高理想,陳 亮,黃慶華,鐘儒清,張立蘭,張宏福
?
大腸酶對豬飼料酶水解物能值的影響及與非淀粉多糖組分的關(guān)系
高理想,陳 亮,黃慶華,鐘儒清,張立蘭,張宏福
(中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所動物營養(yǎng)學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京100193)
【目的】研究大腸酶對單胃動物仿生消化系統(tǒng)測試豬飼料原料的體外干物質(zhì)消化率(DMD)和酶水解物能值(EHGE)的影響,并分析不同大腸酶條件下非淀粉多糖(NSP)組分與DMD和體外總能消化率(GED)的關(guān)系,為完善體外模擬胃-小腸-大腸三步消化方法提供參考依據(jù)?!痉椒ā坎捎脝我蛩赝耆S機(jī)設(shè)計(jì),共設(shè)4個(gè)處理,在單胃動物仿生消化系統(tǒng)模擬飼料原料胃和小腸消化后,分別使用對照組(去離子水)、纖維素酶、Viscozyme酶和仿生酶(由纖維素酶、木聚糖酶、β-葡聚糖酶和果膠酶組成)模擬大腸階段的消化。每個(gè)處理設(shè)5個(gè)重復(fù),每個(gè)重復(fù)1根消化管,分別測定玉米、大豆粕、小麥麩、玉米DDGS、苜蓿草粉和大豆皮的DMD、GED和EHGE。并使用乙酸酐衍生化氣相色譜法測定6種飼糧原料NSP含量和組分。分析飼料原料NSP組分與DMD及GED的相關(guān)關(guān)系。 【結(jié)果】(1)在對照組中,玉米的DMD最高,達(dá)到了81.51 %,相應(yīng)的EHGE為15.39 MJ·kg-1,而大豆皮的DMD最低,只有10.60 %,相應(yīng)的EHGE只有2.42 MJ·kg-1。(2)3種模擬大腸酶均顯著提高了玉米、大豆粕和大豆皮的DMD(<0.01),提高了大豆粕和大豆皮的EHGE(<0.01)。但纖維素酶作用下苜蓿草粉、玉米DDGS的DMD和EHGE與對照組差異不顯著,Viscozyme酶作用下小麥麩、玉米DDGS的DMD和EHGE與對照組差異不顯著(>0.05)。仿生酶顯著提高了6種飼料原料的DMD(<0.01),顯著提高了除玉米DDGS外的其他5種飼料原料的EHGE(<0.01)。(3)不同的大腸酶對不同飼料原料體外消化率的提升程度不同。在6種原料中,纖維素酶對小麥麩的DMD和EHGE提升程度最高,分別達(dá)到了5.89 %和1.03 MJ·kg-1,而只使大豆粕的DMD和EHGE提高了1.26 %和0.36 MJ·kg-1;Viscozyme酶對大豆皮體外消化率的提升程度最高,分別使其DMD和EHGE提高6.01%和1.02 MJ·kg-1。仿生酶對小麥麩的DMD和EHGE的提升程度最高,達(dá)到了6.59%和1.37 MJ·kg-1。(4)6種飼料原料的可溶性非淀粉多糖(SNSP)的含量均低于不溶性非淀粉多糖(INSP),玉米的總非淀粉多糖(TNSP)含量最低(8.59%),大豆皮的TNSP含量最高(75.72%),各原料的NSP主要由阿拉伯糖、木糖、甘露糖和葡萄糖組成,但不同原料中4種單糖含量存在差異。(5)6種飼料原料的SNSP、INSP以及TNSP含量與DMD、GED均呈顯著的負(fù)相關(guān)(<0.05)。仿生酶作用下DMD與TNSP含量的相關(guān)性(2=0.95,<0.01)高于纖維素酶(2=0.94,<0.01)和Viscozyme酶(2=0.93,<0.01)。同時(shí),仿生酶作用下GED與TNSP含量的相關(guān)性(2=0.89,<0.01)也高于纖維素酶(2=0.86,<0.01)和Viscozyme酶(2=0.81,<0.01)?!窘Y(jié)論】仿生酶在體外模擬豬大腸消化過程中,對飼料的消化作用優(yōu)于纖維素酶和Viscozyme酶,可作為單胃動物仿生消化系統(tǒng)體外模擬豬消化中大腸階段的模擬消化酶。
體外法;大腸酶;非淀粉多糖;消化率;酶水解物能值;單胃動物仿生消化系統(tǒng)
