盧百平,李新波,朱志娟
(1. 南昌航空大學(xué) 輕合金加工科學(xué)與技術(shù)國防重點(diǎn)學(xué)科實(shí)驗(yàn)室,南昌 330063;2. 長安大學(xué) 理學(xué)院,西安 710064; 3. 華中科技大學(xué) 機(jī)械科學(xué)與工程學(xué)院, 武漢 430074)
?
非晶合金表面超疏水性研究進(jìn)展*
盧百平1,李新波2,朱志娟3
(1. 南昌航空大學(xué) 輕合金加工科學(xué)與技術(shù)國防重點(diǎn)學(xué)科實(shí)驗(yàn)室,南昌 330063;2. 長安大學(xué) 理學(xué)院,西安 710064; 3. 華中科技大學(xué) 機(jī)械科學(xué)與工程學(xué)院, 武漢 430074)
源于荷葉自清潔效應(yīng)的超疏水表面已成為材料、仿生等領(lǐng)域的研究熱點(diǎn)之一。相對有機(jī)高分子材料而言,金屬材料超疏水性表面具有更高的耐久性。但晶態(tài)金屬的“晶粒效應(yīng)”制約了表面微/納尺度幾何結(jié)構(gòu)的制備。非晶合金在過冷液相區(qū)優(yōu)異的微/納尺度成形能力,以及較晶態(tài)金屬更低的表面自由能,使其成為制備超疏水性金屬表面的理想材料之一。綜述了不同體系非晶合金的表面能;非晶合金表面微/納尺度幾何結(jié)構(gòu)的構(gòu)造;表面幾何結(jié)構(gòu)對疏水性的影響規(guī)律及機(jī)理;并對非晶合金表面超疏水性進(jìn)行了展望。
非晶合金;超疏水;幾何結(jié)構(gòu);熱塑性成形
近年來,與水的靜態(tài)接觸角大于150°的超疏水(superhydrophobic)表面引起了世界范圍內(nèi)的極大關(guān)注,并已成為材料、生物等領(lǐng)域的研究熱點(diǎn)之一[1-5]?;诔杷淼淖郧鍧嵄砻嬗捎谄洫?dú)特的性能,表現(xiàn)出誘人的應(yīng)用潛力,如防水防污[6],防冰雪凝結(jié)[7],減摩減阻[8],抑制血小板的粘附、增大生物相容性等[9]。并蘊(yùn)藏著巨大的經(jīng)濟(jì)市場。一般來說,固體表面的超疏水性取決于它的表面自由能和幾何微結(jié)構(gòu)的共同作用。由于在平表面上,通過降低表面自由能最多只能將接觸角提高至大約119°[10],因此,人工制備超疏水表面的關(guān)鍵就在于建構(gòu)合適的表面微結(jié)構(gòu)。目前,用于構(gòu)造表面微結(jié)構(gòu)的基體主要是聚合物[11-14],玻璃[15],碳納米管[16],硅納米線等[17-18]。但這些表面微結(jié)構(gòu)具有低的機(jī)械強(qiáng)度、與基體結(jié)合力差,耐久性差,極大的限制了其廣泛應(yīng)用[4]。
因此,十分有必要開發(fā)出具有超疏水性的金屬表面微結(jié)構(gòu)。但大多金屬微結(jié)構(gòu)在未經(jīng)任何化學(xué)修飾的情況下表現(xiàn)出親水性,如Bauer等[19]采用陽極氧化法在金屬鈦表面制備出的納米尺度TiO2納米管陣列,與水的靜態(tài)接觸角(CA)小于30°。Hou等[20]在金屬鋅上氧化獲得的亞微尺度ZnO棒狀結(jié)構(gòu),CA僅為40°左右。Luo等[21]采用激光燒蝕法在不銹鋼表面加工出的微米結(jié)構(gòu),CA為68.5°。而Ning等[22]采用溶液置換法制備出的Pt微納復(fù)合結(jié)構(gòu),與水的接觸角達(dá)171°,表現(xiàn)出超疏水性。Qiu等[23]通過電化學(xué)方法在金屬鈷板上長出類似花瓣?duì)畹亩鄬臃旨壗Y(jié)構(gòu),在表面沒有經(jīng)過任何化學(xué)物質(zhì)修飾的情況下也能達(dá)到超疏水性。采用電沉積法,She等[24]在AZ91D鎂合金表面制備出松果狀分層幾何微結(jié)構(gòu),經(jīng)化學(xué)修飾后,CA高達(dá)163.3°,滾動(dòng)角低至1.2°。該超疏水性表面不僅具有良好的機(jī)械及化學(xué)穩(wěn)定性,且具有較好的耐久性、抗腐蝕性及自清潔性。采用類似的方法,She等[25]還在鎂合金表面構(gòu)筑出羽毛狀微納復(fù)合結(jié)構(gòu),表現(xiàn)出自清潔性和良好的抗蝕性[26]。然而,現(xiàn)有制備微納復(fù)合結(jié)構(gòu)的方法工藝復(fù)雜,表面幾何結(jié)構(gòu)形狀、尺寸不具可控性。此外,由于晶態(tài)材料在毫米級以下尺度加工時(shí),塑性變形區(qū)的大小與一個(gè)或幾個(gè)晶粒的大小相當(dāng),表現(xiàn)出“晶粒效應(yīng)”,無法滿足微納尺度表面微結(jié)構(gòu)的加工要求。
