劉松,郭家明,何寬信,尤本武,肖先儀,陳學平
1中國科學技術大學煙草與健康研究中心,安徽省合肥市徽州大道1129號 230051;2 江西省煙草公司,江西省南昌市洪城路298號 330025
BABA誘導煙草抵御鎘脅迫初步研究
劉松1,郭家明1,何寬信2,尤本武1,肖先儀2,陳學平1
1中國科學技術大學煙草與健康研究中心,安徽省合肥市徽州大道1129號 230051;2 江西省煙草公司,江西省南昌市洪城路298號 330025
通過施加外源BABA來減輕鎘脅迫對煙草的毒害,并從抗氧化系統(tǒng)、離子含量及相關基因表達來探討其作用機理。結果表明:0.2 mmol/L BABA和0.5 mmol/L BABA能使鎘脅迫下的煙苗根長、鮮重及葉綠素含量顯著增加;外源BABA處理不僅能顯著提高鎘脅迫下煙苗脯氨酸、谷胱甘肽(GSH)、還原型抗壞血酸(AsA)、可溶性糖和總酚含量,還能增強超氧化物歧化酶(SOD)、抗壞血酸還原酶(APX)、過氧化物酶(POD)和過氧化氫酶(CAT)活性,降低過氧化氫(H2O2)和丙二醛(MDA)含量,可以促進煙苗根部鎘的積累及降低地上部鎘的含量。實時定量PCR結果表明:BABA參與NtIRT1、NtNramp5、NtPCS1、NtGSH1、NtHMA4、NtPCR1、NtPDR5b基因表達調(diào)控。綜合來看, BABA緩解煙草鎘脅迫可能是激發(fā)植物體抗氧化系統(tǒng)、降低地上部鎘的積累及調(diào)節(jié)相關基因表達的綜合結果。
β-氨基丁酸;煙草;鎘脅迫
鎘是毒性較強的一種重金屬元素。據(jù)估計,我國有高達13,000 hm2耕地被鎘污染[1-2]。研究人員發(fā)現(xiàn)土壤中高濃度鎘抑制小白菜的生長,影響氮素代謝,阻礙對銅,鈣,鐵,鎂的吸收;鎘脅迫主要抑制植物的光合作用和呼吸作用,降低氮素代謝、水分和礦質(zhì)元素吸收[3]。鎘還可誘導植物遭受氧化脅迫,產(chǎn)生大量活性氧(ROS),擾亂細胞膜的組成和功能[4-6]。鎘脅迫對煙草的影響也有大量報道。馬新明等人[7]發(fā)現(xiàn)煙草吸收過多的鎘會使煙堿含量降低,糖堿比、氮堿比趨于不協(xié)調(diào),導致煙葉品質(zhì)降低。郭江波等[8]證實鎘污染會抑制煙草葉綠素合成及氧化酶活性,進而對煙草細胞造成傷害。
β-氨基丁酸(BABA)是一種非蛋白氨基酸,能夠調(diào)節(jié)植物對多種脅迫的抵御能力。研究表明,BABA可以誘導水稻抗線蟲[9]、葡萄抗霜霉病[10]、煙草抗煙草花葉病毒(TMV)[11]。BABA還可以誘導擬南芥抗鎘[12]、煙草抗高銅[13]和高鹽[14]。有關BABA緩解鎘脅迫對煙草毒害的研究未見報道。煙草是我國重要的經(jīng)濟作物,也是鎘易富集植物(富集系數(shù)可達5~10)[15],且吸收的鎘易分配積累于葉片中。本研究以云煙87為試驗材料,研究不同濃度BABA對鎘脅迫下煙草抗氧化物質(zhì)含量、抗氧化酶活性及鎘吸收轉運及解毒基因的表達量,測定了地上部和根部鎘含量,以期為煙草鎘污染控制提供一定的理論依據(jù)。
煙草品種“云煙87”由安徽農(nóng)業(yè)科學院提供,BABA(純度為94 %)市購。
水培條件:將消毒后的煙草種子均勻撒在由霍格蘭營養(yǎng)液潤濕的珍珠巖里,選取生長一致煙草幼苗移入已加入霍格蘭營養(yǎng)液的12孔黑色育苗盆中,輕質(zhì)泡沫固定,溫度(28 ± 2)℃,16 h光照/d培養(yǎng)至3、4葉真葉期。再從中選取一致煙草幼苗進行脅迫實驗,每盆10株煙草幼苗,每組設置三盆重復。BABA預處理3 d后,將鎘脅迫組和預處理組煙草幼苗移入含有100 μmol/L CdCl2的1/2霍格蘭營養(yǎng)液中處理4 d,每隔2 d更換一次處理液,營養(yǎng)液pH值保持在6.5,具體操作如表1所示。鎘脅迫4 d后分別使用直尺和萬分之一分析天平測量煙草幼苗根長和鮮重(濾紙吸干表面水分,迅速放入鋁盒);同時取煙草幼苗倒數(shù)第2片葉測定生理指標、提取RNA;實驗設置3次重復。