【研究意義】作為動物營養(yǎng)研究的基礎(chǔ)參數(shù),飼料養(yǎng)分的生物學(xué)效價(jià)是確定動物營養(yǎng)需要量、優(yōu)化飼料配方的決策依據(jù),客觀、準(zhǔn)確和快速評定飼料的生物學(xué)效價(jià)是業(yè)界關(guān)注的焦點(diǎn)[1-2]。通過在體外模擬動物體內(nèi)的酶促反應(yīng)過程,實(shí)現(xiàn)評定飼料生物學(xué)效價(jià),以其省時(shí)、省力和易于標(biāo)準(zhǔn)化等特點(diǎn),已越來越受到人們的關(guān)注[3-5]?!厩叭搜芯窟M(jìn)展】國內(nèi)外學(xué)者普遍采用胃-小腸-大腸三步法模擬豬全消化道消化過程,但不同學(xué)者使用的模擬大腸液并不相同。可用纖維素酶[6-8]模擬豬大腸的消化過程,但纖維素酶消解的底物成分單一,會過高的估計(jì)飼料纖維在后腸的消化率;也可用Viscozyme酶(一種由微生物發(fā)酵產(chǎn)生的具有多種碳水化合物酶活性的復(fù)合酶)代替纖維素酶模擬豬大腸消化[9-11],但Viscozyme酶含有多種碳水化合物酶活性,成分復(fù)雜、有效成分不明確,批次之間的效價(jià)不穩(wěn)定[12]。且纖維素酶或Viscozyme酶的使用劑量均缺少動物生理依據(jù)[13]。大腸階段消化的底物主要是前段腸道未被消化的NSP[14],飼料中NSP的含量和組成對養(yǎng)分消化率的影響又有所不同[15-16]?!颈狙芯壳腥朦c(diǎn)】依據(jù)動物生理配制的仿生大腸酶的作用效果未見報(bào)道,并在仿生大腸酶模擬消化下,NSP組分對飼料體外養(yǎng)分消化率的作用報(bào)道較少。【擬解決的關(guān)鍵問題】本試驗(yàn)旨在通過比較依據(jù)動物生理參數(shù)配制的仿生酶和Viscozyme酶、纖維素酶對飼料原料的體外消化作用,并分析飼料消化率和NSP組分之間的關(guān)系,為仿生消化系統(tǒng)體外模擬豬消化中大腸階段的模擬消化液的制備提供科學(xué)依據(jù)。
試驗(yàn)于2014—2015年在中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所動物營養(yǎng)學(xué)國家重點(diǎn)實(shí)驗(yàn)室進(jìn)行。
1.1 試驗(yàn)材料
選用玉米、大豆粕、小麥麩、DDGS、苜蓿草粉、大豆皮6種飼料原料(表1),使用四分法取樣后粉碎過40目篩,充分混合均勻后于-20℃儲存?zhèn)溆谩?/p>
表1 飼料原料的營養(yǎng)成分(干物質(zhì)基礎(chǔ))
營養(yǎng)成分為實(shí)測值 Nutrient contents are determined values
1.2 試驗(yàn)設(shè)計(jì)
采用單因素完全隨機(jī)試驗(yàn)設(shè)計(jì),共4個(gè)處理,在SDS-2單胃動物仿生消化系統(tǒng)上完成6種飼料原料胃期和小腸期消化的基礎(chǔ)上,分別采用去離子水(對照組)、纖維素酶、Viscozyme酶和仿生酶4種模擬消化液來完成大腸階段的消化,每個(gè)處理5個(gè)重復(fù),每個(gè)重復(fù)1根消化管。按照單胃動物仿生消化系統(tǒng)模擬豬消化規(guī)程分別測定干物質(zhì)消化率(dry matter digestibility,DMD)、總能消化率(gross energy digestibility,GED)和酶水解物能值(enzyme hydrolysate gross energy,EHGE)。
1.3 基于SDS-2的豬仿生消化操作規(guī)程
豬的仿生消化過程以及透析袋的型號與前處理、胃緩沖液、小腸緩沖液和大腸緩沖液的配制按照《豬飼料酶水解物能值測定技術(shù)規(guī)程》[17]進(jìn)行制備。模擬消化液的制備如下:
模擬豬胃液:稱取184.38 kU 的胃蛋白酶(Sigma,P7000)溶解于250 mL pH 2.0的鹽酸緩沖溶液中(39℃下標(biāo)定pH),緩慢攪拌直至溶解(臨用前配制)。
模擬豬小腸液:量取淀粉酶(Sigma,A3306)60.89 kU,稱取胰蛋白(Amersco,0785)19.00 kU,糜蛋白酶(Amersco,0164)2.39 kU溶解于25 mL去離子水中,并緩慢攪拌直至溶解(臨用前配制)。
