張浩+劉汝濤+魏云波
摘要:盡管各國政府已經(jīng)采取多項(xiàng)措施限制和減少鉛的使用,鉛污染引發(fā)的健康問題依舊非常突出,仍是當(dāng)前社會(huì)高度關(guān)注的環(huán)境污染與健康問題之一。研究表明,氧化應(yīng)激是幾乎所有疾病發(fā)生的誘因,而且鉛類污染物對生命體的危害與氧化應(yīng)激效應(yīng)密切相關(guān)。鉛暴露使機(jī)體產(chǎn)生過量的活性氧物質(zhì)導(dǎo)致體內(nèi)氧化還原平衡態(tài)被打破,造成蛋白質(zhì)、核酸、脂類等生物大分子的氧化損傷,從而導(dǎo)致細(xì)胞凋亡或壞死和組織器官代謝紊亂,引發(fā)機(jī)體病變甚至癌癥的發(fā)生。因此,有必要從生物大分子、細(xì)胞和實(shí)驗(yàn)動(dòng)物三個(gè)層面系統(tǒng)綜述鉛暴露誘發(fā)機(jī)體氧化損傷的作用機(jī)理,闡述重金屬鉛誘發(fā)機(jī)體氧化應(yīng)激效應(yīng)的研究進(jìn)展。
關(guān)鍵詞:重金屬鉛;氧化應(yīng)激;毒性效應(yīng)
中圖分類號:Q89 文獻(xiàn)標(biāo)識碼:A
Abstract:Lead still possesses great threats to human health owing to its widespread distribution in the environment caused by human activities, although various actions have been taken to cut down the use and distribution of lead by the governments. Abundant evidence has indicated oxidative stress is a trigger of many varied diseases, which has still been one of the biggest concerns on environmental pollution and health. Multiple studies have shown that lead toxicity is related to oxidative stress because it generates reactive oxygen species (ROS), interferes with antioxidant enzyme activities, and breaks the balance of the pro-oxidant/antioxidant defense system, resulting in oxidative damage of proteins, nucleic acids and lipid compounds, cell apoptosis and necrosis, and metabolic disorders of tissues and organs of humans, and causes harmful diseases or cancers. Therefore, it is of great importance to review mechanisms of oxidative damage caused by lead combined at the molecular, cellular and organismal levels to understand harmful effects of lead exposure to human health.
Keywords: lead; oxidative stress; toxic effects
2015年11月下旬,國家環(huán)保部公布的《重金屬污染綜合防治“十二五”規(guī)劃》2014年度考核結(jié)果顯示,盡管國家重點(diǎn)監(jiān)控的重金屬污染物(鉛、汞、鎘、
鉻和類金屬砷)減排成效顯著,但由于涉重金屬產(chǎn)業(yè)的快速擴(kuò)張?jiān)斐芍亟饘傥廴疚锱欧趴偭咳蕴幱诟呶凰剑亟饘侪h(huán)境風(fēng)險(xiǎn)隱患依然突出。根據(jù)美國地質(zhì)調(diào)查局(United States Geological Survey)最新公布的2014年全球鉛行業(yè)市場分析數(shù)據(jù),中國依然是精鉛產(chǎn)量和消費(fèi)量最多的國家,均遠(yuǎn)遠(yuǎn)高于歐洲(第二位)和美國(第三位)之和。巨大的鉛消耗量中僅有約1/4的鉛被回收再利用,其余大部分以“三廢”形式排入環(huán)境介質(zhì)中,經(jīng)食物鏈傳遞或呼吸道等途徑進(jìn)入人體并蓄積于肝臟、腎臟等靶器官中,進(jìn)而侵入組織細(xì)胞誘發(fā)氧化應(yīng)激、細(xì)胞凋亡等毒性作用損傷其生理功能。因此研究鉛污染治理及鉛污染引發(fā)的健康問題,已經(jīng)成為環(huán)境污染與健康領(lǐng)域亟需解決的重要科學(xué)問題。本論文從動(dòng)物水平、細(xì)胞水平和功能大分子水平系統(tǒng)綜述鉛暴露誘發(fā)氧化應(yīng)激效應(yīng)與機(jī)理的研究進(jìn)展,為開展鉛污染損傷人體健康的早期預(yù)警及防治技術(shù)提供借鑒。
1鉛引發(fā)的毒性效應(yīng)及與氧化應(yīng)激的關(guān)系
1.1鉛的毒性作用簡介
鉛是地殼中含量最多的重金屬元素。由于鉛具有密度大,柔軟性,耐腐蝕,延展性強(qiáng)等特點(diǎn),在古代就有廣泛應(yīng)用。在古羅馬時(shí)代就有鉛制作的水管和酒器;我國在各個(gè)朝代都有使用鉛制作的錢幣。鉛以工業(yè)規(guī)模生產(chǎn)和開發(fā)是19世紀(jì)才開始的,在19世紀(jì)中葉煉鉛工業(yè)獲得迅猛發(fā)展。據(jù)統(tǒng)計(jì)目前鉛在有色金屬生產(chǎn)中占第四位[2]。在工業(yè)開采、加工和制作過程中,鉛會(huì)通過水、空氣、食物鏈等途徑與人類和動(dòng)物體廣泛接觸,進(jìn)而通過消化道、呼吸道和皮膚等吸收進(jìn)入機(jī)體[3]。進(jìn)入消化道的鉛(吸收率僅為1%-2%,嬰幼兒吸收率較高,鈣缺乏可提高吸收率)主要在十二指腸吸收,經(jīng)門靜脈到達(dá)肝臟,一部分進(jìn)入血液循環(huán),一部分由膽汁分泌進(jìn)入腸道,而后排出體外;進(jìn)入呼吸道的鉛25%-30%被吸收,粒徑大于10 μm的含鉛顆粒主要沉積于鼻腔和咽喉部,2.5μm以下者能夠到達(dá)肺泡。鉛吸收后進(jìn)入血液,約96%迅速與紅細(xì)胞結(jié)合,只有4%留在血漿中,然后經(jīng)血液循環(huán)分布到肝、腎、脾、肺和腦等組織器官中[4],其中以肝臟和腎臟濃度最高[5],最終蓄積到骨骼、牙齒和毛發(fā)中,以磷酸鉛的形式沉積下來[6],引發(fā)多種多系統(tǒng)性、多器官性的機(jī)體損傷[7]。鉛的吸收和分布示意圖見圖1所示[2]。
