陳 飛,潘韶霞,馮海蘭
(1. 北京大學口腔醫(yī)學院·口腔醫(yī)院,修復科 口腔數(shù)字化醫(yī)療技術和材料國家工程實驗室 口腔數(shù)字醫(yī)學北京市重點實驗室,北京 100081; 2. 中國人民解放軍總醫(yī)院口腔科,北京 100853)
?
·論著·
轉化生長因子-β1和血管內皮生長因子在濃縮生長因子各層中的分布及含量特點
陳 飛1,2,潘韶霞1△,馮海蘭1
(1. 北京大學口腔醫(yī)學院·口腔醫(yī)院,修復科 口腔數(shù)字化醫(yī)療技術和材料國家工程實驗室 口腔數(shù)字醫(yī)學北京市重點實驗室,北京 100081; 2. 中國人民解放軍總醫(yī)院口腔科,北京 100853)
目的:測定濃縮生長因子(concentrated growth factors,CGF)凝膠層與紅細胞(red blood cells,RBC)層中轉化生長因子-β1(transforming growth factor-β1,TGF-β1)、血管內皮生長因子(vascular endothelial growth factor,VEGF)分布及含量,探究TGF-β1、VEGF在CGF凝膠層內的分布及含量與其促成骨效應的相關性并指導臨床應用。方法:招募6名健康志愿者,采集靜脈血制備CGF樣品。免疫組織化學法觀察CGF凝膠層與RBC層中TGF-β1、VEGF的分布并測定制備即刻的累積光密度值(integrated optical density,IOD)和平均光密度值(average optical density,AOD)。酶聯(lián)免疫吸附(enzyme-linked immunosorbent assays,ELISA)測定制備即刻上清層與制備1 d后CGF凝膠層析出液中TGF-β1、VEGF的濃度。結果:TGF-β1與VEGF大量聚集于CGF凝膠層中,在RBC層中僅位于多核細胞胞漿和散在的血小板內;CGF凝膠層與RBC層的交界區(qū)域有大量血小板與白細胞聚集,并有較高的TGF-β1表達;CGF凝膠層析出液中TGF-β1和VEGF的濃度分別為(55 236.78±3 686.34) ng/L和(610.99±148.81)ng/L,均顯著高于上清層(20 710.20±4 523.14) ng/L和(335.20±51.69) ng/L(P<0.001)。結論:CGF凝膠層內含有大量TGF-β1、VEGF,可發(fā)揮促進成骨與加速組織愈合的作用。在臨床應用中建議應用時間宜早為佳,除整個CGF層外,可將上清層、CGF層與RBC層交界區(qū)域一并使用。
濃縮生長因子;轉化生長因子β1;血管內皮生長因子;骨生成
濃縮生長因子(concentrated growth factors,CGF)是繼富血小板血漿(platelet-rich plasma,PRP)、富血小板纖維蛋白(platelet-rich fibrin,PRF)后的新一代血小板濃縮產物,由Saccol于2006年首先提出[1],其包含了發(fā)揮骨誘導作用的自體血小板生長因子和發(fā)揮骨引導作用的纖維蛋白基質,具有改善并增強組織再生的獨特性質[2-3]。由于其特殊的變速離心程序,其產物更大、更致密,生長因子含量更高[1]。
CGF能夠發(fā)揮促成骨作用主要基于制備過程中血小板脫顆粒釋放了大量的生長因子,其中轉化生長因子-β1(transforming growth factor-β1,TGF-β1)的主要功能是促進前體成骨細胞趨化和有絲分裂,促使膠原基質中的成骨細胞聚集,同時抑制破骨細胞形成和骨吸收,使得骨形成大于骨吸收[4-5]。而血管內皮生長因子(vascular endothelial growth factor,VEGF)能促進微血管周圍內皮細胞的增殖、遷移,增強血管通透性,促進血漿蛋白的滲出,利于新生血管形成[6],在術區(qū)低氧狀態(tài)下,也能促進成骨細胞的分化[7-8]。目前雖有CGF應用于修復骨缺損的動物實驗和應用于上頜竇提升術的臨床報道[2, 9-13],但對于CGF中生長因子成分研究的報道較少[1],尚未見揭示CGF中生長因子分布及含量的相關研究。本研究旨在測定CGF凝膠層與紅細胞(red blood cells,RBC)層中TGF-β1、VEGF的分布及含量,探究TGF-β1、VEGF在CGF凝膠層內的分布及含量與其促成骨效應的相關性并指導臨床應用。
1.1 CGF的制備
