] LIN F, WANG Z, MA Q, et al. N2O5formation mechanism during the ozone based low temperatureoxidation deNOxprocess [J]. Energy and Fuels, 2016, 30(6): 5101-5107.

[28] 馬強(qiáng),朱燕群,何勇,等.活性分子O3深度氧化結(jié)合濕法噴淋脫硝機(jī)理試驗(yàn)研究[J].環(huán)境科學(xué)學(xué)報(bào),2016,36(4): 1428-1433.

MA Qiang, ZHU Yan-qun, HE Yong, et al. NOxremoval mechanism by O3oxidization integrated with wet scrubber [J]. Acta Scientiae Circumstantiae, 2016,36(4): 1428-1433.

[29] GB 13223-2011,火電廠大氣污染物排放標(biāo)準(zhǔn)[S].北京:環(huán)境保護(hù)部,國(guó)家質(zhì)量監(jiān)督檢疫總局,2011.

Removal of NOxby ozone oxidation from flue gas of 60 000 m3/h carbon black drying furnace of rubber plant

ZHU Yan-qun1, YANG Ye1, HUANG Jian-peng2, LIN Fa-wei1, MA Qiang1,XU Chao-qun1, WANG Zhi-hua1, CEN Ke-fa1

(1.StateKeyLaboratoryofCleanEnergyUtilization,ZhejiangUniversity,Hangzhou310027,China;2.HangzhouZhongceQingquanIndustrialLimitedCompany,Hangzhou311402,China)

The observation of the removal of NOxby ozone oxidation from flue gas was conducted at a60 000 m3/h carbon black drying furnace with multi-pollution absorption treatment by ozone oxidation in Hangzhou in order to explore the effect factors of pollutant removal by ozone oxidation in industrial program. Results showed that when the O3/NOxmole ratio was above 0.7, the NOxremoval efficiency was enhanced with low temperature of the flue gas in front of the tower and long residence time of the flue gas in spray tower. When the O3/NOxmole ratio was 0.73, the NOxremoval efficiency was enhanced with the pH of solution in spray tower. While the O3/NOxmole ratio was 1.23, the pH of solution almost had no effect on the NOxremoval efficiency. Considering that temperature of the flue gas is the dominant factor of the NOxremoval efficiency, installing a steam water heat exchanger to reduce gas temperature is an effective and available method in industrial program.

carbon black drying furnace; ozone oxidation; removal of NOx; pollution; flue gas

2016-03-18.

國(guó)家“973”重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃資助項(xiàng)目(2012CB214906);國(guó)家優(yōu)秀青年科學(xué)基金資助項(xiàng)目(51422605).

朱燕群(1981—),女,工程師,碩士,從事臭氧氧化多種污染物協(xié)同脫除的研究.ORCID: 0000-0002-0981-2078.

E-mail: yqzhu@zju.edu.cn

10.3785/j.issn.1008-973X.2016.10.005

X 511

A

1008-973X(2016)10-1865-06

浙江大學(xué)學(xué)報(bào)(工學(xué)版)網(wǎng)址: www.zjujournals.com/eng

猜你喜歡
炭黑吸收塔當(dāng)量
炭黑與橡膠的相容性對(duì)乙丙橡膠中炭黑引起的焦燒的影響
廢舊輪胎裂解炭黑及其在橡膠中的應(yīng)用
淺論硫酸裝置干吸工序串酸流程對(duì)尾氣和成品酸的影響
長(zhǎng)慶油田累計(jì)為國(guó)家貢獻(xiàn)油氣超8 億噸
不同種類裂解炭黑的橡膠分散性及補(bǔ)強(qiáng)性能*
基于FANUC 0i-TD系統(tǒng)刀具磨損偏置當(dāng)量手動(dòng)按鈕輸入方法的實(shí)現(xiàn)
配制條件對(duì)炭黑瀝青性能影響研究
壁面噴射當(dāng)量比對(duì)支板凹腔耦合燃燒的影響
填料吸收塔在尿素尾氣吸收中的應(yīng)用
一種煉廠富氣吸收穩(wěn)定方法
翁牛特旗| 邢台县| 固原市| 盱眙县| 晋中市| 谷城县| 临颍县| 景东| 嫩江县| 墨脱县| 肥东县| 荣成市| 会理县| 迁安市| 新巴尔虎右旗| 湘阴县| 乐业县| 周至县| 阿拉善盟| SHOW| 同仁县| 昭通市| 鄂州市| 佳木斯市| 温泉县| 淅川县| 文安县| 平远县| 青冈县| 德格县| 大冶市| 常熟市| 汉中市| 盐城市| 拉萨市| 水富县| 达尔| 新和县| 七台河市| 繁昌县| 娄烦县|