1.2 氧化應(yīng)激效應(yīng)介紹
在正常的生理?xiàng)l件下,人體內(nèi)存在著氧化活性物質(zhì)和抗氧化防御體系的動(dòng)態(tài)平衡,作用模式見圖2所示。一旦體內(nèi)氧化活性物質(zhì)含量增加或者體內(nèi)抗氧化防御體系被干擾和破壞,致使這種動(dòng)態(tài)平衡產(chǎn)生紊亂和失調(diào),引起一系列新陳代謝失常和免疫功能降低,形成氧自由基連鎖反應(yīng)而導(dǎo)致各組織發(fā)生氧化損傷,這就是氧化應(yīng)激效應(yīng)[8]。所說的氧化物質(zhì)主要包括活性氧物質(zhì)(Reactive Oxygen Species, ROS)和活性氮物質(zhì)(Reactive Nitrogen Species, RNS),其中ROS是主要的氧化活性物質(zhì),主要包括過氧化氫(H2O2)、超氧陰離子(O2·-)和羥基自由基(HO·)等[9, 10]。正常條件下,人體內(nèi)存在一定量的ROS,作為體內(nèi)多種代謝和信號通路的信使,通過激活和調(diào)控各種轉(zhuǎn)錄因子參與體內(nèi)多種基因的轉(zhuǎn)錄及相關(guān)功能蛋白的表達(dá),參與細(xì)胞的增殖、分化及遷移及促進(jìn)和維護(hù)細(xì)胞、組織和機(jī)體的新陳代謝[11, 12]。但是ROS具有較強(qiáng)的反應(yīng)活性和氧化性,當(dāng)ROS濃度較高時(shí),會(huì)直接或間接對DNA、蛋白質(zhì)及脂類物質(zhì)發(fā)生氧化損傷,造成細(xì)胞凋亡(apoptosis)、衰老(senescence)和死亡(death)[13-16]。
大量體外和體內(nèi)實(shí)驗(yàn)的研究表明,輻射和外源化學(xué)物(包括重金屬類物質(zhì))是ROS介導(dǎo)的細(xì)胞損傷的主要環(huán)境誘導(dǎo)因子。電離輻射會(huì)通過氧化H2O產(chǎn)生HO·[17],皮膚受到紫外線(290-400 nm)照射會(huì)產(chǎn)生大量ROS,進(jìn)而干擾了調(diào)控細(xì)胞增殖和分化的主要信號通路,影響了細(xì)胞的正常生理功能[18]。外源化學(xué)物如乙醇和苯巴比妥類物質(zhì)通過改變細(xì)胞色素P450的途徑,導(dǎo)致細(xì)胞色素P450的4A過氧化物酶體增殖,而導(dǎo)致了過氧化氫的產(chǎn)生[19]。重金屬類污染物被認(rèn)為是外源化學(xué)物中毒性較強(qiáng)的一類物質(zhì),它們發(fā)揮毒性效應(yīng)的關(guān)鍵因素就是誘發(fā)機(jī)體產(chǎn)生氧化應(yīng)激[20-23]。首先,重金屬類物質(zhì)可以參與類Fenton反應(yīng)產(chǎn)生更多的ROS,是誘發(fā)氧化應(yīng)激的直接因素[24];其次,重金屬類物質(zhì)易與體內(nèi)抗氧化物質(zhì)如還原型谷胱甘肽(GSH)發(fā)生共價(jià)結(jié)合而使其喪失消除ROS的能力[25, 26];另外,重金屬類物質(zhì)可以與抗氧化酶及谷胱甘肽相關(guān)酶發(fā)生相互作用,影響酶的活性和濃度,從而干擾體內(nèi)的氧化還原反應(yīng)[27-29]。后面這兩種情況是重金屬產(chǎn)生氧化損傷效應(yīng)的非直接因素。
同時(shí),體內(nèi)存在著抗氧化防御系統(tǒng),由抗氧化物質(zhì)、抗氧化酶及非酶抗氧化蛋白組成[30]??寡趸镔|(zhì)主要包括GSH、維生素C、維生素E、黃酮類物質(zhì)、尿酸等;抗氧化酶主要包括超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、谷胱甘肽過氧化物酶(GPX)、谷胱甘肽還原酶(GR)、谷胱甘肽轉(zhuǎn)硫酶(GST)及溶菌酶(Lysozyme)等;非酶抗氧化蛋白是指不直接參與分解代謝ROS物質(zhì),卻能起到維持體內(nèi)氧化還原平衡作用的蛋白,主要包括血紅蛋白、肌紅蛋白等含有鐵/亞鐵離子的傳輸?shù)鞍?、各種金屬硫蛋白及人絨毛膜促性腺激素(HCG)等可以抑制氧化應(yīng)激過程中細(xì)胞凋亡等損傷的功能蛋白[31-33]。體內(nèi)抗氧化防御體系的存在,催化清除或分解代謝了過量產(chǎn)生的ROS,保障了各組織器官的正常生理功能。
1.3 鉛引發(fā)的毒性效應(yīng)與氧化應(yīng)激的關(guān)系
E. D. Willis于1965年最先發(fā)現(xiàn)鉛毒性與氧化應(yīng)激相關(guān)[34]。鉛的致病機(jī)理是較為復(fù)雜的,它可以與抗氧化酶發(fā)生直接作用[35-38],競爭性抑制重要微量礦物質(zhì)的吸收,還能與體內(nèi)含巰基物質(zhì)發(fā)生共價(jià)結(jié)合使其失去抗氧化作用[22]。鉛誘發(fā)的氧化損傷作用主要通過兩種獨(dú)立而又具有相關(guān)性的機(jī)理。首先,鉛可以直接誘導(dǎo)機(jī)體產(chǎn)生單線態(tài)氧、過氧化氫及超氧化物等活性氧物質(zhì);第二種機(jī)制為鉛能夠消耗細(xì)胞內(nèi)的抗氧化物質(zhì),其中鉛影響GSH代謝途徑是最主要的機(jī)理[39]。GSH是由半胱甘酸(Cys)、谷氨酸(Glu)和甘氨酸(Gly)組成的三肽,在淋巴細(xì)胞間質(zhì)產(chǎn)生,是人體中最主要、含量最高的巰基類抗氧化物質(zhì)[40]。GSH除了可以清除體內(nèi)的活性氧之外,還可以與毒性重金屬發(fā)生結(jié)合,削弱其毒性效應(yīng)[41]。在鉛暴露動(dòng)物實(shí)驗(yàn)的研究中,血液、肝臟和腎臟等器官中GSH的濃度明顯低于未暴露組[42-44]。