招募6名健康志愿者(男、女各3人),年齡24~26歲,無傳染性疾病,無相關血液疾病,靜脈血血小板計數(shù)大于105/μL,采血前3個月未服用影響血小板功能的藥物,如阿司匹林等。本研究已通過北京大學口腔醫(yī)院生物醫(yī)學倫理委員會的審核(PKUSSIRB-201519008),所有志愿者知情并同意采血用于本研究。每名志愿者采集靜脈血9 mL/支,共2支,立即放入Medifuge離心機(SilfradentSrl,意大利)內以CGF程序離心(加速啟動,30 s;2 700 r/min,2 min;2 400 r/min,4 min;2 700 r/min,4 min;3 000 r/min,3 min;減速停止,36 s),分別留取上清層、CGF凝膠層和RBC層樣品。
1.2 CGF凝膠層與RBC層樣本的免疫組織化學分析
將制備即刻留取的CGF凝膠層與RBC層樣品置于10%(體積分數(shù))甲醛溶液固定48 h后石蠟包埋,每個樣本切片機下分切20片(約7 μm厚)備用。
1.2.1 免疫組織化學 切片脫蠟:石蠟包埋的切片經二甲苯處理,濃度梯度乙醇,去離子水再水化。置于0.05 mol/L檸檬酸鈉鹽酸緩沖液(pH 6.0)中,在微波爐650 W條件下處理5 min兩次,400 W條件下處理3 min一次,進行抗原修復。在3%(體積分數(shù))過氧化氫溶液內處理30 min后,阻斷內源性過氧化氫酶的活性。切片在3%(質量分數(shù))牛血清白蛋白(bovine serum albumin,BSA,北京中杉金橋生物技術有限公司)室溫封閉30 min以上,滴加兔抗人TGF-β1單克隆抗體(稀釋比1 ∶50,北京中杉金橋生物技術有限公司)、兔抗人VEGF多克隆抗體(稀釋比1 ∶50,北京中杉金橋生物技術有限公司),并設置不加一抗的空白對照,置于4 ℃過夜。分別滴加兔超敏二步法免疫組織化學檢測試劑(Polink-2 plus?,Golden Bridge International, Inc.)一液和二液,各室溫孵育30 min,滴加DAB顯色液(北京中杉金橋生物技術有限公司)顯色。所有切片用蘇木素復染,脫水,封片。
1.2.2 TGF-β1、VEGF的半定量分析 40倍光學顯微鏡(BX51,DP72,Olympus)下每張切片隨機選取5個視野拍攝數(shù)碼照片,固定顯微鏡光強,設定手動曝光時間為556 μs,關閉自動白平衡。所有照片導入Image-ProPlus 6.0(Media Cybernetics,Inc.),分別測量CGF凝膠層累積光密度值(integrated optical density,IOD)、CGF凝膠層與RBC層平均光密度值(average optical density,AOD),其中IOD值可反映待測生長因子在總面積內相對含量的變化,AOD值可反映待測生長因子單位面積濃度的變化[14-15]。
1.3 上清層與CGF凝膠層析出液的酶聯(lián)免疫吸附測定分析
制備CGF后,立即分裝各樣本上清層于EP管中,-80 ℃保存?zhèn)溆?。無菌條件下將CGF凝膠樣品分裝EP管內,置于37 ℃培養(yǎng)箱內貯存1 d,隨后留取CGF凝膠層析出液于EP管中,-80 ℃保存?zhèn)溆谩?/p>
使用酶聯(lián)免疫吸附測定(enzyme-linked immunosorbent assays,ELISA)試劑盒(上海藍基生物科技有限公司)對上清層與CGF凝膠層析出液中TGF-β1、VEGF的濃度進行檢測,按照試劑盒說明書進行操作。取出試劑盒,于室溫(20~25 ℃)放置15~30 min。實驗過程應在室溫(20~25 ℃)內進行,取出酶標板,按照標準品的次序分別加入100 μL的標準品溶液于空白微孔中??瞻孜⒖字屑尤?00 μL的樣品(稀釋比:TGF-β1,1∶1 000;VEGF,1∶10),空白對照加入100 μL的蒸餾水;在各孔中加入50 μL的酶標記溶液(不含空白對照孔),將酶標板用封口膠密封后,37 ℃孵育反應1 h(在孵育箱中保持穩(wěn)定的溫度與濕度),充分清洗酶標板5次,保持各孔有充足的水壓(濃縮洗滌液以1∶100的比例用蒸餾水稀釋),酶標板洗滌后用吸水紙徹底拍干;各孔加入顯色劑A、B液各50 μL,37 ℃下避光反應15 min,各孔加入50 μL終止液,終止反應。于波長450 nm的酶標儀(Elx808,BioTek,USA)上讀取各孔的光密度值,用標準物的濃度與光密度值擬合出標準曲線的回歸方程式,將樣品的光密度值代入方程式,計算出樣品濃度,再乘以稀釋倍數(shù),即為樣品的實際濃度。