相比之下,非晶合金由于具有一系列特點(diǎn),如:在原子尺度上具有結(jié)構(gòu)均勻性,在微納尺度成形時(shí)不存在“晶粒效應(yīng)”,成形極限最小可達(dá)13 nm[27-28];在微納尺度下仍能保持較晶態(tài)金屬材料更加優(yōu)異的機(jī)械性能,使用壽命長;在過冷液態(tài)區(qū)具有超塑性,成形溫度低,成形力小,可加工性好[29-30]。因此,非晶合金被認(rèn)為是制備微納結(jié)構(gòu)的理想金屬材料之一。然而,迄今為止,有關(guān)超疏水性非晶合金表面的研究還依然貧乏。考慮到表面自由能是影響固體表面的超疏水性的關(guān)鍵因素之一。因此,本文首先綜述了不同體系非晶合金的表面能??紤]表面微結(jié)構(gòu)是決定固體表面的超疏水性的另一關(guān)鍵因素,其形狀、尺寸及分布均會(huì)對超疏水性產(chǎn)生影響。因此,本文其次綜述了非晶合金表面微/納尺度幾何結(jié)構(gòu)的構(gòu)造,表面幾何結(jié)構(gòu)對疏水性的影響規(guī)律及機(jī)理。最后,基于非晶合金表面超疏水性的研究現(xiàn)狀,對亟待解決的關(guān)鍵問題進(jìn)行了展望。
表面能(即表面自由能)是創(chuàng)造物質(zhì)表面時(shí)對分子間化學(xué)鍵破壞的度量。可見,表面自由能是分子間力/化學(xué)鍵的一種直接體現(xiàn),這意味著不同的合金體系可能具有不同的表面能。Owens等[31]首次提出了固體表面能的計(jì)算等式(即Owens-Wendt等式)
(1)
圖1 不同非晶合金體系表面的本征接觸角,其中Pd40Cu30Ni10P20具有最大接觸角,Cu60Zr20Hf10Ti10的接觸角最小[35]
如前所述,傳統(tǒng)晶態(tài)金屬存在著晶粒尺寸效應(yīng),難以進(jìn)行微納尺度加工,因而限制了其在超疏水領(lǐng)域的應(yīng)用。近年來,隨著人們對非晶合金結(jié)構(gòu)及性能的逐漸了解,非晶合金表面是否具有超疏水性這一科學(xué)問題逐漸吸引了科學(xué)工作者們的關(guān)注。圖2為CaLi基非晶合金表面SEM形貌。
圖2 CaLi基非晶合金表面SEM形貌[36]
2009年,Zhao等[36]首次報(bào)道了非晶合金表面的超疏水性,他們首先對CaLi基非晶合金表面進(jìn)行腐蝕,但腐蝕后的CaLi基非晶合金表面形貌仍舊較為平整(圖2(a),(b)),表現(xiàn)出親水性。隨后,他們采用氟硅烷對該非晶合金表面進(jìn)行了修飾,獲得了微米尺度珊瑚狀結(jié)構(gòu)(圖2(c),(d)),從而表現(xiàn)出超疏水(CA=162°)、超疏油(CA=156°)性。2010年,Li等[37]為了降低Ca60Mg15Zn25基非晶合金的生物降解速率,分別采用低表面能的氟硅烷,以及磁控濺射一層Fe膜后再用氟硅烷對該非晶合金的表面進(jìn)行修飾,使其表面具有微納復(fù)合結(jié)構(gòu),表現(xiàn)出疏水性,從而提高了其耐腐蝕性能。2011年,Liu等[38]采用HCl溶液直接在Ce基非晶合金表面腐蝕出微納復(fù)合結(jié)構(gòu),并用低表面能氟硅烷修飾后,實(shí)現(xiàn)了表面自清潔超疏水表面。2012年,Zhang等[39]采用熱噴涂技術(shù)制備出了具有不同粗糙度的Fe基非晶涂層(圖3),經(jīng)噴金處理并采用低表面能的十八烷基硫醇修飾后,該涂層表面表現(xiàn)了超疏水性和自清潔效應(yīng)(圖4)。
圖3 熱噴涂不同粗糙度的非晶合金涂層[39]
圖4 (a) 化學(xué)修飾后Fe基非晶涂層表面與水接觸角約為160°, (b) 滾動(dòng)角約9°, (c)、(d)該涂層表現(xiàn)出自清潔作用[39]
