趙清賀,盧訓(xùn)令,湯茜,張祎帆,劉璞
(1.教育部黃河中下游數(shù)字地理技術(shù)重點(diǎn)實(shí)驗(yàn)室,475004,河南開封;2.河南大學(xué)環(huán)境與規(guī)劃學(xué)院,475004,河南開封)
黃河中下游河岸緩沖帶土壤粒徑分形特征
趙清賀1,2,盧訓(xùn)令1,2,湯茜1,2,張祎帆1,2,劉璞1,2
(1.教育部黃河中下游數(shù)字地理技術(shù)重點(diǎn)實(shí)驗(yàn)室,475004,河南開封;2.河南大學(xué)環(huán)境與規(guī)劃學(xué)院,475004,河南開封)
在人類活動(dòng)與自然因素的共同作用下,黃河中下游河岸緩沖帶土壤結(jié)構(gòu)和植被等受到不同程度的破壞。本研究選擇黃河中下游鄭州—開封段河岸緩沖帶作為研究區(qū),探討河岸人工林表層0~20 cm土壤顆粒組成和分形維數(shù)在不同植被類型和河岸緩沖距離的分布特征及其與群落特征的關(guān)系。結(jié)果表明:1)研究區(qū)土壤顆粒質(zhì)量分?jǐn)?shù)呈非均勻分布,土壤質(zhì)地空間分布表現(xiàn)為同質(zhì)性,不同植被類型和河岸緩沖距離對(duì)土壤顆粒組成與土壤顆粒分形維數(shù)D值的影響差異不顯著,D為2.75左右,土壤結(jié)構(gòu)良好;2)D值與黏粒質(zhì)量分?jǐn)?shù)均與土壤全碳(TC)、總有機(jī)碳(TOC)和全氮(TN)的質(zhì)量分?jǐn)?shù)顯著正相關(guān)(P<0.01),砂粒質(zhì)量分?jǐn)?shù)則與TC、TOC和TN質(zhì)量分?jǐn)?shù)呈顯著的負(fù)相關(guān)(P<0.01),粉粒質(zhì)量分?jǐn)?shù)只與TN質(zhì)量分?jǐn)?shù)在0.05水平顯著正相關(guān);3)草本高度、喬木胸徑、高度和郁閉度與D值、粉粒和黏粒質(zhì)量分?jǐn)?shù)呈正相關(guān),與砂粒質(zhì)量分?jǐn)?shù)呈負(fù)相關(guān)。說明河岸人工林覆蓋和生物量越大,土壤結(jié)構(gòu)越好。
土壤粒徑;分形特征;群落特征;河岸緩沖帶;黃河中下游灘地
土壤作為一種獨(dú)立的自然體,在組成、形態(tài)和結(jié)構(gòu)等方面表現(xiàn)為復(fù)雜的多孔介質(zhì),其物理、化學(xué)和生物過程與粒徑分布(soil particle size distribution,PSD)密切相關(guān)[1-3]。土壤粒徑影響土壤飽和、非飽和水力參數(shù)、肥力狀況、孔隙分布狀況、淋溶、固碳和抗侵蝕能力等,被認(rèn)為是重要的土壤特性之一,亦是土壤結(jié)構(gòu)研究的重要內(nèi)容之一[4-6]。隨著分形理論及其方法在土壤學(xué)領(lǐng)域的應(yīng)用,土壤粒徑分形維數(shù)成為定量化解決土壤形態(tài)、過程等問題的有效工具[2,7- 8]。土壤粒徑分形維數(shù)不僅可以表征不同土壤的顆粒大小、分布的均勻程度和孔隙分布狀況等(如分形維數(shù)越小,土壤顆粒的粒徑越大,黏粒質(zhì)量分?jǐn)?shù)越低)[2- 3,9],還可以反映土壤水分、土壤密度和土壤營(yíng)養(yǎng)等理化性質(zhì)對(duì)人類干擾、土地利用類型、植物群落特征和土壤生物結(jié)皮等環(huán)境因子的響應(yīng)[9-14];因此,自分形理論引入土壤結(jié)構(gòu)研究以來,眾多學(xué)者分別從土壤顆粒數(shù)量[15]、質(zhì)量[9-10]和體積[13,16-17]等角度探討土壤粒徑分形維數(shù)的計(jì)算模型[12]。