1.4 數(shù)據(jù)統(tǒng)計分析
應用SPSS 16.0軟件(Statistical Product and Service Solutions,Inc.)對CGF層中TGF-β1、VEGF表達的IOD值,CGF層與RBC層中TGF-β1、VEGF表達的AOD值,上清層與CGF凝膠層析出液中TGF-β1、VEGF的濃度測量結果進行獨立樣本t檢驗,檢驗水準α=0.05,以P<0.05為差異有統(tǒng)計學意義。
2.1 免疫組織化學
2.1.1 大體觀察 CGF凝膠層可見大量纖維蛋白束,其中TGF-β1的表達(圖1A)明顯高于VEGF(圖1B),TGF-β1表達的區(qū)域與纖維蛋白束所在區(qū)域幾乎一致,而VEGF僅表現(xiàn)為散在分布,空白對照中均未出現(xiàn)TGF-β1和VEGF的表達(圖1C、D)。RBC層中TGF-β1(圖2A)和VEGF(圖2B)的表達僅局限于多核細胞胞漿和散在的血小板內,且靠近CGF凝膠層與RBC層的交界區(qū)域的多核細胞和血小板分布較多(圖3A、B),多核細胞胞漿內VEGF的表達稍高于TGF-β1(圖3C、D),在紅細胞內無TGF-β1和VEGF的表達,空白對照亦未出現(xiàn)TGF-β1和VEGF的表達(圖2C、D)。在CGF凝膠層與RBC層的交界區(qū)域(圖3E、F)可見大量聚集的血小板與白細胞,其中血小板層靠近CGF凝膠層,且TGF-β1含量較高,而VEGF則鮮見表達;白細胞層近RBC層,未見TGF-β1和VEGF的表達。
Significantly higher expression level of TGF-β1 (A) was observed in CGF gel than that of VEGF (B) did, while no expressions of TGF-β1 (C) and VEGF (D) in blank control (samples without the primary antibodies).
圖1 CGF凝膠層中TGF-β1和VEGF的表達(×40)
Figure 1 The expressions of TGF-β1 and VEGF in CGF gel layer (×40)
The expression level of TGF-β1 (A) and VEGF (B) only present in polykaryocytes and sporadic platelets of RBC layer, but not in erythrocytes. No expressions of TGF-β1 (C) and VEGF (D) in blank controls.
圖2 RBC層中TGF-β1和VEGF的表達(×40)
Figure 2 The expressions of TGF-β1 and VEGF in RBC layer (×40)
Relatively higher distributions of platelets and polykaryocytes were observed in RBC layer close to the junction of CGF gel and RBC layer. TGF-β1 (A,×40) and VEGF (B,×40) only present in polykaryocytes and sporadic platelets of RBC layer, the expressions of TGF-β1 (C,×100) were lower than VEGF (D,×100) in the endochylema of polykaryocytes. Platelets and leukocytes were concentrated in between CGF gel and RBC layer with high expression of TGF-β1 (E,×20), but little VEGF (F,×20) can be observed in this zone. No expressions of TGF-β1 (E,×20) and VEGF (F,×20) in the leukocyte layer.