不難看出,上述疏水性非晶合金表面均是采用低表面能有機(jī)物修飾而獲得,甚至有些表面微納結(jié)構(gòu)也都由這些低表面能有機(jī)物組成。而這些有機(jī)物的機(jī)械強(qiáng)度低、基體結(jié)合力差,因而耐久性差。此外,綜上所述的表面微納結(jié)構(gòu)制備方法具有不可控性,是否通過微納結(jié)構(gòu)的形狀、尺寸及分布來對非晶合金表面疏水性進(jìn)行調(diào)控?2012年,Xia等[4]率先設(shè)計(jì)出具有不同間距的蜂窩狀形貌,采用深反應(yīng)離子蝕刻法加工出硅母模具。選擇Pd40Cu30Ni10P20非晶態(tài)合金體系作為研究對象,在過冷液態(tài)區(qū)熱壓成形制備出非晶合金表面蜂窩狀微結(jié)構(gòu)(圖5)。通過對成形后的表面靜態(tài)接觸角進(jìn)行測量,發(fā)現(xiàn)在不用任何低表面能化學(xué)物質(zhì)修飾的前提下,靜態(tài)接觸角隨蜂窩結(jié)構(gòu)的中心距增大而增加,符合經(jīng)典的Cassie理論。且當(dāng)間距增大到115.5 μm以后,接觸角大于150°,實(shí)現(xiàn)了超疏水表面(圖6)。
圖5 (a)-(c) 熱壓印成形獲得的不同間距蜂窩狀非晶表面微結(jié)構(gòu)SEM圖, (a) 35.5 μm, (b) 75.5 μm, and (c) 115.5 μm, (d)間距為75.5 μm蜂窩結(jié)構(gòu)的3D輪廓圖, (e) 線掃描輪廓圖,其中槽深86 μm[4]
(2)
(3)
(4)
圖6 Pd基非晶合金蜂窩狀結(jié)構(gòu)表面接觸角隨間距變化的實(shí)驗(yàn)與理論值對比曲線, 其中黑線和藍(lán)線分別代表Cassie-Baxter模型和修正的Cassie-Baxter模型[4]
圖7 Zr基非晶合金表面的接觸角隨間距變化曲線,其中黑線源自Pd基非晶合金的表面接觸角數(shù)據(jù),紅線和藍(lán)線分別表示熱壓微結(jié)構(gòu)和化學(xué)腐蝕獲得的微納復(fù)合結(jié)構(gòu)的Zr基非晶合金表面的接觸角[5]
2014年,Li等[5]根考慮到Pd40Cu30Ni10P20非晶態(tài)合金體系中含有較大比例的貴金屬Pd,在實(shí)際工程應(yīng)用中經(jīng)濟(jì)效益較差。因此選擇了表面能相對較高,但經(jīng)濟(jì)型較強(qiáng)的Zr35Ti30Be26.75Cu8.25非晶合金體系作為研究對象。結(jié)果發(fā)現(xiàn)該Zr基非晶合金表面蜂窩狀微結(jié)構(gòu)并不具有超疏水性(接觸角小于150°)。但采用HF溶液對表面微米尺度蜂窩結(jié)構(gòu)進(jìn)行選擇性腐蝕后,蜂窩結(jié)構(gòu)上腐蝕出了大面積的納米孔洞,形成微納復(fù)合結(jié)構(gòu)。靜態(tài)接觸角測試結(jié)果表明,Zr基非晶合金表面的微納復(fù)合結(jié)構(gòu)表現(xiàn)出超疏水性(圖7)。但水滴在該表面并不能滾動(dòng),且能倒掛在微納復(fù)合結(jié)構(gòu)表面上。通過對水滴在該Zr基微納復(fù)合結(jié)構(gòu)表面的粘附力進(jìn)行測量發(fā)現(xiàn),其粘附力高達(dá)90 μN(yùn)(圖8),該特性可用于干粘附性表面或微液滴傳輸。
最近,Ma等[41]采用熱塑性成形法在Pd基非晶合金表面熱壓印成形出微納復(fù)合結(jié)構(gòu)(圖9)。與平整表面相比,微納復(fù)合結(jié)構(gòu)使得該非晶合金表面表現(xiàn)出超疏水性。此外,他們還發(fā)現(xiàn)該非晶合金超疏水性表面具有較強(qiáng)的耐久性和抗腐蝕能力。
圖8 水滴在Zr基非晶合金表面的形貌圖,傾斜角:(a) 0°, (b) 180°。水滴在微納復(fù)合結(jié)構(gòu)(c)及微結(jié)構(gòu)表面(d)的粘附力—位移曲線[5]
圖9 超疏水性非晶合金表面微納復(fù)合結(jié)構(gòu)的成形示意圖[41]