表1 水培條件Tab.1 Hydroponic condition
取新鮮葉片約0.2 g,在預先冷凍的研缽中加入2 mL 50 mmol/L pH=7.0的緩沖液(含有1 %PVP,0.1 %EDTA-2Na),迅速研磨至勻漿,再加入3 mL緩沖液,16000 rad/s高速冷凍離心機4 ℃離心20 min,上清液即為待測酶液。
采用丙酮提取法測定葉綠素含量[16];采用酸性茚三酮法測定脯氨酸含量[17];采用硫代巴比妥酸比色法測定丙二醛含量[18];AsA和可溶性糖的測定參照鄒奇的方法[19];采用福林酚法測定總酚的含量[20];GSH和H2O2的測定分別參照南京建成生物試劑公司GSH、H2O2試劑盒。
APX活力的測定參照Nakano和Asada的方法[21];愈創(chuàng)木酚法測定過氧化物酶(POD)活性[22];氮藍四唑(NBT)光化還原法測定超氧化物歧化酶(SOD)活性[23];CAT活力的測定參照南京建成生物試劑公司CAT試劑盒。
鎘脅迫處理4 d后煙草幼苗使用20 mmol/L EDTA-2Na溶液浸泡20 min,再用去離子水沖洗3遍,濾紙吸干水分后置于105 ℃的烘箱殺青15 min,再70 ℃烘干至恒重。根和葉分別研磨成粉,采用Optima 7300DV等離子體原子發(fā)射光譜儀測定鎘和鐵含量。
葉片總RNA提取參照北京天根公司植物總RNA提取試劑盒說明書,RNA反轉錄參照TaKaRa反轉錄試劑盒說明書,熒光定量PCR測定參照北京天根公司SuperReal PreMix Plus(SYBR Green)試劑盒說明書,使用LightCycler96采用兩步法PCR反應程序進行反應。內(nèi)參為Ntubc2,目的基因為NtIRT1、NtNramp5、NtPCS1、NtGSH1、NtHMA4、NtPCR1、NtPDR5b,目的基因引物序列參考表2。
表2 基因引物序列Tab.2 Gene sequence of primers
實驗數(shù)據(jù)表示為平均值 ± 標準偏差,數(shù)據(jù)分析采用單因素方差分析,置信區(qū)間P<0.05,統(tǒng)計分析軟件使用origin 9.1。
與對照組相比,鎘脅迫下煙草幼苗的生長明顯受到抑制,葉部出現(xiàn)萎黃(圖1A),根長縮短(圖1B),地上部和根部鮮重減?。▓D1C),葉綠素含量降低(圖1D)。而經(jīng)BABA預處理的煙草幼苗的根長、鮮重、葉綠素含量均顯著增加。其中,施加0.2 mmol/L BABA處理組煙苗比鎘脅迫組根長、地上部鮮重和根部鮮重分別增加了19.82 %、18.67 %和82.93 %;施加0.5 mmol/L BABA處理組煙苗比鎘脅迫組的根長、地上部鮮重和根部鮮重分別增加了16.22 %、25.36 %和53.14 %。由圖1D可知,鎘脅迫下煙草幼苗葉綠素a、b均出現(xiàn)下降。0.2 mmol/L、0.5 mmol/L BABA預處理組煙草幼苗較鎘脅迫組葉綠素a含量分別提高了27.40 %和34.53 %;葉綠素b含量前者提高10.07 %,后者雖有增加,但差異不顯著。
圖1 鎘脅迫下BABA對煙草幼苗長勢(A)、根長(B)、鮮重(C)及葉綠素(D)的影響Fig.1 Effects of BABA-pretreatment on seedlings' growth (A), root length (B), fresh weight(C) and chlorophyll content (D) under Cd stress