圖3 不同層中TGF-β1和VEGF的表達情況
Figure 3 The expressions of TGF-β1 and VEGF in different layers
2.1.2 IOD值與AOD值測量 CGF凝膠層TGF-β1的IOD值約為VEGF的149.3倍(93 963.14±28 644.99vs. 629.15±348.06,t=35.690,P<0.001),TGF-β1的AOD值約為VEGF的6.7倍(P<0.001,表1),但RBC層中TGF-β1和VEGF的AOD值大致相等。
2.2 ELISA測定結果
在上清層和CGF凝膠層析出液中,TGF-β1的濃度分別約為VEGF的61.8倍(P<0.001)和90.4倍(P<0.001),CGF凝膠層析出液TGF-β1和VEGF的濃度分別約為上清層的2.67倍(P<0.001)和1.8倍(P<0.001,表2)。
CGF, concentrated growth factors; TGF-β1, transforming growth factor-β1; VEGF, vascular endothelial growth factor; RBC, red blood cells.
表2 上清層及CGF凝膠層析出液中TGF-β1、VEGF的濃度Table 2 Concentrations of TGF-β1 and VEGF in supernatant serumand CGF gel
Abbreviations as in Table 1.
3.1 CGF凝膠層與RBC層中TGF-β1和VEGF免疫表達的分布
Rodella等[1]對6名志愿者CGF凝膠塊中TGF-β1和VEGF進行了免疫組織化學半定量分析,結果顯示,在CGF層與RBC層中都有廣泛的免疫染色,通過測定其IOD,發(fā)現(xiàn)在以上各層中兩種生長因子成分含量水平相似。本研究結果發(fā)現(xiàn),TGF-β1在CGF凝膠層中有廣泛的免疫染色,但VEGF僅表現(xiàn)為散在分布,且在RBC層中TGF-β1和VEGF的表達僅局限于多核細胞胞漿和散在的血小板內,并非廣泛染色,提示離心作用有效地使TGF-β1等生長因子濃縮于CGF層內,應當作為臨床應用的主要部分。另外,本研究觀察到CGF凝膠層與RBC層的交界區(qū)域有大量血小板與白細胞聚集,并有TGF-β1的較高表達,與PRF纖維蛋白網內可觀察到大量藍染的白細胞核不同[16],提示在CGF的臨床應用中,可將此交界區(qū)域一并使用,從而發(fā)揮促進成骨與抗感染的作用。
3.2 CGF凝膠層與RBC層中TGF-β1和VEGF的含量與濃度
本研究結果顯示,CGF制備即刻,其凝膠層中TGF-β1的IOD值約為VEGF的149.3倍,AOD值約為VEGF的6.7倍;TGF-β1在CGF凝膠層析出液中的濃度約為VEGF的90.4倍,在上清層中約為VEGF的61.8倍,表明TGF-β1的相對含量與濃度均明顯高于VEGF。靜脈血中的TGF-β1主要存在于血小板的α-顆粒內,且含量很高,在離心制備CGF的過程中,血小板經脫顆粒釋放大量的TGF-β1于血漿內[17-18],而VEGF則主要存在于血管內皮細胞、巨噬細胞及腫瘤細胞內,且總體含量較少[6, 19],因此血漿內存在的VEGF含量明顯少于TGF-β1。此前對PRF的研究報道揭示,其纖維蛋白網眼內和聚合物可捕獲并緩慢釋放生長因子[20-22],通過電子顯微鏡觀察,在CGF中同樣具備此纖維蛋白網眼和聚合物[1],因此血漿內的TGF-β1和VEGF等生長因子能被纖維蛋白網眼和聚合物大量捕獲,最終形成富含生長因子和纖維蛋白的CGF凝膠層,并被緩慢釋放出來。本研究中TGF-β1和VEGF在上清層中的濃度分別為(20 710.20±4 523.14) ng/L和(335.20±51.69) ng/L,與Rodella等[1]報道的實驗結果相似。制備1 d后TGF-β1和VEGF在CGF凝膠層析出液中的濃度分別約為其在上清層濃度的2.67倍和1.8倍,提示經離心制備后,大量生長因子經血小板脫顆粒后聚集于CGF凝膠層內,并且隨時間的推移持續(xù)析出,從而發(fā)揮促進成骨的作用[23-24]。對比本研究與已報道文獻中PRP和PRF的濃度數(shù)據(jù)可見,CGF中TGF-β1與VEGF的濃縮程度均較高[21, 24],在臨床應用中能夠為成骨和組織愈合提供更強且更持久的生長因子調控,從而達到促進新骨形成和加速組織愈合的目的。
綜上所述,CGF凝膠層析出液中TGF-β1和VEGF的濃度均顯著高于上清層,可以為植入術區(qū)提供大量的生長因子,發(fā)揮促進成骨的作用,分離的上清層也可與骨替代材料混合使用,使其所含的生長因子也能發(fā)揮作用。離心作用有效地使TGF-β1等生長因子濃縮在凝膠層,而在RBC層中TGF-β1與VEGF僅位于多核細胞胞漿和散在的血小板內,因此臨床應用中應主要取用凝膠層。CGF凝膠層與RBC層的交界區(qū)域有大量血小板與白細胞聚集,并有較高的TGF-β1表達,因此,在臨床應用中,建議將整個CGF凝膠層與下方RBC層交界區(qū)域一并使用,發(fā)揮促進成骨與抗感染的作用。
[1]Rodella LF, Favero G, Boninsegna R, et al. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction [J]. Microsc Res Tech, 2011, 74(8): 772-777.