綜上所述,非晶合金表面的潤濕性已經(jīng)吸引了人們的廣泛關(guān)注。起初,人們通過腐蝕法構(gòu)筑表面微、納結(jié)構(gòu),并采用低表面能有機(jī)物進(jìn)行化學(xué)修飾,獲得超疏水性表面。但這種有機(jī)物存在機(jī)械強(qiáng)度低,與基體結(jié)合力差,耐久性不高等不足。近年來,人們利用非晶合金的熱塑性,在過冷液態(tài)區(qū)對非晶合金在不同尺度模具中進(jìn)行成形,獲得微、納及微納復(fù)合結(jié)構(gòu)[42-43],發(fā)現(xiàn)在一定的尺寸范圍內(nèi),這些結(jié)構(gòu)不經(jīng)任何化學(xué)修飾,接觸角可達(dá)150 °以上,表現(xiàn)出疏水性[44]。對此,根據(jù)理論進(jìn)行了深入的認(rèn)識(shí),闡述了其機(jī)理。此外,人們還發(fā)現(xiàn)這些超疏水性表面還具有較大的粘附力,在粘性表面及微液滴傳輸?shù)确矫婢哂袘?yīng)用前景。
然而,非晶合金表面的超疏水性研究還任重道遠(yuǎn),至少存在以下關(guān)鍵問題亟待解決:
(1) 表面能是決定固體表面潤濕性的關(guān)鍵因素之一,低表面能非晶合金體系的開發(fā),將有助于促進(jìn)超疏水非晶合金表面研究的發(fā)展。
(2) 現(xiàn)有的表面微納結(jié)構(gòu)缺乏系統(tǒng)的設(shè)計(jì)依據(jù),其形狀、尺寸及分布究竟如何影響非晶合金表面超疏水性,尚有待深入研究。
(3) 非晶合金在熱塑性成形中,表面氧化可能會(huì)影響其表面能,氧化物導(dǎo)致的表面能增加將會(huì)降低超疏水效果,甚至自清潔效果。
(4) 目前,在不經(jīng)任何化學(xué)修飾的條件下,水珠并不能在超疏水性非晶合金表面滾動(dòng),實(shí)現(xiàn)自清潔,如何有效的實(shí)現(xiàn)表面能與微納復(fù)合結(jié)構(gòu)耦合,制備出自清潔非晶合金表面,尚有待進(jìn)一步研究。
[1] Chu K H, Xiao R, Wang E N. Uni-directional liquid spreading on asymmetric nanostructured surfaces [J]. Nature Materials, 2010, 9: 413-417.
[2] Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: from natural to artificial [J]. Advance Materials, 2002, 14: 1857-1860.
[3] Huang L, Cao Z, Meyer H M, et al. Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: effects of composition and roughness [J]. Acta Biomaterialia, 2011, 7(1): 395-405.
[4] Xia T, Li N, Wu Y, et al. Patterned superhydrophobic surface based on Pd-based metallic glass [J]. Applied Physics Letters, 2012, 101: 081601.
[5] Li N, Xia T, Heng L P, et al. Superhydrophobic Zr-based metallic glass surface with high adhesive force [J]. Applied Physics Letters, 2013, 102: 251603.
[6] Blossey R. Self-cleaning surfaces-virtual realities [J]. Nature Materials, 2003, 2: 301-306.
[7] Kako T, Nakajima A, Irie H, et al. Adhesive and sliding of wet snow on a superhydrophobic surface with hydrophilic channels [J]. Journal of Materials Science, 2004, 39 (2): 547-555.