鉛能夠直接與含有巰基的抗氧化酶發(fā)生共價(jià)結(jié)合,使這些酶失活,從而破壞了氧化還原平衡狀態(tài)。Ahamed等人報(bào)道在印度勒克瑙市一個(gè)鉛工業(yè)暴露的地區(qū),血鉛水平為11.39 μg/dL左右的兒童,血液中羥基乙酰丙酸脫氫酶(ALAD)和GSH的含量明顯低于血鉛水平在7.11 μg/dL左右的兒童[35]。ALAD能夠催化亞鐵血紅素(heme)的生成,從而維持血紅蛋白的攜氧能力,因此鉛對ALAD活性的抑制作用是鉛發(fā)揮毒性很關(guān)鍵的一個(gè)方面[45]。Hunaiti等發(fā)現(xiàn)在約旦伊爾比德市的從事鉛行業(yè)工人的血液中,GR、GPX和GST的含量均與血鉛水平呈反比,表明鉛暴露使上述三種谷胱甘肽相關(guān)酶含量均發(fā)生下降,從而干擾了GSH代謝途徑[46]。
目前,鉛的毒性效應(yīng)與氧化應(yīng)激的相關(guān)性研究已有大量報(bào)道,因此本文將從動(dòng)物、細(xì)胞和分子三個(gè)水平上分別綜述鉛暴露誘發(fā)氧化應(yīng)激的研究進(jìn)展,并從中找到尚未搞清楚的科研問題,作為后續(xù)工作的研究重點(diǎn)。
2 動(dòng)物、細(xì)胞和分子水平上鉛暴露誘發(fā)氧化應(yīng)激的研究進(jìn)展
2.1動(dòng)物水平上鉛暴露誘發(fā)氧化應(yīng)激的研究進(jìn)展
研究表明,長期鉛暴露可導(dǎo)致肝臟、腎臟、生殖系統(tǒng)及神經(jīng)系統(tǒng)的病變。對于鉛毒性效應(yīng)的研究大部分集中在流行病學(xué)領(lǐng)域,通過研究人群血鉛水平、與身體各器官相關(guān)病變的生物學(xué)效應(yīng)之間的關(guān)系來評價(jià)鉛的毒性,為提出有效的治療方案提供數(shù)據(jù)支持[47-49]。但是流行病學(xué)研究并不能實(shí)現(xiàn)鉛暴露劑量變化與氧化應(yīng)激相關(guān)生物學(xué)效應(yīng)關(guān)系的研究,因此不能揭示鉛誘發(fā)氧化應(yīng)激的毒性作用機(jī)理。因此很多學(xué)者從動(dòng)物水平上研究了鉛毒性與氧化應(yīng)激的關(guān)系。
實(shí)驗(yàn)動(dòng)物經(jīng)鉛暴露后,其抗氧化防御體系的變化情況是動(dòng)物水平研究中主要關(guān)注的問題。Farmand等人研究了雄性Sprague-Dawley鼠經(jīng)不同劑量鉛染毒后主要抗氧化酶Cu/Zn SOD、CAT及GPx活性及含量的變化,結(jié)果顯示鉛暴露導(dǎo)致鼠胸動(dòng)脈中Cu/Zn SOD活性升高,CAT和GPx活性沒有變化,而且這三種酶的含量均未發(fā)生變化;在鼠腎臟和髓質(zhì)中Cu/Zn SOD和CAT活性升高,而GPx活性沒有變化。因此Farmand認(rèn)為鉛暴露后抗氧化酶活性升高是實(shí)驗(yàn)動(dòng)物在氧化應(yīng)激狀態(tài)下的一種反饋抵抗機(jī)制[50]。但是Sivaprasad課題組的研究結(jié)果卻與上述報(bào)道相反:他們在鉛暴露后的小鼠血液紅細(xì)胞中發(fā)現(xiàn)Cu/Zn SOD、CAT和GPx活性下降,因此解釋為酶活性下降是鉛誘發(fā)氧化應(yīng)激的標(biāo)志[51]。以上不同的實(shí)驗(yàn)結(jié)果表明,在不同的暴露劑量、暴露時(shí)間和靶器官等實(shí)驗(yàn)條件下,鉛暴露過程中抗氧化酶活性變化規(guī)律不具有確定性,而且目前的研究并未闡明由于鉛暴露導(dǎo)致酶活性的變化,引起體內(nèi)氧化還原狀態(tài)的失衡造成氧化損傷的發(fā)生;還是鉛暴露誘發(fā)機(jī)體氧化損傷,導(dǎo)致了酶活性變化[52]。針對這一問題,我們研究了斑馬魚水平上鉛暴露誘發(fā)氧化應(yīng)激過程中SOD活性變化的機(jī)理:鉛暴露打破了斑馬魚肝臟中的氧化還原穩(wěn)態(tài),導(dǎo)致SOD酶活性下降,谷胱甘肽相關(guān)酶GPx、GR和GST活性受到抑制, GSH/GSSG比率下降,并對細(xì)胞膜結(jié)構(gòu)產(chǎn)生了氧化損傷,導(dǎo)致脂質(zhì)過氧化物MDA含量增加;然后利用多種光譜學(xué)方法、ITC法及分子對接模擬等方法從生物大分子層面上深入探討了鉛暴露誘發(fā)斑馬魚氧化應(yīng)激過程中CAT活性降低的機(jī)理。研究發(fā)現(xiàn)鉛通過靜電作用(ΔH<0, ΔS>0)與酶催化關(guān)鍵氨基酸殘基Arg 141發(fā)生了直接作用,使鉛結(jié)合到SOD的活性通道內(nèi),阻礙了底物(O2-·)進(jìn)入酶活性中心的路徑,破壞了SOD的骨架結(jié)構(gòu)和二級結(jié)構(gòu),并使活性中心的Cu2+和Zn2+釋放出來,從而導(dǎo)致了SOD活性的下降[53]。
當(dāng)鉛暴露導(dǎo)致機(jī)體各組織氧化損傷程度較深時(shí),產(chǎn)生的ROS會(huì)進(jìn)攻膜結(jié)構(gòu)中的磷脂層,產(chǎn)生脂質(zhì)過氧化反應(yīng)[31]。脂質(zhì)過氧化程度取決于膜結(jié)構(gòu)中脂肪酸的飽和程度,不飽和程度越高(不飽和鍵越多),越容易發(fā)生脂質(zhì)過氧化反應(yīng)。脂質(zhì)過氧化將使細(xì)胞膜的流動(dòng)性和通透性改變,導(dǎo)致細(xì)胞結(jié)構(gòu)和功能的異變,最終導(dǎo)致多器官損傷的發(fā)生[54]。Gerber和Rehman發(fā)現(xiàn)在鉛暴露的小鼠大腦勻漿液中脂質(zhì)過氧化物的產(chǎn)生量隨著鉛染毒濃度的升高而增多[55, 56]。而且Rehman還研究了小鼠大腦不同區(qū)域鉛的含量,他發(fā)現(xiàn)鉛富集量大的區(qū)域,脂質(zhì)過氧化程度高[57]。Adanaylo和Oteiza 也證實(shí)鉛暴露干擾了小鼠大腦中抗氧化防御體系,作為脂質(zhì)過氧化的生物標(biāo)志物MDA含量升高[58]。劉芳麗等人在鉛暴露后的小鼠肝臟和腎臟中均發(fā)現(xiàn)了MDA含量的升高,且加入抗氧化物質(zhì)白藜蘆醇后減輕了鉛的脂質(zhì)過氧化水平[59]。