模擬豬大腸液:①處理一(纖維素酶):稱取纖維素酶(Sigma,C9422)24.7 U溶于22 mL去離子水中;②處理二(Viscozyme酶):以纖維素酶酶活等同為原則,量取相當(dāng)于24.7 U纖維素酶的Viscozyme(Sigma,V2010)溶于22 mL去離子水中。③處理三(仿生酶):稱取纖維素酶(Sigma,C9422)24.7 U、木聚糖酶(Sigma,X2753)68.6 U、β-葡聚糖酶(Sigma,G4423)90.6 U和果膠酶(Sigma,P2611)93.7 U溶于22 mL去離子水中。仿生酶中4種NSP酶的用量依據(jù)本實(shí)驗(yàn)室前期動物試驗(yàn)測定結(jié)果確定。3種大腸液均臨用前配制。
1.4 飼料原料非淀粉多糖的測定
參照黃慶華的方法[18]對各飼料原料的非淀粉多糖含量進(jìn)行測定。
1.5 數(shù)據(jù)處理與統(tǒng)計(jì)分析
根據(jù)單因素完全隨機(jī)設(shè)計(jì),用SAS 9.2 MEANS 模塊對基本統(tǒng)計(jì)量進(jìn)行分析,GLM 模塊對數(shù)據(jù)進(jìn)行方差分析,REG模塊進(jìn)行線性回歸分析。平均值通過Duncan氏法進(jìn)行多重比較,<0.05 為差異顯著。結(jié)果以“平均值±標(biāo)準(zhǔn)差”表示。其中數(shù)據(jù)計(jì)算及統(tǒng)計(jì)模型如下:
DMD(%)=[(M1-M2)/M1]×100%
GED(%)=[(GE1-GE2)/GE1] ×100%
EHGE=( GE1-GE2)/(M1×1000)
式中:DMD為飼料體外干物質(zhì)消化率(%);GED為飼料體外總能消化率(%);EHGE為飼料體外酶水解物能值(MJ·kg-1);M1為上樣飼料干物質(zhì)重量(g);M2為未消化殘?jiān)晌镔|(zhì)重量(g);GE1為上樣飼料總能(J);GE2為未消化殘?jiān)偰埽↗)。
2.1 不同模擬大腸酶對6種飼料原料DMD、GED和EHGE的影響
在SDS-2型單胃動物仿生消化系統(tǒng)上完成6種飼料原料的胃期和小腸期的體外消化基礎(chǔ)上,研究添加3種不同的模擬大腸酶對體外干物質(zhì)消化率和酶水解物能值的影響。從表2可以看出,在不加大腸酶條件下(對照組),不同飼料原料的DMD和EHGE不同。玉米的DMD最高,達(dá)到了81.51%,相應(yīng)的玉米的EHGE為15.39 MJ·kg-1,而大豆皮的DMD最低,只有10.60 %,相應(yīng)的EHGE只有2.42 MJ·kg-1。
表2 模擬大腸酶對飼料原料干物質(zhì)消化率、總能消化率和酶水解物能值的影響
同行數(shù)據(jù)相同字母或無字母表示差異不顯著(>0.05),標(biāo)不同小寫字母表示差異顯著(<0.05)
In the same row, values with the same or no letter mean no significant difference (>0.05), while with different small letter mean significant difference (<0.05)
不同模擬大腸酶對同一種飼料原料的作用不同,和對照組相比,3種模擬大腸酶均顯著提高了玉米的DMD(<0.01),Viscozyme酶和仿生酶顯著提高了玉米的GED(<0.01),而只有仿生酶提高了玉米的EHGE(<0.01)。3種模擬大腸酶均顯著提高了大豆粕的DMD、GED和EHGE(<0.01)。纖維素酶和仿生酶顯著提高了小麥麩的DMD、GED和EHGE(<0.01),Viscozyme酶對小麥麩的DMD、GED和EHGE均沒有顯著影響(>0.05)。對玉米DDGS而言,只有仿生酶顯著提高了其DMD(<0.01),纖維素酶和Viscozyme酶對其DMD均沒有顯著影響(>0.05)。3種模擬大腸酶對玉米DDGS的GED和EHGE均沒有顯著影響(>0.05)。Viscozyme酶和仿生酶顯著提高了苜蓿草粉的DMD、GED和EHGD(<0.01),而纖維素酶對其DMD、GED和EHGE均沒有顯著影響(>0.05)。3種模擬大腸酶均顯著提高了大豆皮的DMD、GED和EHGE(<0.01)。