其中,S.W.Tyler等[10]和楊培嶺等[9]將粒徑計(jì)算方法改進(jìn)后,得出基于土壤顆粒質(zhì)量分布的方法;該方法因只需通過土壤顆粒的機(jī)械組成分析便可確定分形維數(shù)而被廣泛引用[18]。
目前,土壤分形特征研究多集中于其與土壤理化性質(zhì)[3,13-14]和生物多樣性[13,19]等的關(guān)系,以及對(duì)不同土地利用[4,16,20]、植被群落類型[11,18,21]、土壤生物結(jié)皮[14]、土壤侵蝕[6]等的響應(yīng),涉及草地[13]、山地[21]、丘陵[6]、小流域[3]、行政區(qū)域[14,22]、綠洲[20]等,而對(duì)河岸緩沖帶土壤粒徑分形特征的研究較少。橫向上,河岸緩沖帶被視為陸地生態(tài)系統(tǒng)與水生生態(tài)系統(tǒng)的生態(tài)交錯(cuò)帶,環(huán)境變量梯度效應(yīng)顯著,并能提供多種生態(tài)系統(tǒng)服務(wù),如穩(wěn)固岸坡、保護(hù)生物多樣性、滯留高地沉積物與農(nóng)業(yè)面源污染物、徑流調(diào)節(jié)等[23-24];縱向上,形成具有特定植被組成與分布的生態(tài)廊道,通過洪水事件的沉積過程過濾河流懸浮沉積物與水體污染物,減少地表物質(zhì),如有機(jī)化合物、營(yíng)養(yǎng)物和微量金屬等的河道內(nèi)傳輸[23-24]。河岸緩沖帶地形地貌特征很大程度上依賴于岸邊侵蝕與泥沙淤積的動(dòng)態(tài)平衡,并受河道形態(tài)(平面與地形)、岸灘結(jié)構(gòu)(基質(zhì)類型與植被)、河流水動(dòng)力特征(局部河流水動(dòng)力與泥沙)和人為干擾(農(nóng)業(yè)種植、放牧、淘沙、水利水電開發(fā)等)的交互作用的影響[23-24]。在從經(jīng)常受洪水影響的離河道較近的低地到較少受洪水影響的離河道遠(yuǎn)的高地這一交互作用的梯度上,河岸緩沖帶土壤(包括河岸緩沖帶土壤養(yǎng)分的損失、增加或轉(zhuǎn)換過程以及土壤顆粒的組成與結(jié)構(gòu)等)呈現(xiàn)較為復(fù)雜的異質(zhì)性,是河岸緩沖帶生產(chǎn)力、生物多樣性保護(hù)和水土保持等生態(tài)系統(tǒng)服務(wù)的維持基礎(chǔ)[25];因此,研究河岸緩沖帶土壤分形特征,可為進(jìn)一步理解河岸緩沖帶生態(tài)系統(tǒng)服務(wù)的形成過程和維持機(jī)制提供支持。近年來,黃河中下游河岸緩沖帶受人類活動(dòng)、自然因素(如降雨模式)以及上游來沙條件變化的影響,造成淤積泥沙的粒徑組成發(fā)生變化,致使土壤團(tuán)粒結(jié)構(gòu)疏松、沙化嚴(yán)重、有機(jī)質(zhì)含量低、保水保肥力弱等一系列問題出現(xiàn)[26-28]。如三門峽和小浪底水庫(kù)的調(diào)節(jié)作用,造成下游洪峰與洪量減小,輸送泥沙動(dòng)力減弱,粗質(zhì)泥沙(>0.05mm)大量淤積,導(dǎo)致下游河岸緩沖帶粒徑組成發(fā)生變化[26,29-30];同時(shí),由于下游洪峰與洪量減小,河岸緩沖帶受洪水淹沒的頻率和范圍減少,導(dǎo)致至河岸不同距離泥沙粒徑組成呈梯度性分布:因此,探討此區(qū)域土壤粒徑分形特征顯得尤為重要。