2.2細(xì)胞水平上研究鉛誘發(fā)氧化應(yīng)激的研究進(jìn)展
動(dòng)物水平的研究結(jié)果分析了鉛暴露引發(fā)毒性效應(yīng)與氧化應(yīng)激的相關(guān)性,闡明了鉛暴露導(dǎo)致組織器官損傷及引發(fā)各種疾病的重要機(jī)理是鉛破壞了體內(nèi)氧化還原狀態(tài),是機(jī)體發(fā)生氧化損傷所致。但是動(dòng)物水平上的鉛毒性評價(jià)并不能解釋鉛暴露誘發(fā)細(xì)胞毒性的微觀機(jī)制,也就無法研究細(xì)胞內(nèi)發(fā)生氧化應(yīng)激作用機(jī)理。因此,很多研究者開始從細(xì)胞水平上研究鉛誘發(fā)氧化應(yīng)激的機(jī)理及其與細(xì)胞凋亡等細(xì)胞毒性的關(guān)系。
已有研究表明鉛毒性引起細(xì)胞損傷與細(xì)胞內(nèi)氧化還原狀態(tài)異常有關(guān)。Yedjou和Tchounwou研究發(fā)現(xiàn)鉛引起HepG2細(xì)胞活力下降與細(xì)胞內(nèi)ROS含量升高有關(guān),同時(shí)鉛暴露引起細(xì)胞內(nèi)MDA含量顯著升高;當(dāng)鉛暴露同時(shí)加入抗氧化物質(zhì)N-乙酰-L-半胱氨酸(NAC),會(huì)使細(xì)胞內(nèi)ROS含量顯著降低,而且顯著提高了細(xì)胞成活率。表明NAC抑制了鉛暴露引發(fā)細(xì)胞產(chǎn)生的氧化應(yīng)激效應(yīng)[60]。Stacchiotti等人選取小鼠腎臟近曲小管細(xì)胞(NRK-52E)為靶細(xì)胞進(jìn)行鉛暴露后,引起了細(xì)胞凋亡和壞死、線粒體損傷等細(xì)胞損傷作用,而且伴隨著細(xì)胞內(nèi)ROS和RNS含量的升高[61]。Navarro-Moreno等人同樣在小鼠腎臟近曲小管細(xì)胞中發(fā)現(xiàn)了細(xì)胞損傷與氧化影響的相關(guān)性[62],評價(jià)了鉛對PC 12細(xì)胞的細(xì)胞毒性。Jadhav等發(fā)現(xiàn)低濃度鉛急性暴露(0.01 μM,24 h)可激活細(xì)胞內(nèi)蛋白激酶C(PKC)的活性,PKC的活化調(diào)節(jié)了鈣傳輸相關(guān)的NMDA受體通道,從而提高了細(xì)胞內(nèi)Ca2+含量;而NMDA受體激活將促進(jìn)興奮型氨基酸谷氨酸鹽的釋放,進(jìn)而引發(fā)細(xì)胞內(nèi)ROS含量上升,產(chǎn)生氧化應(yīng)激效應(yīng)。他們進(jìn)一步研究了鉛與谷氨酸鹽對PC12細(xì)胞的聯(lián)合暴露效應(yīng),發(fā)現(xiàn)細(xì)胞內(nèi)ROS含量大幅升高,細(xì)胞成活率顯著降低,表明鉛能夠通過調(diào)節(jié)PCK活性進(jìn)而引發(fā)細(xì)胞產(chǎn)生氧化損傷[63]。
在鉛暴露誘發(fā)細(xì)胞氧化損傷的過程中,細(xì)胞內(nèi)有著“動(dòng)力車間”之稱的線粒體起著至關(guān)重要的調(diào)節(jié)作用。線粒體的功能與ROS的產(chǎn)生及代謝密切相關(guān),一方面線粒體在氧化代謝制造ATP過程中會(huì)伴隨大量ROS的產(chǎn)生,在正常生理?xiàng)l件下其生成速率與線粒體膜電位水平(MMP)有直接關(guān)系[64]。Suski等人證實(shí)線粒體膜電位降低直接導(dǎo)致ROS的產(chǎn)生量增大[65];另一方面線粒體內(nèi)的抗氧化防御體系能夠有效消除過量的ROS,使自身免受氧化損傷而繼續(xù)發(fā)揮其重要生理功能[66]。當(dāng)細(xì)胞內(nèi)氧化應(yīng)激程度較嚴(yán)重時(shí),過量蓄積的ROS可氧化滲透性轉(zhuǎn)運(yùn)通道上的敏感位點(diǎn),會(huì)導(dǎo)致線粒體發(fā)生形態(tài)腫脹、膜電位降低等氧化損傷效應(yīng),產(chǎn)生嚴(yán)重的細(xì)胞毒性[67]。同時(shí),線粒體在細(xì)胞凋亡過程中發(fā)揮重要作用。Oluwole等人于1998年在science雜質(zhì)上詳細(xì)分析了線粒體參與細(xì)胞凋亡的相關(guān)機(jī)理:(1)線粒體功能的紊亂導(dǎo)致細(xì)胞凋亡的產(chǎn)生,包括電子傳遞、氧化磷酸化和ATP產(chǎn)量的紊亂;(2)線粒體通過釋放細(xì)胞色素C等信號因子激活Caspase家族,從而導(dǎo)致細(xì)胞凋亡的產(chǎn)生;(3)線粒體內(nèi)氧化還原電位的改變,導(dǎo)致MMP值變化及調(diào)控Bcl-2家族的磷酸化水平,從而達(dá)到調(diào)控細(xì)胞凋亡的目的[68]。王林等人研究了鉛暴露對大鼠腎小管上皮細(xì)胞MMP值與ROS含量的關(guān)系,發(fā)現(xiàn)鉛染毒使腎細(xì)胞內(nèi)ROS大量產(chǎn)生,且伴隨著MMP數(shù)值下降。這是由于蓄積的ROS會(huì)直接靶性損傷線粒體膜結(jié)構(gòu),引起MMP值下降,進(jìn)而導(dǎo)致了細(xì)胞凋亡[69]。徐進(jìn)等人研究發(fā)現(xiàn)鉛暴露可導(dǎo)致PC 12細(xì)胞DNA損傷及細(xì)胞凋亡,同時(shí)伴隨著凋亡信號通路Bax表達(dá)量上升、Bcl-2表達(dá)量下降、P53表達(dá)量增加且Caspase-3被激活。表明鉛誘發(fā)DNA損傷與P53表達(dá)量上調(diào)有關(guān),導(dǎo)致Bax/Bcl-2狀態(tài)失衡和線粒體損傷,從而激活了Caspase-3,進(jìn)一步引起了細(xì)胞凋亡[70]。
2.3 分子水平上研究鉛誘發(fā)氧化應(yīng)激的研究進(jìn)展