由圖2A可知,鎘脅迫組煙草幼苗中MDA、H2O2含量較對照組增加了2.2倍、1.2倍。經(jīng)0.2 mmol/L、0.5 mmol/LBABA預處理的煙草幼苗MDA含量較鎘脅迫組分別降低了30.56 %、32.37 %。而其H2O2含量較鎘脅迫照組分別降低了26.20 %、39.18 %(圖2B)。該結果表明,BABA預處理可以緩解鎘脅迫引起的氧化脅迫對煙草幼苗的損害。
圖2 BABA對鎘脅迫下煙苗MDA和H2O2含量的影響Fig.2 Effects of BABA on MDA and H2O2 contents in the tobacco seedlings under Cd stress
由圖3A可知, 0.2 mmol/L、0.5 mmol/L BABA預處理組GSH含量較鎘脅迫組分別提高了60.39 %、94.64 %。AsA可以直接清除單線態(tài)氧(1O2)和O2-和·OH[24]。由圖3B可知,鎘脅迫下煙草幼苗AsA含量增加。0.2 mmol/L、0.5 mmol/L BABA預處理組AsA含量較鎘脅迫組分別提高了16.81 %、8.15 %。
由圖3C可知,鎘脅迫下煙草幼苗總酚含量大量積累。0.2 mmol/L、0.5 mmol/LBABA預處理的煙草幼苗總酚含量較鎘脅迫組含量分別提高了9.76 %、10.78 %。證實BABA可能誘導總酚的積累來抵御鎘脅迫引起的氧化損傷。
由圖3D可知,0.2 mmol/L、0.5 mmol/L BABA預處理的煙草幼苗可溶性糖含量較鎘脅迫組分別提高了1.77 %、8.62 %,具有顯著性差異。由圖3E可知,脯氨酸含量較鎘脅迫組分別提高了281.58 %、225.55 %。結果表明,鎘脅迫下BABA能夠誘導煙草幼苗可溶性糖和脯氨酸的積累,調(diào)節(jié)滲透平衡,保護細胞結構和功能的完整性。
圖3 BABA對鎘脅迫下煙苗GSH(A), AsA(B),總酚(C),可溶性糖(D)和脯氨酸(E)含量的影響Fig.3 Effects of BABA-pretreatment on GSH (A), AsA (B), total phenolic(C), soluble sugar (D) and proline (E) content in the tobacco seedlings under Cd stress
由圖4A可知,在鎘脅迫下,鎘脅迫組煙草幼苗體內(nèi)的SOD活性較對照組降低了16.46 %,而經(jīng)0.2 mmol/L、0.5 mmol/L BABA預處理的煙草幼苗體內(nèi)的SOD活性較鎘脅迫組分別提高了41.37 %、44.86 %。由圖4D可知,鎘脅迫下煙草幼苗體內(nèi)的POD活性顯著增加。而經(jīng)0.2 mmol/L、0.5 mmol/L BABA預處理的煙草幼苗體內(nèi)POD活性較鎘脅迫組分別提高了65.09 %、27.82 %。由圖4B可知,經(jīng)0.2 mmol/L、0.5 mmol/L BABA預處理的煙草幼苗體內(nèi)CAT活性較鎘脅迫組分別提高了100.89 %、32.64 %。由圖4C可知,經(jīng)0.2 mmol/L、0.5 mmol/L BABA預處理的煙草幼苗體內(nèi)APX活性較鎘脅迫組分別提高了38.76 %、60.77 %。
圖4 BABA對鎘脅迫煙草幼苗SOD(A),CAT(B),APX(C),POD(D)活力的影響Fig.4 Effects of BABA-pretreatment on SOD (A), CAT (B), APX(C), POD (D) activity in the tobacco seedlings under Cd stress