[2]Honda H, Tamai N, Naka N, et al. Bone tissue engineering with bone marrow-derived stromal cells integrated with concentrated growth factor in Rattus norvegicus calvaria defect model [J]. J Artif Organs, 2013, 16(3): 305-315.
[3]Yu B, Wang Z. Effect of concentrated growth factors on beagle periodontal ligament stem cellsinvitro[J]. Mol Med Rep, 2014, 9(1): 235-242.
[4]Nikolidakis D, Meijer GJ, Oortgiesen DA, et al. The effect of a low dose of transforming growth factor beta1 (TGF-beta1) on the early bone-healing around oral implants inserted in trabecular bone [J]. Biomaterials, 2009, 30(1): 94-99.
[5]Ozkan K, Eralp L, Kocaoglu M, et al. The effect of transforming growth factor beta1 (TGF-beta1) on the regenerate bone in distraction osteogenesis [J]. Growth Factors, 2007, 25(2): 101-107.
[6]Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases [J]. J Biochem, 2013, 153(1): 13-19.
[7]Ferrara N. Vascular endothelial growth factor: basic science and clinical progress [J]. Endocr Rev, 2004, 25(4): 581-611.
[8]Zhang W, Zhu C, Wu Y, et al. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation [J]. Eur Cell Mater, 2014(27): 1-11.
[9]Kim TH, Kim SH, Sandor GK, et al. Comparison of platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factor (CGF) in rabbit-skull defect healing [J]. Arch Oral Biol, 2014, 59(5): 550-558.
[10]柳宏志, 李超, 王天祥, 等. CGF聯(lián)合骨代用品在即刻種植中修復種植體周圍骨缺損的實驗研究 [J]. 口腔頜面外科雜志, 2012, 22(4): 277-282.
[11]柳宏志, 鄒高峰, 王天祥, 等. 濃縮生長因子促進犬軟組織損傷修復的實驗研究 [J]. 口腔頜面外科雜志, 2013, 23(1): 28-31.
[12]Sohn DS, Heo JU, Kwak DH, et al. Bone regeneration in the maxillary sinus using an autologous fibrin-rich block with concentrated growth factors alone [J]. Implant Dent, 2011, 20(5): 389-395.
[13]Kim JM, Sohn DS, Bae MS, et al. Flapless transcrestal sinus augmentation using hydrodynamic piezoelectric internal sinus elevation with autologous concentrated growth factors alone [J]. Implant Dent, 2014, 23(2): 168-174.
[14]Andrade WC, da Silva LF, Coelho MC, et al. Effects of the administration of pentoxifylline and prednisolone on the evolution of portal fibrogenesis secondary to biliary obstruction in growing animals: immunohistochemical analysis of the expression of TGF-β and VEGF [J]. Clinics, 2012, 67(12): 1455-1461.
[15]Zhang JX, Yang JR, Chen GX, et al. Sesamin ameliorates arterial dysfunction in spontaneously hypertensive ratsviadownregulation of NADPH oxidase subunits and upregulation of eNOS expression [J]. Acta Pharmacol Sin, 2013, 34(7): 912-920.