筆者以采集于黃河中下游鄭州-開封段河岸緩沖帶楊樹和柳樹人工林土壤為對(duì)象,研究黃河中下游河岸緩沖帶土壤粒徑分形特征及其與土壤養(yǎng)分與群落特征之間的相互關(guān)系,探討其隨植被類型和河岸緩沖距離的變化規(guī)律,以期為研究區(qū)土壤的土壤養(yǎng)分、水土保持和河岸帶修復(fù)等實(shí)踐活動(dòng)提供基礎(chǔ)科學(xué)資料。
研究區(qū)位于黃河中下游河南境內(nèi)(E 113°03′~114°30′,N 34°48′~35°01′),東西分別以開封黃河大橋和伊洛河入河口為界,南北分別以黃河南北岸大堤為界,涉及鄭州、開封、新鄉(xiāng)、焦作等4個(gè)地級(jí)市。研究區(qū)從西向東由丘陵向平原過渡(河道比降為0.1‰~0.33‰),由中游向下游形成連續(xù)的丘陵-平原過渡景觀,具有獨(dú)特的自然環(huán)境特征,同時(shí)由于河道泥沙以懸移質(zhì)形式輸移為主,水庫(kù)調(diào)節(jié)、水土保持措施、大堤的修建及河道由窄變寬流速降低等因素致使洪峰與洪量減少,泥沙輸送動(dòng)力減弱,導(dǎo)致河道淤積嚴(yán)重。黃河下游河道寬淺,河勢(shì)多變,主流擺動(dòng)頻繁,形成典型的游蕩型(主流擺動(dòng)幅度可達(dá)8 km)“地上懸河”[26-28],導(dǎo)致“三河”出現(xiàn)(斜河、橫河、滾河),增加堤防險(xiǎn)情,盡管小浪底大壩調(diào)水調(diào)沙造成下游來水來沙條件發(fā)生改變,對(duì)游蕩性河段的河勢(shì)和河道河床的演變產(chǎn)生很大影響;但其影響方向目前還沒有定論(如向彎曲方向發(fā)展、向單一性或穩(wěn)定分汊型發(fā)展、趨于穩(wěn)定等)[26-31]。研究區(qū)屬于暖溫帶大陸性半濕潤(rùn)季風(fēng)氣候,光照充足,霜凍期短(無霜日數(shù)為210 d),年日照約2 384 h,春季干旱,夏秋季節(jié)降雨集中,雨熱同季,冬季寒冷,全年平均氣溫在12℃~16℃之間,年平均降水量約在550~650mm之間,年際變化大,空間分布不均勻,而且近年來有雨日減少,特大暴雨頻率增加,旱澇災(zāi)害加劇明顯[26,28];植被以楊樹、柳樹和混交人工林為主,林下草本植物主要為菊科(Compositae)、禾本科(Gramineae)、豆科(Leguminosae)、十字花科(Brassicaceae)等,林草植被是黃河行洪、蓄洪和滯沙的重要因子[28];土壤類型主要為潮土、黃褐土,土層深厚,土壤鹽堿化現(xiàn)象時(shí)有發(fā)生,河岸緩沖絕大部分土地已被開墾耕作,農(nóng)作物多為一年兩熟或兩年三熟,以冬小麥為主,受分散種植效益低的影響,農(nóng)業(yè)產(chǎn)業(yè)水平較低[28]。
2.1 土壤樣品采集、處理與分析