由圖5A可知,0.2 mmol/L、0.5 mmol/L BABA預處理組NtIRT1基因表達量較鎘脅迫組分別提高了36.4倍、61.74倍。NtIRT1基因大量上調(diào)表明BABA預處理不僅促進煙草幼苗對鐵的吸收,同時也促進其對鎘的積累。由圖5B可知,0.2 mmol/L、0.5 mmol/L BABA處理組NtNramp5基因表達量較鎘脅迫組分別提高了6.68倍、4.0倍。這表明BABA可能通過NtNramp5上調(diào)來調(diào)節(jié)鎘的轉運,造成地上部鎘含量較根部低。
由圖5C可知,BABA預處理組NtPCS1較鎘脅迫組均出現(xiàn)下調(diào),分別降低了23.69 %和22.72 %。而由圖5D可知,經(jīng)0.2 mmol/L、0.5 mmol/L BABA預處理,煙草幼苗NtGSH1基因較鎘脅迫組分別提高了0.78倍和9.73倍。
圖5 BABA對鎘脅迫下煙苗NtIRT1(A),NtNramp5(B),NtPCS1(C),NtGSH1(D),NtHMA4(E),NtPDR5b(F),NtPCR1(G)基因相對表達量的影響Fig.5 Effects of BABA on gene expression of NtIRT1(A), NtNramp5(B), NtPCS1(C), NtGSH1(D), NtHMA4(E), NtPDR5b(F), NtPCR1(G)in the tobacco seedlings under Cd stress
由圖5E可知,0.2 mmol/L、0.5 mmol/L BABA處理組NtHMA4基因表達量較鎘脅迫組分別提高了0.51倍、0.64倍。其中,擬南芥中AtPDR8經(jīng)同源比對后在煙草中為NtPDR5b。由圖6F可知,0.2 mmol/L、0.5 mmol/L BABA處理組NtPCR1基因表達量較對照組分別提高了0.14倍、0.29倍;由圖5G可知,0.2 mmol/L、0.5 mmol/L BABA處理組NtPDR5b基因表達量較對照組分別提高了0.61倍、2.39倍。
圖6 BABA對鎘脅迫下煙苗鎘和鐵含量的影響Fig.6 Effects of BABA-pretreatment on Cd and Fe contents in the tobacco seedlings under Cd stress
由圖6可知,對照組煙草幼苗地上部未檢測出鎘。鎘脅迫下,煙草幼苗根部鎘含量高于地上部鎘含量。研究發(fā)現(xiàn),0.2 mmol/L、0.5 mmol/L BABA預處理組煙草幼苗總鎘含量較鎘脅迫組分別提高了28.71 %、7.85 %;其中,根部鎘含量分別提高了47.64 %、20.83 %,而地上部鎘含量分別降低了17.14 %、23.60 %。同時,研究還發(fā)現(xiàn),0.2 mmol/L、0.5 mmol/L BABA預處理的煙草幼苗總Fe含量分別提高了16.92 %、20.97 %。以上結果表明,BABA增強了根部對鎘的積累,降低地上部鎘的含量,促進了Fe的吸收。
鎘脅迫下,煙草幼苗H2O2大量累積,脂質(zhì)過氧化加劇,植株生長緩慢。SOD、POD、CAT和APX是四種重要的抗氧化酶[25]。其中,SOD是唯一可以清除的抗氧化酶[26],其能將轉化為 H2O2,再由POD、CAT、APX將過量H2O2轉化為H2O。BABA預處理組煙草幼苗抗氧化酶SOD、POD、CAT和APX的活性增強,GSH、AsA和總酚等抗氧化物質(zhì)含量增加,可溶性糖、脯氨酸等滲透調(diào)劑物質(zhì)含量增加,說明煙草幼苗通過增強抗氧化酶活性、抗氧化物質(zhì)含量和提高滲透調(diào)節(jié)物質(zhì)含量來緩解鎘脅迫引起的膜脂過氧化,降低MDA和H2O2含量,從而較好的維持細胞膜的穩(wěn)定性,提高對鎘的抗性。