從圖1可以看出,纖維素酶對6種飼料原料的DMD和EHGE的提升程度也不一致,對小麥麩的DMD和EHGE提升程度最高,分別提高了5.89%和1.03 MJ·kg-1,其次為大豆皮,分別提高了3.71%和0.57 MJ·kg-1,而只使大豆粕的DMD和EHGE提高了1.26%和0.36 MJ·kg-1。Viscozyme酶對大豆皮的DMD和EHGE的提升程度最高,分別提高了6.01%和1.02 MJ·kg-1,其次為大豆粕,分別提高了3.25%和0.71 MJ·kg-1,使苜蓿草粉的DMD和EHGE提高了2.62% 和0.30 MJ·kg-1。仿生酶對小麥麩的DMD和EHGE的提升程度最高,達(dá)到了6.59%和1.37 MJ·kg-1,其次為大豆皮,分別提高了5.46%和0.81 MJ·kg-1。仿生酶對玉米DDGS的DMD和EHGE的作用相對較小,只提高了1.21%和0.07 MJ·kg-1。
圖1 3種大腸酶對6種飼料原料DMD和EHGE的提升程度
2.2 飼料原料的NSP含量
本試驗(yàn)采用乙酸酐衍生化氣相色譜法對6種飼料原料的NSP含量進(jìn)行測定。從表3可知,6種飼料原料的SNSP含量均低于INSP的含量。大豆皮的SNSP、INSP和TNSP的含量都是最高的,而玉米的SNSP、INSP和TNSP的含量是6種原料里面最低的。小麥麩、玉米DDGS和苜蓿草粉的TNSP含量相近,分別為33.06%、34.41%和35.76%,但是苜蓿草粉的SNSP含量為10.57%,高于小麥麩和玉米DDGS的2.90%和3.13%。大豆粕的TNSP含量為22.55%,低于除玉米外的其他4種原料。小麥麩中阿拉伯木聚糖的含量為17.58%,高于其他5種原料。
表3 飼料原料的非淀粉多糖含量
2.3 飼料中NSP含量與DMD、GED的相關(guān)性分析
從表4可以看出,6種飼料原料的DMD與飼料中的NSP含量均呈顯著的負(fù)相關(guān)(<0.05)。在相同處理?xiàng)l件下,DMD和飼料中不同類型的NSP含量的相關(guān)程度有所不同,其中,DMD和TNSP的相關(guān)性最高,INSP次之,SNSP最低。3種大腸酶處理?xiàng)l件下,DMD和TNSP含量之間的相關(guān)程度從高到低依次為仿生酶(2=0.95,圖2)、纖維素酶(2=0.94)和Viscozyme酶(2=0.93)。不同處理?xiàng)l件下,DMD與飼料原料中INSP的相關(guān)程度相差并不大,2依次為纖維素酶0.89,Viscozyme酶0.90和仿生酶0.90。DMD和SNSP的相關(guān)程度最低,不同處理?xiàng)l件下,決定系數(shù)(2)從高到低依次為纖維素酶0.82,仿生酶0.81和Viscozyme酶0.75。
表4 飼料原料NSP組分和DMD、GED的相關(guān)性
圖2 仿生酶作用下6種飼料原料DMD和GED與TNSP的相關(guān)分析
6種飼料原料的GED與飼料中的NSP含量也呈顯著的負(fù)相關(guān)(<0.05)。在相同處理?xiàng)l件下(纖維素酶除外),GED與飼料中不同類型的NSP含量的相關(guān)程度和DMD與飼料中不同類型的NSP含量的相關(guān)程度類似,也是和TNSP的相關(guān)性最高,INSP次之,SNSP最低。纖維素酶處理中,GED和SNSP的相關(guān)程度(2=0.82)高于和INSP的相關(guān)程度(2=0.79),但兩者均低于和TNSP的相關(guān)程度(2=0.86)。在不同處理中,仿生酶作用下的GED和TNSP的相關(guān)程度最高(2=0.89,圖2),其次為纖維素酶(2=0.86),Viscozyme酶最低(2=0.81)。仿生酶作用下GED和INSP 的相關(guān)性(2=0.84)也高于另外2個(gè)處理下GED和INSP的相關(guān)性。纖維素酶作用下GED和SNSP的相關(guān)性(2=0.82)略高于仿生酶(2=0.81)、Viscozyme酶處理組GED和SNSP的相關(guān)性最低(2=0.71)。
3.1 3種模擬大腸酶對飼料原料DMD和EHGE的影響