研究表明,重金屬引發(fā)生物體毒性效應(yīng)是從生物大分子開始的,比如各種酶、非酶功能性蛋白、DNA和RNA等,然后逐步在細(xì)胞層面、組織器官層面和個(gè)體層面反映出來[71],因此研究重金屬與生物大分子的相互作用,能從分子層面上解釋重金屬引發(fā)毒性效應(yīng)的機(jī)理,為與重金屬相關(guān)疾病的早期診斷及治療提供依據(jù)。但目前從分子層面上研究鉛與生物大分子的相互作用研究很少。Belatik等人利用FTIR、紫外可見吸收光譜、圓二色譜、熒光光譜儀和X射線光電子能譜等技術(shù)從分子水平上對比研究了鉛(II)與HSA與BSA的結(jié)合模式。Vega等人通過研究鉛與人魚精蛋白(HP2)的直接作用來解釋鉛的生殖毒性。他們通過多種光譜學(xué)手段研究了鉛對HP2結(jié)構(gòu)的影響,結(jié)果顯示鉛結(jié)合到HP2的兩個(gè)結(jié)合位點(diǎn)處,從而破壞了HP2的生理結(jié)構(gòu),并認(rèn)為由于HP2對鉛和鋅的親和力類似,因此鉛暴露會(huì)競爭性抑制鋅與HP2的結(jié)合從而引發(fā)生殖毒性效應(yīng)。
但分子水平的研究中存在一些方法學(xué)問題。首先上述研究中都未考慮熒光內(nèi)濾效應(yīng)對體系熒光變化的影響。熒光內(nèi)濾效應(yīng)是指溶液在激發(fā)波長和發(fā)射波長處的光發(fā)生吸收或色散而導(dǎo)致熒光信號減弱的現(xiàn)象。針對這一問題,我們課題組已經(jīng)提出利用內(nèi)濾校正公式和外濾校正裝置來消除內(nèi)濾效應(yīng)影響的方法[72, 73],但是內(nèi)濾校正公式的適用性有待進(jìn)一步研究。因此最好的校正內(nèi)濾的方法應(yīng)該是避免內(nèi)濾效應(yīng)的產(chǎn)生[74]。一般認(rèn)為,讓溶液在激發(fā)波長到掃描的發(fā)射波長范圍內(nèi)的吸光度小于0.1時(shí),可以忽略內(nèi)濾效應(yīng)的影響。由于沒有校正內(nèi)濾效應(yīng),利用Stern-Volmer方程判別熒光猝滅機(jī)理的類型就存在問題。事實(shí)上,最準(zhǔn)確的熒光猝滅類型判別方法是考察反應(yīng)體系熒光壽命的變化[75]。另一個(gè)問題是利用雙對數(shù)Stern-Volmer方程 計(jì)算結(jié)合位點(diǎn)數(shù)和結(jié)合常數(shù),并進(jìn)一步通過熱力學(xué)常數(shù)的計(jì)算確定結(jié)合作用力類型。但這個(gè)方程當(dāng)且僅當(dāng)配體與受體的結(jié)合屬于無限協(xié)同反應(yīng)(infinite cooperativity),受體的結(jié)合位點(diǎn)全空或者全滿)時(shí)才能用來計(jì)算結(jié)合常數(shù)及結(jié)合位點(diǎn)數(shù)[75]。近幾年等溫滴定微量熱技術(shù)(ITC)的發(fā)展為研究配體與受體相互作用過程的結(jié)合常數(shù)、結(jié)合位點(diǎn)數(shù)及作用力類型成為可能[76, 77]。針對上述問題,我們利用熒光分析法、紫外可見吸收光譜、圓二色譜、等溫滴定微量熱技術(shù)、分子對接模擬等方法,并考慮內(nèi)濾效應(yīng)對反應(yīng)體系的干擾,分別研究了鉛與SOD、溶菌酶、人絨毛膜促性腺激素以及DNA的相互作用機(jī)理,糾正了鉛與生物大分子相互作用研究中的方法學(xué)問題[53, 78-80]。
分子水平上研究鉛的氧化應(yīng)激效應(yīng),就是要通過研究鉛與氧化應(yīng)激相關(guān)酶的直接作用,闡明酶活性變化的分子機(jī)理,揭示氧化應(yīng)激過程中細(xì)胞內(nèi)活性氧水平發(fā)生變化的原因,從而更加準(zhǔn)確解釋鉛暴露誘發(fā)氧化應(yīng)激引發(fā)的相關(guān)病變,為開發(fā)有效拮抗鉛毒性、保障健康的治療方案提供實(shí)驗(yàn)數(shù)據(jù)支持。目前從分子水平上研究鉛與氧化應(yīng)激相關(guān)酶的直接作用機(jī)理研究較少。前文已經(jīng)提及,我們從斑馬魚水平研究了鉛誘發(fā)氧化應(yīng)激過程中SOD活性降低的分子機(jī)理,并對比分析了SOD在體內(nèi)和體外鉛暴露實(shí)驗(yàn)后酶活性變化的相關(guān)性。該研究為從分子水平上準(zhǔn)確評價(jià)重金屬鉛對氧化應(yīng)激相關(guān)酶的毒性效應(yīng)機(jī)理提供了方法學(xué)參考。
3. 展望
根據(jù)世界衛(wèi)生組織(WHO)2002年的世界健康報(bào)告,鉛暴露是威脅人類健康的全球前20位疾病風(fēng)險(xiǎn)因素之一。目前很多科研工作者關(guān)注新型環(huán)境污染物(如納米材料、阻燃劑等)的毒理學(xué)研究,但包括重金屬鉛在內(nèi)的毒性更強(qiáng)的傳統(tǒng)持久性有毒環(huán)境污染物,其引發(fā)的健康問題更需值得關(guān)注,而且在鉛的毒理學(xué)研究中仍然存在很多尚未闡明的基礎(chǔ)科學(xué)問題,需要進(jìn)行深入的研究。
重金屬鉛通過各種途徑進(jìn)入生物體后,會(huì)使生物體內(nèi)產(chǎn)生過量的活性氧物質(zhì),導(dǎo)致機(jī)體發(fā)生氧化應(yīng)激效應(yīng),造成蛋白質(zhì)、核酸、脂類等生物大分子的氧化損傷,引發(fā)細(xì)胞凋亡、各功能臟器代謝紊亂,最終導(dǎo)致疾病的發(fā)生,嚴(yán)重時(shí)將引發(fā)腫瘤性病變。還會(huì)與生物大分子(各種酶、非酶蛋白及核酸)發(fā)生直接相互作用,造成其功能的衰退或喪失,并最終逐步在細(xì)胞水平和機(jī)體水平反映出來。同時(shí),不同暴露途徑下鉛的毒性效應(yīng)是有較大差別的,即使控制鉛的劑量相同,對同一生物學(xué)效應(yīng)的評價(jià)結(jié)果仍可能不一致。目前并沒有在不同暴露途徑下對同一生物學(xué)效應(yīng)的相關(guān)性研究。因此在明確動(dòng)物水平、細(xì)胞水平和分子水平上鉛誘發(fā)氧化應(yīng)激效應(yīng)機(jī)理以后,建立對同一生物大分子(蛋白質(zhì)、DNA)在動(dòng)物、細(xì)胞和分子水平上的結(jié)構(gòu)和功能變化的相關(guān)性研究和評價(jià)方法,對于系統(tǒng)研究鉛的氧化應(yīng)激效應(yīng)至關(guān)重要。
參考文獻(xiàn)
[1] Salazar, K. Mineral Commodity Summaries 2013: US Geological Survey (USGS)[J]. US Geological Survey, 2013.