[16]孫潔, 張劍明, 李彥秋. 富血小板纖維蛋白超微結構的觀察與探討 [J]. 口腔醫(yī)學研究, 2010, 26(1): 98-101.
[17]Meyer A, Wang W, Qu J, et al. Platelet TGF-beta1 contributions to plasma TGF-beta1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload [J]. Blood, 2012, 119(4): 1064-1074.
[18]Toma I, McCaffrey TA. Transforming growth factor-beta and athe-rosclerosis: interwoven atherogenic and atheroprotective aspects [J]. Cell Tissue Res, 2012, 347(1): 155-175.
[19]Kim HA, Seo KH, Kang YR, et al. Mechanisms of platelet-activating factor-induced enhancement of VEGF expression [J]. Cell Physiol Biochem, 2011, 27(1): 55-62.
[20]Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part Ⅱ: platelet-related biologic features [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101(3): e45-50.
[21]楊世茂, 王明國, 李靜, 等. 富血小板纖維蛋白與富血小板血漿體外釋放生長因子的比較及其對脂肪干細胞增殖分化的影響 [J]. 華西口腔醫(yī)學雜志, 2012, 30(6): 641-649.
[22]Dohan Ehrenfest DM, Bielecki T, Jimbo R, et al. Do the fibrin architecture and leukocyte content influence the growth factor release of platelet concentrates? An evidence-based answer comparing a pure platelet-rich plasma (P-PRP) gel and a leukocyte- and platelet-rich fibrin (L-PRF) [J]. Curr Pharm Biotechnol, 2012, 13(7): 1145-1152.
[23]Su CY, Kuo YP, Tseng YH, et al.Invitrorelease of growth factors from platelet-rich fibrin (PRF): a proposal to optimize the clinical applications of PRF [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 108(1): 56-61.
[24]Roussy Y, Bertrand Duchesne MP, Gagnon G. Activation of human platelet-rich plasmas: effect on growth factors release, cell division andinvivobone formation [J]. Clin Oral Implants Res, 2007, 18(5): 639-648.
(2015-02-11收稿)
(本文編輯:趙 波)
Distribution and content of transforming growth factor-β1 and vascular endothelial growth factor in each layer of concentrated growth factors
CHEN Fei1,2, PAN Shao-xia1△, FENG Hai-lan1
(1. Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China; 2. Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China)
Objective:To investigate the distribution and content of transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) in concentrated growth factors (CGF) gel, and to clarify the difference among different layers of CGF. Methods: Venous blood samples were collected from 6 healthy volunteers to prepare CGF. The distribution, integrated optical density (IOD) and average optical density (AOD) of TGF-β1 and VEGF in CGF gel and red blood cell (RBC) layer were measured using immunohistochemistry. The concentrations of TGF-β1 and VEGF in the supernatant se-rum at baseline and the CGF releasate after 1 day were evaluated with enzyme-linked immunosorbent assays.Results:Abundant TGF-β1 and VEGF were concentrated in CGF gel. However, only a little could be found in polykaryocytes and sporadic platelets in RBC layer. Platelets and leukocytes were concentra-ted in between the two layers with high expression of TGF-β1. The concentrations of TGF-β1 and VEGF in the CGF releasate(55 236.78±3 686.34), (610.99±148.81) ng/L were significantly higher than those in the supernatant serum(20 710.20±4 523.14), (335.20±51.69)ng/L (P<0.001).Conclusion: CGF contains high quantities of TGF-β1 that can promote new bone formation and tissue healing. We suggest that CGF gel should be used right after being prepared. Supernatant serum and the area between CGF gel and RBC layer could also be mixed with bone substitute materials.
Concentrated growth factors; Transforming growth factor beta1; Vascular endothelial growth factors; Osteogenesis
國家臨床重點??平ㄔO項目(2011)和教育部留學回國人員科研啟動基金(2012-940)資助Supported by the National Key Clinical Specialist Construction Programs of China (2011) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China(2012-940)
時間:2016-1-5 14:47:21
http://www.cnki.net/kcms/detail/11.4691.R.20160105.1447.018.html
R329
A
1671-167X(2016)05-0860-06
10.3969/j.issn.1671-167X.2016.05.021
△ Corresponding author’s e-mail, sx_pan@hotmail.com