目前體外酶法模擬豬飼料全消化道消化的方法主要有兩種,這兩種方法的主要差異在于模擬后腸階段消化所使用的消化酶不同,BOISEN等[9]所使用的Viscozyme酶是一種由微生物發(fā)酵產(chǎn)生的降解纖維的復(fù)合酶,具有阿拉伯糖酶、纖維素酶、β-葡聚糖酶、半纖維素酶、木聚糖酶和果膠酶的活性,而HUANG等[7]僅僅使用單一的纖維素酶來模擬豬后腸的消化。從本試驗(yàn)結(jié)果可以看出,在玉米、豆粕、苜蓿和大豆皮的體外全消化道消化中,相較于單一的纖維素酶,使用Viscozyme酶和依據(jù)動物生理依據(jù)配制的仿生酶對DMD和GED都有較好作用,尤其是在豆粕、苜蓿和大豆皮這些NSP含量更高的飼料中,Viscozyme酶和仿生酶的提升作用更為明顯。在本試驗(yàn)中,Viscozyme酶對麥麩和DDGS的體外干物質(zhì)消化率和酶水解物能值均沒有顯著影響。REGMI[11]研究了在模擬20個(gè)批次小麥豬大腸消化時(shí)使用纖維素酶或Viscozyme酶的消化結(jié)果,得出使用纖維素酶的體外干物質(zhì)消化率(87.2%)高于Viscozyme酶(84.9%),可見這種由曲霉發(fā)酵產(chǎn)生的復(fù)合酶,在降解麥類飼料的纖維上有一定的局限性,這可能和酶的特異性有關(guān)。本試驗(yàn)中,Viscozyme酶對大豆粕和大豆皮的DMD和仿生酶相比,差異不顯著,但是GED(66.49%,19.66%)高于仿生酶處理組(65.33%,18.45%),此差異可能是機(jī)器本身測定或后續(xù)脫脂操作過程帶來的[2, 19],且這一差異(1.16%,1.21%)在單胃動物仿生消化系統(tǒng)測試允許的誤差范圍內(nèi)[20]。綜合來看,相較于纖維素酶和Viscozyme酶,仿生酶對飼料原料干物質(zhì)消化率和能量消化率的作用更加明顯,這可能由于仿生酶中纖維素酶、木聚糖酶、β-葡聚糖酶和果膠酶的種類和配伍更加接近生長豬大腸液主要的消化酶組成和生理濃度。
3.2 飼料原料NSP的組成與DMD和GED的相關(guān)性
飼料營養(yǎng)成分含量的范圍是使用飼料化學(xué)成分預(yù)測養(yǎng)分消化率模型建立的關(guān)鍵[11, 21],本試驗(yàn)中,所使用的6種飼料原料的NSP含量具有較大的范圍,從玉米的8.59%到大豆皮的75.72%,這個(gè)范圍基本涵蓋了生產(chǎn)中所使用到的大部分飼料原料。作為細(xì)胞壁的主要組成成分,NSP不但不能被機(jī)體自身分泌的消化酶所消化,而且其屏障作用會進(jìn)一步阻礙消化酶與營養(yǎng)物質(zhì)的充分接觸[22],使得高NSP飼糧的攝入會降低營養(yǎng)物質(zhì)的消化率,尤其是回腸末端消化率[23-24]。YIN等[25]的研究發(fā)現(xiàn)隨著豬飼糧中NSP含量的升高,其表觀回腸干物質(zhì)消化率將線性降低(2=0.99)。JAWORSK等[26]研究了12種飼料原料的體外模擬消化,也得出體外回腸干物質(zhì)消化率和飼料中NSP的含量具有很強(qiáng)的負(fù)相關(guān)(2=0.97)。在本試驗(yàn)中,對照組使用的是去離子水,原則上其數(shù)值等同于體外回腸消化率,6種飼料原料的回腸DMD和GED都與飼料原料中的NSP含量呈負(fù)相關(guān),隨著飼料中NSP含量的升高,其體外回腸干物質(zhì)消化率和能量消化率降低。此結(jié)果和以上學(xué)者研究結(jié)果相同。這種很強(qiáng)的負(fù)相關(guān)是由于在經(jīng)過胃期和小腸期的體外模擬消化后,飼料中的蛋白、淀粉和脂類大都已被消化分離,剩余的主要是未被消化的NSP組分。6種飼料原料的TNSP含量與體外回腸DMD以及GED的相關(guān)系數(shù)(0.94,0.85)高于INSP(0.90,0.79)和SNSP(0.78,0.76),這是由于飼料中SNSP的含量很低,其代表性要低于INSP,這兩者又都低于TNSP。
使用仿生酶作為豬后腸階段模擬消化的消化酶,其對6種飼料的DMD和GED與飼料中NSP含量的相關(guān)性要高于使用Viscozyme酶和纖維素酶,這是由于仿生酶均提高了6種飼料原料的DMD,而纖維素酶對DDGS和苜蓿、Viscozyme酶對小麥麩和玉米DDGS均未表現(xiàn)出相應(yīng)的提升作用。
與纖維素酶和Viscozyme酶相比,本仿生酶對豬6種飼料原料均表現(xiàn)出了較好的消化作用;并在仿生酶作用下,飼料原料的體外干物質(zhì)和能量消化率與其NSP含量的相關(guān)性高于纖維素酶和Viscozyme酶。
[1] 張宏福, 趙峰, 張子儀.仿生消化法評定豬飼料生物學(xué)效價(jià)的研究進(jìn)展. 飼料與畜牧, 2011,3:5-9.