2014年5月沿黃河兩岸大堤內(nèi)區(qū)域采集土壤樣品。從中游至下游,共設(shè)置11條樣線,每條樣線布置3~6個(gè)樣地,每個(gè)樣地大小為20 m× 20m,共47個(gè)樣地。根據(jù)研究區(qū)河岸緩沖人工林的分布類型,本研究采集土壤的樣品主要為種植年限為5~15年的楊樹人工林和柳樹人工林,并根據(jù)2種人工林的分布多少,分別布置40和7個(gè)樣地。每個(gè)樣地記錄海拔、至河流距離(共設(shè)置4個(gè)緩沖區(qū),分別為<1.5 km,樣地?cái)?shù)量(n)=13;1.5~3 km,n=11;3~4.5 km,n=11;>4.5 km,n=12)、喬木層高度、郁閉度和每木胸徑、草本層的高度和蓋度。每個(gè)樣地采用梅花形5點(diǎn)取樣法取0~20 cm土層深度的混合土壤約1 kg,去除枯落物等雜物后放入帶編號(hào)樣品袋,帶回實(shí)驗(yàn)室室內(nèi)分析,然后經(jīng)自然風(fēng)干、研磨、過2 mm土篩,采用四分法取出一部分土樣進(jìn)行土壤顆粒組成分析,一部分繼續(xù)研磨過60目土篩,再用四分法取出用于測(cè)定土壤全碳(total carbon,TC)、總有機(jī)碳(total organic carbon,TOC)、全氮(total nitrogen,TN)、銨態(tài)氮(ammonium nitrogen,NH4+-N)、硝態(tài)氮(nitrate nitrogen,NO3--N)、全磷(total phosphorus,TP)、有效磷(available phosphorus,A-P)的質(zhì)量分?jǐn)?shù)。土壤顆粒組成測(cè)定使用比重計(jì)法,重復(fù)測(cè)定結(jié)果誤差<2%,輸出結(jié)果按美國(guó)制土壤粒徑分級(jí)標(biāo)準(zhǔn)和質(zhì)地分類制輸出:黏粒(<0.002mm)、粉粒(0.002~0.02、0.02~0.05mm)、砂粒(0.05~0.25、0.25~0.5、0.5~1、1~2mm)。TC和TN用碳氮元素分析儀測(cè)定,TOC由重鉻酸鉀氧化-外加熱法測(cè)定,NH4+-N和NO3--N采用2 mol·L-1KCl溶液浸提并分別用紫外分光光度法和納氏試劑比色法進(jìn)行測(cè)定,TP和A-P分別用酸溶-鉬銻抗比色法和Olsen法測(cè)定[32]。
2.2 分形維數(shù)計(jì)算與統(tǒng)計(jì)分析
采用楊培嶺等[9]通過粒徑分布與對(duì)應(yīng)的土壤質(zhì)量分布之間的關(guān)系而推導(dǎo)改進(jìn)的土壤分形維數(shù)模型計(jì)算土壤顆粒質(zhì)量分形維數(shù),計(jì)算公式如下:
式中:D為土壤顆粒粒徑分形維數(shù);r為土壤顆粒粒徑,mm;m為粒徑小于Ri的顆粒的累積質(zhì)量,g;mT為土壤顆粒的總質(zhì)量,g;m/mT是粒徑小于Ri的土壤顆粒的累積質(zhì)量比例,Ri為2篩分粒級(jí)(Ri與Ri+1)的算術(shù)平均值,mm;Rmax為所有粒級(jí)的最大粒徑,)為因變量和自變量進(jìn)行線性擬合,所得直線斜率即為(3-D),由此得到土壤粒徑分形維數(shù)D值[9]。
采用Excel 2007和SPSS 17.0軟件對(duì)各級(jí)粒徑、顆粒組成和分形維數(shù)進(jìn)行描述性統(tǒng)計(jì)分析;采用單因素方差分析(ANOVA)探討顆粒組成和分形維數(shù)在不同植被類型和不同緩沖距離內(nèi)的差異性;采用Pearson相關(guān)分析和線性回歸分析闡明顆粒組成和分形維數(shù)與土壤養(yǎng)分因子(TC、TOC、TN、NH4+-N、NO3--N、TP和A-P)之間的關(guān)系;采用CANOCO for Windows 4.5軟件對(duì)分形維數(shù)、顆粒組成和群落特征之間的相關(guān)性進(jìn)行典范對(duì)應(yīng)分析(canonical correspondence analysis,CCA)。其中,分形維數(shù)和顆粒組成(粉粒、砂粒和黏粒的質(zhì)量分?jǐn)?shù))為物種數(shù)據(jù),海拔高度,喬木高度、郁閉度、平均胸徑和密度,草本高度和蓋度為群落特征數(shù)據(jù)。