[8] Qian B T. Study on fabrication of superhydrophobic surfaces on metallic substrates [D]. Dalian: Institute of chemical Engineering, Dalian University of Technology,2005.
錢柏太. 金屬基體上超疏水表面的制備研究[D]. 大連:大連理工大學(xué)化學(xué)工程研究所,200 5.
[9] Ou J. Perot B, Rothstein J P. Laminar drag reduction in micro-channels using ultra-hydrophobic surfaces [J]. Physics of Fluids, 2004, 16(12): 4635-4643.
[10] Nishino T, Meguro M, Nakamae K, et al. The lowest surface free energy based on —CF3alignment [J]. Langmuir, 1999,15: 4321-4323.
[11] Juicus D, Grigaliūnas V, Mikolajūnas M, et al. Hot embossing of PTFE: towards superhydrophobic surfaces [J]. Applied Surface Science, 2011,257(6): 2353-2360.
[12] Reyssat M, Yeomans J M, Quéué D. Impalement of fakir drops [J]. Europhysics Letters, 2008, 81(2): 26006.
[13] Pietsch T, Gindy N, Fahmi A. Nano- and micro-sized honeycomb patterns through hierarchical self-assembly of metal-loaded diblock copolymer vesicles [J]. Soft Matter, 2009,5: 2188-2197.
[14] Zhang L, Zhou Z L, Cheng B, et al. Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography [J]. Langmuir, 2006,22(20): 8576-8580.
[15] Deng X, Mammen L, Butt H J, et al. Candle soot as a template for a transparent robust superamphiphobic coating [J]. Science, 2012,335(6064): 67-70.
[16] Zhu L B, Xiu Y H, Xu J W, et al. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon [J]. Langmuir, 2005,21(24): 11208-11212.
[17] Verplanck N, Galopin E, Camart J C, et al. Reversible electrowetting on superhydrophobic silicon nanowires [J]. Nano Letter, 2007,7(3): 813-817.
[18] Kim B S, Shin S, Shin S J, et al. ontrol of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings [J]. Langmuir, 2011,27(16): 10148-10156.
[19] Bauer S, Park J, Mark K, et al. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2nanotubes [J]. Acta Biomaterialia, 2008, 4(5): 1576-1582.
[20] Hou X M, Zhou F, Yu B, et al. Superhydrophobic zinc oxide surface by differential etching and hydrophobic modification [J]. Materials Science and Engineering A, 2007, 452-453: 732-736.
[21] Luo B H, Shum P W, Zhou Z F, et al. Preparation of hydrophobic surface on steel by patterning using laser ablation process [J]. Surface & Coatings Technology, 2010, 204(8): 1180-1185.
[22] Ning T, Xu W G,Lu S X. One-step controllable fabrication of superhydrophobic surfaces with special composite structure on zinc substrates [J]. Journal of Colloid and Interface Science, 2011, 361(1): 388-396.
[23] Qiu R, Wang P, Zhang D, et al. One-step preparation of hierarchical cobalt structure with inborn superhydrophobic effect [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377(1-3): 144-149.
[24] She Z X, Li Q, Wang Z W, et al. Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability [J]. Chemical Engineering Journal, 2013, 228: 415-424.
[25] She Z X, Li Q, Wang Z W, et al. Novel Method for Controllable Fabrication of a Superhydrophobic CuO Surface on AZ91D Magnesium Alloy [J]. ACS Applied Materials & Interfaces, 2012, 4: 4348-4356.
[26] Wang Z W, Li Q, She Z X, et al. Low-cost and large-scale fabrication method to an environment-friendly superhydrophobic coating on magnesium alloy [J]. Journal of Materials Chemistry, 2012, 22: 4097-4105.
[27] Schroers J. Processing of bulk metallic glass [J]. Advance Materials, 2010, 22(14): 1566-1567.
[28] Kumar G, Desai A, Schroers J. Bulk metallic glass: the smaller the better [J]. Advance Materials, 2010, 23(4): 461-476.
[29] Li N, Chen Y, Jiang M Q, et al. Thermoplastic forming map of a Zr-based bulk metallic glass [J]. Acta Materialia, 2013, 61(6): 1921-1931.
[30] Li N, Xu X N, Zheng Z Z, et al. Enhanced formability of a Zr-based bulk metallic glass in a supercooled liquid state by vibrational loading [J]. Acta Materialia, 2014, 65:400-411.