1.1.1 地理位置 秦安縣隸屬甘肅省天水市,位于甘肅省東南部,天水市北部,渭河支流葫蘆河下游;中心位置位于北緯34°51′、東經(jīng)105°40′。
ZHANG H F, ZHAO F, ZHANG Z Y. Themethod to estimate the digestibility of swine feeds using the Simulative Digestion System., 2011, 3: 5-9. (in Chinese)
[2] 陳亮, 張宏福, 高理想. 仿生法評定飼料干物質(zhì)消化率的影響因素. 中國農(nóng)業(yè)科學(xué), 2013, 46: 3199-3205.
CHEN L, ZHANG H F, GAO L X. Factors Affecting the measure of the in vitro dry matter digestibility of feeds using simulative digestion system., 2013, 46: 3199-3205. (in Chinese)
[3] 張鐵鷹, 汪儆. 單胃動物體外消化模擬技術(shù)研究進(jìn)展. 動物營養(yǎng)學(xué)報(bào), 2005, 17(2): 1-8.
ZHANG T Y, WANG J. Recent advances inmethods for simulating monogastric animal digestion.2005, 17(2): 1-8. ( in Chinese)
[4] ZHAO F, REN L Q, MI B M, TAN H Z, ZHAO J T, LI H, ZHANG H F, ZHANG Z Y. Developing a computer-controlled simulated digestion system to predict the concentration of metabolizable energy of feedstuffs for rooster., 2014, 92: 1537-1547.
[5] ZHAO F, ZHANG L, MI B M, ZHANG H F, HOU S S, ZHANG Z Y. Using a computer-controlled simulated digestion system to predict the energetic value of corn for duck., 2014, 93: 1410-1420.
[6] VAN DER MEER J M, PEREZ J M.evaluation of European diets for pigs. Prediction of the organic matter digestibility by an enzymic method or by chemical analysis., 1992, 59: 359-363.
[7] HUANG G, SAUER W C, HE J, HWANGBO J, WANG X. The nutritive value of hulled and hulless barley for growing pigs. 1.Determination of energy and protein digestibility with theandmethod., 2003, 12: 759-769.
[8] REGMI P R, SAUER W C, ZIJLSTRA R T. Prediction ofapparent total tract energy digestibility of barley in grower pigs using andigestibility technique., 2008, 86(10): 2619-2626.
[9] BOISEN S, FERNáNDEZ J A. Prediction of the total tract digestibility of energy in feedstuffs and pig diets byanalyses., 1997, 68: 277-286.
[10] NOBLET J, PEYRAUD Y J. Prediction of digestibility of organic matter and energy in the growing pig from anmethod., 2007, 134: 211-222.
[11] REGMI P R, FERGUSON N S, ZIJLSTRA R T.digestibility techniques to predict apparent total tract energy digestibility of wheat in grower pigs., 2009, 87: 3620-3629.
[12] 鐘永興.豬飼料消化能值測定的仿生消化法研究[D]. 廣州: 華南農(nóng)業(yè)大學(xué), 2010.
ZHONG Y X. Study on digestible energy in swine with Bionic Digestion System[D]. Guangzhou: South China Agriculture University, 2010. (in Chinese)
[13] COLES L T, MOUGHAN P JDARRAGH A J.digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals., 2005, 123-124: 421-444.