3.1 土壤粒徑和分形維數(shù)的總體特征
由表1可知,黃河中下游河岸緩沖帶0~20 cm土壤顆粒以粉粒(0.002~0.02、0.02~0.05 mm)為主(>50%),其中0.002~0.02 mm粒級(jí)質(zhì)量分?jǐn)?shù)最高,達(dá)32.8%,變異系數(shù)最低。砂粒中0.05~0.25mm粒級(jí)顆粒質(zhì)量分?jǐn)?shù)較高,但是空間變異較大(83.5%),最大值是最小值的184倍,0.25~2mm粒級(jí)質(zhì)量分?jǐn)?shù)較少(<1%),說明研究區(qū)不同粒級(jí)的土壤顆粒質(zhì)量分?jǐn)?shù)呈非均勻分布[16,33]。由表1可知,計(jì)算分形維數(shù)時(shí),線性擬合方程的決定系數(shù)介于0.61~0.92之間,回歸分析顯著水平均<0.05,說明土壤質(zhì)量分形維數(shù)在本研究區(qū)的計(jì)算精度較高。整體上,研究區(qū)土壤粒徑分形維數(shù)平均值為2.76,變異系數(shù)為3.03%,呈現(xiàn)較小的變異性,說明研究區(qū)土壤粒徑空間分布整體較均勻[16,33]。
表1 土壤粒徑和分形維數(shù)的描述性統(tǒng)計(jì)(n=47,%)Tab.1 Descriptive statistics of soil particle size and fractal dimension(Number of samples n=47,%)
3.2 不同植被類型與緩沖距離的土壤顆粒與分形特征
由表2可知,楊樹人工林和柳樹人工林均以粉粒質(zhì)量分?jǐn)?shù)最高,砂粒質(zhì)量分?jǐn)?shù)次之,黏粒質(zhì)量分?jǐn)?shù)最少。其中,砂粒和黏粒的質(zhì)量分?jǐn)?shù)均表現(xiàn)為高變異性(47%~91%),且柳樹人工林高于楊樹人工林。2種植被類型土壤分形維數(shù)比較接近,柳樹人工林空間變異高于楊樹人工林,方差分析結(jié)果表明,2種植被類型土壤顆粒組成與分形維數(shù)差異均不顯著,表明在研究區(qū)0~20 cm土層2種人工林對(duì)土壤粒徑組成分形維數(shù)影響的差異不大。這與前人對(duì)黃河中上游小流域和下游三角洲的研究結(jié)果有所不同,如,王德等[4]、茹豪等[6]、白一茹等[33]發(fā)現(xiàn)水蝕嚴(yán)重的黃土丘陵溝壑區(qū)不同土地利用類型(分別為:林地、灌木地、草地、梯田、退耕還林地;刺槐林地、油松林地、側(cè)柏林地、蘋果林地、灌木林地、荒草地、農(nóng)地;棗樹林、苜蓿地、谷子地、檸條地)對(duì)土壤粒徑分布和分形維數(shù)存在顯著差異,呂圣橋等[34]指出黃河三角洲灘地土壤顆粒分形特征受土地利用方式(刺槐林地、歐美楊林地、棉花地、荒草地)影響顯著。對(duì)比發(fā)現(xiàn),本研究結(jié)果應(yīng)與所選植被類型生態(tài)習(xí)性接近、立地條件差異小有關(guān),同為河岸防護(hù)林的柳樹和楊樹人工林的保水保肥效益差異不顯著。