[2] 賈振邦. 環(huán)境與健康[M]. 北京: 北京大學(xué)出版社, 2008.
[3] Patrick, L. Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment[J]. Alternative medicine review : a journal of clinical therapeutic, 2006, 11 (1): 2-22.
[4] Gillis, B. S.,Arbieva, Z.,Gavin, I. M. Analysis of lead toxicity in human cells[J]. BMC genomics, 2012, 13(1): 1-12.
[5] Oktem, F.,Arslan, M. K.,Dundar, B., etc. Renal effects and erythrocyte oxidative stress in long-term low-level lead-exposed adolescent workers in auto repair workshops[J]. Archives of toxicology, 2004, 78 (12): 681-687.
[6] Fontanellas, A., Navarro, S., Morán-Jiménez, M.-J., etc. Erythrocyte aminolevulinate dehydratase activity as a lead marker in patients with chronic renal failure[J]. American Journal of Kidney Diseases, 2002, 40 (1): 43-50.
[7] Patrick, L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity[J]. Alternative medicine review : a journal of clinical therapeutic, 2006, 11 (2): 114-127.
[8] Environmental stressors in health and disease[M]. New York: CRC Press, 2001.
[9] Balaban, R. S.,Nemoto, S.,F(xiàn)inkel, T. Mitochondria, oxidants, and aging[J]. Cell, 2005, 120 (4): 483-495.
[10] Lushchak, V. I. Free radicals, reactive oxygen species, oxidative stress and its classification[J]. Chemico-biological interactions, 2014, 224C 164-175.
[11] Reuter, S.,Gupta, S. C.,Chaturvedi, M. M., etc. Oxidative stress, inflammation, and cancer: how are they linked?[J]. Free radical biology & medicine, 2010, 49 (11): 1603-1616.
[12] Suzuki, Y. J.,F(xiàn)orman, H. J.,Sevanian, A. Oxidants as Stimulators of Signal Transduction[J]. Free Radical Biology and Medicine, 1997, 22 269–285.
[13] Alvarez-Gonzalez, R. Free radicals, oxidative stress, and DNA metabolism in human cancer[J]. Cancer investigation, 1999, 17 (5): 376-377.
[14] Folkes, L. K.,Christlieb, M.,Madej, E., etc. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals[J]. Chemical research in toxicology, 2007, 20 (12): 1885-1894.
[15] Valko, M.,Rhodes, C. J.,Moncol, J., etc. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico-biological interactions, 2006, 160 (1): 1-40.
[16] Upadhyay, D.,Panduri, V.,Ghio, A., etc. Particulate matter induces alveolar epithelial cell DNA damage and apoptosis: role of free radicals and the mitochondria[J]. American journal of respiratory cell and molecular biology, 2003, 29 (2): 180-187.
[17] Yamaguchi, H.,Uchihori, Y.,Yasuda, N., etc. Estimation of yields of OH radicals in water irradiated by ionizing radiation[J]. Journal of radiation research, 2005, 46 (3): 333-341.
[18] Sakurai, H.,Yasui, H.,Yamada, Y., etc. Detection of reactive oxygen species in the skin of live mice and rats exposed to UVA light: a research review on chemiluminescence and trials for UVA protection[J]. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 2005, 4 (9): 715-720.