[14] BACH KNUDSEN K E, JENSEN B B, INGE H. Digestion of polysaccharides and other major components in the small and large-intestine of pigs fed of diets consisting of oat fractions rich in betad glucan., 1993, 70: 537-556.
[15] GAO L X, CHEN L, HUANG Q H, MENG L H, ZHONG R Q, LIU C L, TANG X F, ZHANG H F. Effect of dietary fiber type on intestinal nutrient digestibility and hindgut fermentation of diets fed to finishing pigs., 2015, 174: 53-58.
[16] HOODA S, METZLER-ZEBELI B U, VASANTHAN T, ZIJLSTRA R T. Effects of viscosity and fermentability of purified non-starch polysaccharides on ileal and total tract nutrient digestibility in ileal-cannulated grower pigs., 2010, 134: 79-81.
[17] 趙峰, 張宏福, 張子儀. 單胃動物仿生消化系統(tǒng)操作手冊.2版. 北京:中國農(nóng)業(yè)科學(xué)院, 2011.
ZHAO F, ZHANG H F, ZHANG Z Y.. 2. Beijing: Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[18] 黃慶華, 陳亮, 高理想, 劉強(qiáng), 盧凌, 唐湘方, 劉蕾, 張宏福.乙酸酐衍生化氣相色譜法測定飼料非淀粉多糖含量時(shí)適宜稱樣量確定依據(jù)的研究. 動物營養(yǎng)學(xué)報(bào), 2015, 27: 1620-1631. (in Chinese)
HUANG Q H, CHEN L, GAO L X, LIU Q, LU L, TANG X F, LIU L, ZHANG H F. The research of appropriate sample weight of the method for determining non-starch polysaccharides of feedstuffs using gas-liquid chromatography with aiditol acetates derivatives., 2015, 27: 1620-1631. (in Chinese)
[19] 鐘儒清, 陳亮, 高理想, 黃慶華, 劉蕾, 張宏福. 仿生法評定抗草甘膦玉米和轉(zhuǎn)Bt基因玉米的酶水解物能值的研究. 動物營養(yǎng)學(xué)報(bào), 2015, 27(5): 1468-1476.
ZHONG R Q, CHEN L, GAO L X, HUANG Q H, LIU L, ZHANG H F. Evaluation of enzymatic hydrolysate gross energy of glyphosate- tolerant corn and transgenic Bt corn using simulative digestion system., 2015, 27(5): 1468-1476. (in Chinese)
[20] 李輝, 趙峰, 計(jì)峰, 張宏福.仿生消化系統(tǒng)測定鴨飼料原料代謝能的重復(fù)性與精密度檢驗(yàn). 動物營養(yǎng)學(xué)報(bào), 2010, 22: 1709-1716.
LI H, ZHAO F, JI F, ZHANG H F. A test on repeatability and precision for determining metabolizable energy of duck feedstuffs using Bionic Digestion System., 2010, 22: 1709-1716. (in Chinese)
[21] CHEN L, GAO L X, HUANG Q H, LU Q P, SA R N, ZHANG H F. Prediction of digestible energy of feed ingredients for growing pigs using a computer-controlled simulated digestion system,, 2014, 92:3876-3883.
[22] REGMI P R, METZLER-ZEBELI B U, G?NZLE M G, VAN KEMPEN T A T G, ZIJLSTRA R T. Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes bifidobacteria in pigs., 2011, 141(7): 1273-1280.
[23] URRIOLA P E, STEIN H H. Effects of distillers dried grains with solubles on amino acid, energy, and fiber digestibility and on hindgut fermentation of dietary fiber in a corn-soybean meal diet fed to growing pigs., 2010, 88: 1454-1462.
[24] CHEN L, ZHANG H F, GAO L X, ZHAO F, LU Q P, SA R N. Effect of graded levels of fiber from alfalfa meal on intestinal nutrient and energy flow, and hindgut fermentation in growing pigs., 2013, 91: 4757-4764.
[25] YIN Y L, MCEVOY J D G, SCHULEZ H, HENNIG U, SOUFFRANT W B, MCCRACKEN K J. Apparent digestibility (ileal and overall) of nutrients and endogenous nitrogen losses in growing pigs fed wheat (var. Soissons) or its by-products without or with xylanase supplementation., 2000, 62: 119-132.
[26] JAWORSK N W, LARKE H N, BACH KNUDSEN K E, STEIN H H. Carbohydrate composition anddigestibility of dry matter and non-starch polysaccharides in corn, sorghum, and wheat and coproducts from these grains., 2015, 93: 1103-1113.