[31] Owens D K, Wendt R C. Estimation of surface free energy of polymers [J]. Journal of Applied Polymer Science, 1969, 13: 1741-1747.
[32] Huang L, Cao Z, Meyer H M, et al. Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: effects of composition and roughness [J]. Acta Biomaterialia, 2011, 7(1): 395-405.
[33] Monfared A, Vali H, Faghihi S. Biocorrosion and biocompatibility of Zr-Cu-Fe-Al bulk metallic glasses [J]. Surface and Interface Analysis, 2013, 45(11-12): 1714-1720.
[34] Zhang X, Sun B L, Zhao N, et al. Experimental study on the surface characteristics of Pd-based bulk metallic glass [J]. Applied Surface Science, 2014, 321: 420-425.
[35] Xia T. The superhydrophobic research of the controllable surface microstructures based on amorphous alloy [D]. Wuhan: Department of Materials Science and Technology, Huazhong University of Science and Technology, 2013.
夏 婷. 非晶合金可控表面微結(jié)構(gòu)的超疏水性研究[D].武漢:華中科技大學(xué)材料科學(xué)與工程學(xué)院,2013.
[36] Zhao K, Liu K S, Li J F, et al. Superamphiphobic CaLi-based bulk metallic glasses [J]. Scripta Materialia, 2009, 60: 225-227.
[37] Li H F, Wang Y B, Cheng Y, et al. Surface modification of Ca60Mg15Zn25bulk metallic glass for slowing down its biodegradation rate in water solution [J]. Materials Letters, 2010, 64(13): 1462-1464.
[38] Liu K S, Li Z, Wang W H, et al. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces [J]. Applied Physics Letters, 2011, 99: 261905.
[39] Zhang C, Wu Y, Liu L. Robust hydrophobic Fe-based amorphous coating by thermal spraying [J]. Applied Physics Letters, 2012, 101: 121603.
[40] Jung Y C, Bhushan B. Wetting transition of water droplets on superhydrophobic patterned surfaces [J]. Scripta Materialia, 2007, 57(12): 1057-1060.
[41] Ma J, Zhang X Y, Wang D P, et al. Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance [J]. Applied Physics Letters, 2014, 104: 173701.
[42] He J J, Li N, Tang N, et al. The precision replication of a microchannel mould by hot-embossing a Zr-basedbulk metallic glass[J]. Intermetallics, 2012,21:50-55.
[43] Li N, Li D J, Liu L. Correlation between flow characteristics and interfacial friction behavior of a Zr-based metallic glasses during micro-extrusion[J]. Philosophical Magazine, 2013,93:1859-1872.
[44] Li N, Chen W, Liu L. Thermoplastic micro-forming of bulk metallic glasses: a review[J]. Jom, 2016,68:1246-1261.
The progress of the superhydrophobic amorphous alloys surface
LU Baiping1, LI Xinbo2, ZHU Zhijuan3
(1. National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nangchang Hangkong University, Nanchang 330063, China;2. College of Science, Changan University, Xi’an 710064, China;3. School of Mechanical Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, China)
The superhydrophobic surface originated from the lotus leaf has become one of the research highlights in the field of materials and bionics. By comparison with the organic polymer, the super hydrophobic metallic surfaces exhibit much higher durability. However, the “grain size effect” of the crystalline metals restricts the fabrication of surface micro/nano scale geometry. Due to the excellent forming ability in micro/nano scale of amorphous alloys in the supercooled liquid region, and the lower surface free energy as compared with the crystalline metals, amorphous alloys has been regarded as an ideal material to fabricate the superhydrophobic metal surface. In this work, the surface free energy of amorphous alloys with different compositions, the fabrication of micro/nano scale surface geometric structure, the influence of surface patterns on the hydrophobicity and the related mechanism are reviewed, finally the prospect of the superhydrophobic amorphous alloy surface is commented.
amorphous alloy; superhydrophobic; geometrical structure; thermoplastic forming
1001-9731(2016)10-10051-08
輕合金加工科學(xué)與技術(shù)國防重點(diǎn)學(xué)科實(shí)驗(yàn)室開放基金資助項(xiàng)目(GF201301001)
2015-10-08
2015-12-03 通訊作者:朱志娟,E-mail: zhuzhijuan@hust.edu.cn
盧百平 (1971-),男,陜西三原人,博士,副教授,主要從事新型銅合金制備技術(shù)及金屬表面超疏水性等方面研究。
TB31;TB34
A
10.3969/j.issn.1001-9731.2016.10.009