另一方面,鎘脅迫下,植物體相關基因的表達對鎘離子吸收轉運及解毒起到重要作用。GSH和植物螯合肽(PC)由于其巰基部分對金屬有強親和力,可充當金屬螯合劑,提高植物對重金屬的抗性并解除重金屬對植物的毒害[26]。鎘脅迫下,植物螯合肽合成酶(PCS1)可以GSH為底物催化PC合成。本文中,NtGSH1上調(diào)且GSH含量顯著增加,但NtPCS1出現(xiàn)下調(diào)。Sangman Lee等人[27]指出AtPCS1過表達會導致轉基因植物對鎘的超敏性,添加GSH后超敏性消失。NtHMA4、NtPCR1、NtPDR5b上調(diào)將鎘排出細胞體,以降低植物體鎘的含量。有研究指出煙草中AtHMA4異位表達上調(diào)會抑制根部鎘向地上部遷移[28],NtNramp5上調(diào)也限制鎘向地上部轉運,這可能是BABA預處理組地上部鎘含量較少的原因。圖6中BABA預處理組根部鎘含量增加,這可能與細胞壁中半纖維素含量增加有關[29],具體原因仍待進一步研究。
研究發(fā)現(xiàn),外源施加0.2 mmol/L和0.5 mmol/L BABA能有效改善煙草幼苗不良生長狀況。BABA誘導煙草幼苗抵御鎘脅迫,一方面是通過增加煙草體內(nèi)脯氨酸、可溶性糖、總酚、葉綠素、GSH含量,另一方面是增強煙草幼苗抗氧化酶SOD、POD、CAT、APX活性,有效降低過量產(chǎn)生的H2O2。促進根部鎘的積累,降低地上部鎘的含量以減輕毒害。此外,BABA還參與調(diào)節(jié)煙草幼苗金屬吸收轉運(NtIRT1、NtNramp5、NtHMA4、NtPDR5b、NtPCR1)及金屬解毒(NtGSH1、NtPCS1)基因的表達。BABA緩解煙草幼苗鎘脅迫可能是激發(fā)植物體內(nèi)抗氧化系統(tǒng)、抑制地上部鎘的累積和調(diào)節(jié)金屬吸收轉運及解毒基因表達的綜合結果。
[1] Huamain C, Chunrong Z, Cong T, et al. Heavy Metal Pollution in Soils in China: Status and Countermeasures [J]. Ambio, 1999, 28(2): 130-134.
[2] Zhao Zhongqiu, Yong Guanzhu,Yun Longcai. Transport and transformation of cadmium in soil-plant systems and the influence factors [J]. Ecol Environ, 2005, 14(2): 282-286.
[3] Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany, 1999, 41(2): 105-130.
[4] Azevedo R A, Grat?o P L, Monteiro C C, et al. What is new in the research on cadmium-induced stress in plants? [J]. Food and Energy Security, 2012, 1(2): 133-140.
[5] Cuypers A, Karen S, Jos R, et al. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings [J]. Journal of plant physiology, 2011, 168(4): 309-316.
[6] Gallego S M, Pena L B, Barcia R A, et al. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms [J].Environmental and Experimental Botany, 2012, 83:33-46.