(責(zé)任編輯 林鑒非)
Effects of Hindgut Enzyme on the Enzyme Hydrolysate Gross Energy of Feedstuffs and Correlation Between Non-starch Polysaccharides andEnergy Digestibility
GAO Li-xiang, CHEN Liang, HUANG Qing-hua, ZHONG Ru-qing, ZHANG Li-lan, ZHANG Hong-fu
(State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193)
【Objective】The effects of different simulated hindgut enzymes on thedry matter digestibility (DMD) and enzyme hydrolysate gross energy (EHGE) of feedstuffs were determined using a computer-controlled simulated digestion system (SDS), and the correlation between non-starch polysaccharides (NSP) content andgross energy digestibility (GED) of feed ingredients were also analyzed to provide reference formethod to simulate digestion in the stomach, small intestine and large intestine. 【Method】After the simulated digestion in the stomach and small intestine of 6 feed ingredients, 4 groups including 3 simulated hindgut enzymes (cellulase, Viscozyme and bionic enzyme) and the control with deionized water were used to stimulate the hindgut digestion with a SDS. Bionic enzymes included cellulase, xylase, β-glucanase and pectinase. Each treatment contained 5 replicates with 1 digestion tube per replicate, the DMD, GED and EHGE of corn, soybean meal, wheat bran, corn DDGS, alfalfa and soybean hull were determined. The NSP contents of these feed ingredients were measured using a gas-liquid chromatography with aiditol acetates derivatives and were also related with DMD and GED. 【Result】The DMD (81.51 %) and EHGE (15.39 MJ·kg-1) of corn were the highest in all ingredients, whereas the DMD (10.60 % ) and EHGE (2.42 MJ·kg-1) of soybean hull were the lowest in the 6 feedstuffs. The DMD of corn, soybean meal and soybean hull and the EHGE of soybean meal and soybean hull were greater in the 3 simulated hindgut enzymes than in the control group (<0.01). The DMD and EHGE of alfalfa and DDGS were not affected by the inclusion of cellulase and the DMD and EHGE of wheat bran and DDGS were also not affected by the inclusion of Viscozyme (>0.05). The DMD of 6 feedstuffs and the EHGE of 6 feedstuffs with the exception of DDGS were increased with the bionic enzyme to simulate digestion in the hindgut (<0.01). The promotion degree of simulated hindgut enzymes on the DMD and EHGE were varied with feedstuffs. In the cellulase group, the increased DMD and EHGE were greatest in the wheat bran by 5.89% and 1.03 MJ·kg-1, whereas were the lowest in the soybean meal by 1.26% and 0.36 MJ·kg-1, respectively. The increasing DMD and EHGE in the Viscozyme group were the greatest in the soybean hull by 6.01% and 1.02 MJ·kg-1, respectively, and the DMD and EHGE in the bionic enzyme group were the greatest in wheat bran by 6.59% and 1.37 MJ·kg-1, respectively. The soluble NSP content was less than the insoluble NSP of 6 feedstuffs. Total NSP content of corn was the lowest (8.59%), whereas the total NSP content of soybean hull was the highest (75.72%). The main components of NSP included arabinose, xylose, mannose and glucose, but the 4 monosaccharide content varied in the feed ingredients. The NSP content was negatively related with the DMD, GED of feedstuffs (<0.05).The relationship between the DMD and TNSP contents of the 6 feedstuffs in the bionic enzyme group (2=0.95,<0.01) was higher than in the cellulase group (2=0.94,<0.01) and in the Viscozyme group (2=0.93,<0.01). The relationship between the GED and TNSP contents of the 6 feedstuffs in the bionic enzyme group (2=0.89,<0.01) was also higher than in the cellulase group (2=0.86,<0.01) and in the Viscozyme group (2=0.81,<0.01). 【Conclusion】In conclusion, the inclusion of bionic enzyme to simulate hindgut digestion has a significant effect on theenergy digestion of feedstuffs than the inclusion of cellulase and Viscozyme. The bionic enzyme can be used to simulate the hindgut digestion using the SDS.
; hindgut enzyme; non-starch polysaccharide; digestibility; enzyme hydrolysate gross energy; simulated digestion system
2016-01-26;接受日期:2016-05-17
國家科技支撐計(jì)劃項(xiàng)目課題(2012BAD39B01)、中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS07)、國家重點(diǎn)實(shí)驗(yàn)室自主研究課題(2004DA125184G1104)
高理想,Tel:010-62816249;Fax:010-62818910,E-mail:glxahu@163.com。通信作者張宏福,Tel:010-62818910;Fax:010-62818910;E-mail:zhanghf6565@vip.sina.com