[19] Ziech, D.,F(xiàn)ranco, R.,Georgakilas, A. G., etc. The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development[J]. Chemico-biological interactions, 2010, 188 (2): 334-339.
[20] Zhang, W.,Tan, N. G.,F(xiàn)u, B., etc. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress[J]. Metallomics : integrated biometal science, 2015, 7 (3): 426-438.
[21] Lee, J. C.,Son, Y. O.,Pratheeshkumar, P., etc. Oxidative stress and metal carcinogenesis[J]. Free radical biology & medicine, 2012, 53 (4): 742-757.
[22] Jomova, K.,Valko, M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283 (2-3): 65-87.
[23] Galanis, A.,Karapetsas, A.,Sandaltzopoulos, R. Metal-induced carcinogenesis, oxidative stress and hypoxia signalling[J]. Mutation research, 2009, 674 (1-2): 31-35.
[24] Liochev, S. I. The mechanism of "Fenton-like" reactions and their importance for biological systems. A biologists view[J]. Met Ions Biol Syst, 1999, 36 (4): 1-39.
[25] Jozefczak, M.,Remans, T.,Vangronsveld, J., etc. Glutathione is a key player in metal-induced oxidative stress defenses[J]. International journal of molecular sciences, 2012, 13 (3): 3145-3175.
[26] Potter, A. J.,Trappetti, C.,Paton, J. C. Streptococcus pneumoniae uses glutathione to defend against oxidative stress and metal ion toxicity[J]. Journal of bacteriology, 2012, 194 (22): 6248-6254.
[27] Barata, C.,Lekumberri, I.,Vila-Escale, M., etc. Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregat river basin (NE Spain)[J]. Aquatic toxicology, 2005, 74 (1): 3-19.
[28] Vigneshkumar, B.,Pandian, S. K.,Balamurugan, K. Catalase activity and innate immune response of Caenorhabditis elegans against the heavy metal toxin lead[J]. Environmental toxicology, 2013, 28 (6): 313-321.
[29] Choudhary, M.,Jetley, U. K.,Khan, M. A., etc. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5[J]. Ecotoxicology and environmental safety, 2007, 66 (2): 204-209.
[30] Halliwell, B.,Gutteridge, J. M. C.,Halliwell, B., etc. Free radicals in biology and medicine[J]. Oxford University Press, 1999.
[31] 海春旭. 自由基醫(yī)學(xué)[M]. 第四軍醫(yī)大學(xué)出版社, 2006.
[32] Liu, H.,Zheng, F.,Cao, Q., etc. Amelioration of oxidant stress by the defensin lysozyme[J]. American journal of physiology. Endocrinology and metabolism, 2006, 290 (5): 824-832.
[33] Kajihara, T.,Uchino, S.,Suzuki, M., etc. Human chorionic gonadotropin confers resistance to oxidative stress-induced apoptosis in decidualizing human endometrial stromal cells[J]. Fertility and sterility, 2011, 95 (4): 1302-1307.
[34] Wills, E. Mechanisms of lipid peroxide formation in tissues role of metals and haematin proteins in the catalysis of the oxidation of unsaturated fatty acids[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1965, 98 (2): 238-251.
[35] Ahamed, M.,Verma, S.,Kumar, A., etc. Environmental exposure to lead and its correlation with biochemical indices in children[J]. The Science of the total environment, 2005, 346 (1-3): 48-55.
[36] Gurer-Orhan, H.,Sab?r, H. U.,?zgüne?, H. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers[J]. Toxicology, 2004, 195 (2-3): 147–154.
[37] Lachant, N. A.,Tomoda, A.,Tanaka, K. R. Inhibition of the pentose phosphate shunt by lead: a potential mechanism for hemolysis in lead poisoning[J]. Blood, 1984, 63 (3): 518-524.
[38] Sandhir, R.,Julka, D.,Gill, K. D. Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes[J]. Pharmacology & toxicology, 1994, 74 (2): 66-71.
[39] Ercal, N.,Gurer-Orhan, H.,Aykin-Burns, N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage[J]. Current topics in medicinal chemistry, 2001, 1 (6): 529-539.
[40] Sies, H. Glutathione and its role in cellular functions[J]. Free radical biology & medicine, 1999, 27 (9-10): 916-921.
[41] Jozefczak, M.,Remans, T.,Vangronsveld, J., etc. Glutathione is a key player in metal-induced oxidative stress defenses[J]. International journal of molecular sciences, 2012, 13 (3): 3145-3175.
[42] Garcon, G.,Leleu, B.,Zerimech, F., etc. Biologic markers of oxidative stress and nephrotoxicity as studied in biomonitoring of adverse effects of occupational exposure to lead and cadmium[J]. Journal of occupational and environmental medicine / American College of Occupational and Environmental Medicine, 2004, 46 (11): 1180-1186.
[43] CM, L.,GH, Z.,QL, M., etc. Protective effect of quercetin on lead-induced oxidative stress and endoplasmic reticulum stress in rat liver via the IRE1/JNK and PI3K/Akt pathway[J]. Free radical research, 2013, 47 (3): 192-201.
[44] ND, V.,CY, L.,F(xiàn), F., etc. Superoxide dismutase, catalase, glutathione peroxidase and NADPH oxidase in lead-induced hypertension[J]. Kidney International, 2003, 63 (1): 186–194.
[45] Bergdahl, I. A.,Grubb, A.,Schütz, A., etc. Lead binding to delta-aminolevulinic acid dehydratase (ALAD) in human erythrocytes[J]. Pharmacology & Toxicology, 1997, 81 (4): 153-158.
[46] AA, H.,M, S. Effect of lead concentration on the level of glutathione, glutathione S-transferase, reductase and peroxidase in human blood[J]. Science of The Total Environment, 2000, 248 (1): 45–50.
[47] Toscano, C. D.,Guilarte, T. R. Lead neurotoxicity: from exposure to molecular effects[J]. Brain research. Brain research reviews, 2005, 49 (3): 529-554.
[48] Hu, H.,Shih, R.,Rothenberg, S., etc. The Epidemiology of Lead Toxicity in Adults: Measuring Dose and Consideration of Other Methodologic Issues[J]. Environ Health Perspect., 2007, 115 (3): 455-462.
[49] Koller, K.,Brown, T.,Spurgeon, A., etc. Recent developments in low-level lead exposure and intellectual impairment in children[J]. Environmental health perspectives, 2004, 112 (9): 987-94.