[7] 馬新明,李春明,袁祖麗,等. 鎘和鉛污染對烤煙根區(qū)土壤微生物及煙葉品質(zhì)的影響 [J]. 應用生態(tài)學報, 2015, 16(11): 2182-2186.Ma Xinming, Li Chunming, Yuan Zuli, et al. Impacts of Cd and Pb pollution on soil microbes in tobacco root zone and on tobacco leaf quality][J]. Chinese Journal of Applied Ecology, 2005, 16(11): 2182-2186. (in Chinese)
[8] 郭江波,唐炳,王建英,等. 鎘脅迫對煙草生理特性的影響 [J].浙江農(nóng)業(yè)學報, 2013, 25(6): 1279-1283.Guo Jiangbo,Tang Bing,Wang Jianying,et al. Influence of cadmium stress on physiological indexes in tobacco[J].Acta Agriculture Zhejiangensis,2013,25(6): 1279-1283. (in Chinese)
[9] Ji H, Kyndt T, He W, et al. β-aminobutyric acid-induced resistance against root-knot nematodes in rice is based on increased basal defence[J]. Mol Plant-Microbe Interact, 2015, 28(5): 519-533.
[10] Hamiduzzaman M M, Jakab G, Barnavon L, et al. β-Aminobutyric Acid-Induced Resistance Against Downy Mildew in Grapevine Acts Through the Potentiation of Callose Formation and Jasmonic Acid Signaling [J]. Mol Plant-Microbe Interact, 2005, 18(8): 819-829.
[11] Siegrist J, Orober M, Buchenauer H. Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid [J]. Physiological and Molecular Plant Pathology, 2000, 56(3): 95-106.
[12] Cao S Q, Ren G, Jiang L, et al. The role of beta-aminobutyric acid in enhancing cadmium tolerance in Arabidopsis thaliana [J]. Russian Journal of Plant Physiology, 2009, 56(4): 575-579.
[13] 朱奎正,彭耀東,陳祝,等. β-氨基丁酸對銅脅迫下煙草生長的影響 [J]. 煙草科技, 2015, 48(4): 7-12.Zhu Kuizheng,Peng Yaodong,Chen Zhu,et al. Effects of β-aminobutyric acid on tobacco growth under copper stress[J].Tobacco Science & Technology,2015,48(4):7 -12 . (in Chinese)
[14] 張清莉,劉再強,鐘玉德,等. BABA 誘導煙草抵御高鹽脅迫的初步研究 [J]. 中國煙草學報, 2015, 21(3): 72-81.Zhang Qingli,Liu Zaiqiang,Zhong Yude, et al. A preliminary study on BABA-induced resistance to high salt stress in tobacco [J] Acta Tabacaria Sinica, 2015, 21(3):72-81. (in Chinese)
[15] 楊欣,陳江華,張艷玲. 煙草對鎘的吸收及控制措施研究綜述 [J].中國煙草科學, 2010, 31(2): 70-75.Yang Xin, Chen Jianghua, Zhang Yanling. A review on cadmium uptake of tobacco and its control [J]. Chinese tobacco science, 2010,31(2): 70-75. (in Chinese)
[16] 朱廣廉. 植物生理學.植物生理學實驗 [M]. 北京: 北京大學出版社, 1990.Zhu Guanglian. Plant physiology [M]. BeiJing: Peking University Press,1990. (in Chinese)
[17] Michael P I, Krishnaswamy M. The effect of zinc stress combined with high irradiance stress on membrane damage and antioxidative response in bean seedlings [J]. Environmental and experimental botany, 2011,74:171-177.
[18] Stewart R R C, Bewley J D. Lipid peroxidation associated with accelerated aging of soybean axes [J]. Plant physiology, 1980, 65(2):245-248.
[19] 鄒奇. 植物生理學實驗指導 [M]. 北京:中國農(nóng)業(yè)出版社. 2000.Zou Qi. Plant physiology experimental guidance [M].BeiJing; China Agriculture Press.2000. (in Chinese)
[20] Tawaha K, Alali F Q, Gharaibeh M, et al. Antioxidant activity and total phenolic content of selected Jordanian plant species [J]. Food Chemistry, 2007, 104(4): 1372-1378.
[21] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplasts [J]. Plant and cell physiology, 1981, 22(5): 867-880.
[22] Ramakrishna B, Rao S S R. 24-Epibrassinolide alleviated zinc-induced oxidative stress in radish (Raphanus sativus L.) seedlings by enhancing antioxidative system [J]. Plant Growth Regulation, 2012, 68(2): 249-259.