[50] F, F.,A, E.,CK, R., etc. Lead-induced dysregulation of superoxide dismutases, catalase, glutathione peroxidase, and guanylate cyclase[J]. Environmental research, 2005, 98 (1): 33–39.
[51] R, S.,M, N.,P, V. Combined efficacies of lipoic acid and meso-2,3-dimercaptosuccinic acid on lead-induced erythrocyte membrane lipid peroxidation and antioxidant status in rats[J]. Human & Experimental Toxicology, 2003, 22 (4): 183-192.
[52] Gurer, H.,Ercal, N. Can antioxidants be beneficial in the treatment of lead poisoning?[J]. Free Radical Biology and Medicine, 2000, 29 (10): 927–945.
[53] Gardner, H. W. Oxygen radical chemistry of polyunsaturated fatty acids[J]. Free Radical Biology and Medicine, 1989, 7 (1): 65-86.
[54] Zhang H, Liu Y, Liu R, et al. Molecular Mechanism of Lead-Induced Superoxide Dismutase Inactivation in Zebrafish Livers.[J]. Journal of Physical Chemistry B, 2014, 118 (51): 18420-18426.
[55] Gerber, G. B.,Maes, J.,Gilliavod, N., etc. Brain biochemistry of infant mice and rats exposed to lead [J]. Toxicology letters, 1978, 2 (1): 51–63.
[56] Shafiq-ur-Rehman,S, R.,O, C., etc. Evaluation of malondialdehyde as an index of lead damage in rat brain homogenates[J]. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 1995, 8 (4): 275-279.
[57] Shafiq Ur, R. Lead-induced regional lipid peroxidation in brain[J]. Toxicology letters, 1984, 21 (3): 333-337.
[58] Adonaylo, V. N.,Oteiza, P. I. Lead intoxication: antioxidant defenses and oxidative damage in rat brain[J]. Toxicology, 1999, 135 (2-3): 77-85.
[59] 劉芳麗,薛振菲,張楠, etc. 白藜蘆醇對鉛誘導(dǎo)小鼠脂質(zhì)過氧化的拮抗作用[J]. 衛(wèi)生研究, 2012, 41 (6).
[60] Yedjou, C. G.,Tchounwou, P. B. N-acetyl-l-cysteine affords protection against lead-induced cytotoxicity and oxidative stress in human liver carcinoma (HepG2) cells[J]. International journal of environmental research and public health, 2007, 4 (2): 132-137.
[61] A, S.,F(xiàn), M.,F(xiàn), B., etc. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead[J]. Toxicology, 2009, 264 (3): 215-224.
[62] LG, N.-M.,MA, Q.-E.,S, G., etc. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells[J]. Toxicology in Vitro, 2009, 23 (7): 1298–1304.
[63] AL, J.,GT, R.,PG., G. Contribution of protein kinase C and glutamate in Pb(2+)-induced cytotoxicity[J]. Toxicology letters, 2000, 115 (2): 89–98.
[64] Chan, D. C. Mitochondria: Dynamic Organelles in Disease, Aging, and Development[J]. Cell, 2006, 125 (7): 1241–1252.
[65] JM, S.,M, L.,M, B., etc. Relation between mitochondrial membrane potential and ROS formation[J]. Methods in Molecular Biology (Clifton, N.J.), 2012.
[66] Scherz-Shouval, R.,Elazar, Z. ROS, mitochondria and the regulation of autophagy[J]. Trends in Cell Biology, 2007, 17 (9): 422-427.
[67] KA, F.,F(xiàn), G.,F(xiàn)J, G., etc. Optical And Pharmacological Tools To Investigate The Role Of Mitochondria During Oxidative Stress And Neurodegeneration[J]. Progress in Neurobiology, 2006, 79 (3): 136–171.
[68] Green, D. R.,Reed, J. C. Mitochondria and apoptosis[J]. Science (New York, NY), 1998, 281 (5381): 1309-1312.
[69] Wang, L.,Wang, H.,Li, J., etc. Simultaneous effects of lead and cadmium on primary cultures of rat proximal tubular cells: interaction of apoptosis and oxidative stress[J]. Archives of environmental contamination and toxicology, 2011, 61 (3): 500-511.
[70] J, X.,LD, J.,LH., X. Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3[J]. Toxicology letters, 2006, 166 (2): 160–167.
[71] 孔繁翔,尹大強(qiáng),嚴(yán)囯安. 環(huán)境生物學(xué)[M]. 高等教育出版社, 2000.
[72] Z, C.,R, L.,H., Z. Noncovalent interaction of oxytetracycline with the enzyme trypsin[J]. Biomacromolecules, 2010, 11 (9): 2454-2459.
[73] W, Z.,R, L.,F(xiàn), S., etc. A new strategy to identify and eliminate the inner filter effects by outer filter technique[J]. Journal of fluorescence, 2011, 21 (3): 1249-1254.
[74] Luciani, X.,Mounier, S.,Redon, R., etc. A simple correction method of inner filter effects affecting FEEM and its application to the PARAFAC decomposition[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96 (2): 227–238.
[75] Weert, M. v. d.,Stella, L. Fluorescence quenching and ligand binding: A critical discussion of a popular methodology[J]. Journal of Molecular Structure, 2011, 998 144–150.
[76] Keswani, N.,Choudhary, S.,Kishore, N. Quantitative aspects of recognition of the antibiotic drug oxytetracycline by bovine serum albumin: Calorimetric and spectroscopic studies[J]. The Journal of Chemical Thermodynamics, 2013, 58 (3): 196–205.
[77] JX, H.,MA, C.,MA, B., etc. Drug-binding energetics of human α-1-acid glycoprotein assessed by isothermal titration calorimetry and molecular docking simulations [J]. Journal of Molecular Recognition, 2012, 25 (12): 642–656.
[78] Zhang H, Hao F, Liu R. Interactions of lead (II) acetate with the enzyme lysozyme: A spectroscopic investigation [J]. Journal of Luminescence, 2013, 142(142):144-149.
[79] Zhang H, Liu Y, Zhang R, et al. Binding mode investigations on the interaction of lead(II) acetate with human chorionic gonadotropin [J]. Journal of Physical Chemistry B, 2014, 118(32):9644-9650.
[80] Hao Z, Kai W, Zhang M, et al. Assessing the mechanism of DNA damage induced by lead through direct and indirect interactions[J]. Journal of Photochemistry & Photobiology B Biology, 2014, 136 (7):46-53.