[23] Bewley J D. Physiological aspects of desiccation tolerance-a retrospect[J]. International Journal of Plant Sciences, 1995, 393-403.
[24] Ahmad P, Sarwat M, Sharma S. Reactive oxygen species, antioxidants and signaling in plants[J]. Journal of Plant Biology, 2008, 51(3): 167-173.
[25] Dubey R S. Metal toxicity, oxidative stress and antioxidative defense system in plants [J]. Reactive oxygen species and antioxidants in higher plants, 2010:177-233.
[26] Lin Y F, Aarts M G M. The molecular mechanism of zinc and cadmium stress response in plants [J]. Cellular and molecular life sciences ,2012, 69(19): 3187-3206.
[27] Lee S, Moon J S, Ko T S, et al. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress [J]. Plant physiology, 2003, 131(2): 656-663.
[28] Siemianowski O, Barabasz A, Kendziorek M, et al. AtHMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier [J]. Journal of Experimental Botany, 2014, 65(4):1125-1139.
[29] Zhu Xiaofang, Wang Zhiwei, Dong Fang, et al. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls [J]. Journal of hazardous materials, 2013,263 :398-403.
A preliminary study on BABA-induced resistance to cadmium stress of tobacco
LIU Song1, GUO Jiaming1, HE Kuanxin2, YOU Benwu1, XIAO Xianyi2,CHEN Xueping1
1 Tobacco and Health Research Center, University of Science and Technology of China, Hefei 230051, China;2 Jiangxi Provincial Tobacco Company, Nanchang 330025, China
β–aminobutyric acid (BABA) is a potent inducer of resistance, which can be used against a wide range of biotic and abiotic stresses in plants. The present study highlighted the protective role of BABA in alleviating cadmium (Cd) stress of tobacco and attempted to explore the mechanism through measuring anti-oxidative molecular content, anti-oxidative enzyme activities, concentration of Cd and Fe and also related gene expression. Results indicated that both 0.2 mmol/L BABA and 0.5 mmol/L BABA could effectively improve plant length, fresh weight and chlorophyll content than Cd treatment alone. Pretreatment of BABA not only increased accumulation of proline,GSH, AsA, soluble sugar and total phenolic, but also markedly stimulated activities of superoxide dismutases (SOD), ascorbate peroxidases(APX), peroxidase (POD) and catalases (CAT) compared with Cd treatment alone, thereby enhancing anti-oxidative capacity in leaves under Cd stress. BABA also partly counteracted Cd toxicity by reducing H2O2and MDA contents of Cd -exposed seedlings. Moreover,BABA significantly increased Cd content in roots, but reduced Cd content in shoots. In addition, related gene expression indicated that BABA took part in the regulation of the transcript levels of NtIRT1, NtNramp5, NtGSH1, NtPCS1, NtHMA4, NtPDR5b, and NtPCR1. It was concluded that BABA pretreatment helped plants to combat Cd stress by activating antioxidant system, restricting Cd content in shoot as well as modulating related gene expression to protect cells from Cd induced oxidative stress damages.
β-aminobutyric acid; tobacco; Cd stress
劉松,郭家明,何寬信,等. BABA誘導煙草抵御鎘脅迫初步研究[J]. 中國煙草學報,2016,22(3)
江西省煙草公司“提高煙草抗逆性的新型調(diào)節(jié)物質(zhì)研制及應用”(贛2011.01.001號)和“江西省煙區(qū)煙葉品質(zhì)定位及其區(qū)域劃分研究”(贛2011.01.002號)項目經(jīng)費資助。
劉 松(1990—),碩士,主要研究方向:植物抗逆性研究, Email:uliusong@ mail. ustc. edu. cn
陳學平(1956—),博士,教授,主要研究方向:植物生物技術及遺傳改良, Email: chenxp08@ ustc. edu. cn
2015-09-24
:LIU Song, GUO Jiaming, HE Kuanxin, et al. A preliminary study on BABA-induced resistance to cadmium stress of tobacco[J].Acta Tabacaria Sinica, 2016,22(3)