在不同緩沖距離上,不同土壤顆粒組成的質(zhì)量分?jǐn)?shù)與不同植被類型相似(表2),除3~4.5 km緩沖距離外均表現(xiàn)為粉粒>砂粒>黏粒。在3~4.5 km緩沖距離內(nèi),黏粒質(zhì)量分?jǐn)?shù)高于砂粒,同時(shí)土壤顆粒分形維數(shù)最高,變異系數(shù)最??;因此,不同緩沖距離上土壤顆粒分形維數(shù)有可能與黏粒和砂粒的質(zhì)量分?jǐn)?shù)有較強(qiáng)的相關(guān)性,有待相關(guān)性分析進(jìn)一步驗(yàn)證(表3)。另外,有研究表明,土壤質(zhì)地越粗越不易形成良好的結(jié)構(gòu),土壤質(zhì)地越細(xì)結(jié)構(gòu)越復(fù)雜,而土壤顆粒分形維數(shù)在2.75左右代表土壤結(jié)構(gòu)良好[18,35]。總體上,黃河中下游河岸緩沖帶不同植被類型與緩沖距離土壤結(jié)構(gòu)接近于2.75,表明研究區(qū)土壤結(jié)構(gòu)良好,具有較好的透水性和保水保肥力性能[18,21],同時(shí)說明本土植物具有良好的土壤養(yǎng)分維持能力[3]。本研究結(jié)果與李曉鵬等[22]對(duì)封丘縣壤質(zhì)潮土的土壤粒徑分形結(jié)果相一致。
表2 不同植被類型與緩沖距離的土壤粒徑分布和分形維數(shù)Tab.2 Soil particle size distribution and fractal dimension of different vegetation types and buffer distances
圖1示出黃河中下游河岸緩沖帶不同植被類型土壤粒徑分形維數(shù)D值與不同土壤顆粒組成的關(guān)系圖。結(jié)果表明,研究區(qū)D值與砂粒質(zhì)量分?jǐn)?shù)呈顯著的負(fù)相關(guān)關(guān)系(P<0.01),而與粉粒質(zhì)量分?jǐn)?shù)呈顯著的正相關(guān)關(guān)系(P<0.01),表明隨粉粒質(zhì)量分?jǐn)?shù)的升高、砂粒質(zhì)量分?jǐn)?shù)的減少,D值呈增大的趨勢(shì)。D值雖與黏粒質(zhì)量分?jǐn)?shù)呈正相關(guān),但不同植被類型有所差異,其中楊樹人工林D值與黏粒質(zhì)量分?jǐn)?shù)正相關(guān)性顯著(P<0.01),而柳樹人工林兩者之間相關(guān)性不顯著(P>0.05)。表明隨黏粒質(zhì)量分?jǐn)?shù)的升高,楊樹人工林D值增大;但黏粒太高容易導(dǎo)致土壤透氣性下降[18,35],因此并非黏粒質(zhì)量分?jǐn)?shù)越高土壤結(jié)構(gòu)越好。已有研究成果表明,總體上分形維數(shù)與細(xì)顆粒正相關(guān),而與粗顆粒負(fù)相關(guān),本文粒徑分形維數(shù)與黏粒的相關(guān)關(guān)系與其他地區(qū)的研究結(jié)果一致[5,36];但是,也有相關(guān)研究表明,土壤粒徑分形維數(shù)因土地利用的不同而發(fā)生規(guī)律改變[36],在黃河下游河岸緩沖帶土壤中,細(xì)顆粒物質(zhì)受洪水沖刷和降雨產(chǎn)流水蝕的影響而發(fā)生流失,不同植被類型對(duì)表層土的攔截作用不同,導(dǎo)致本研究中不同植被類型間分形維數(shù)與黏粒的相關(guān)關(guān)系規(guī)律發(fā)生量變,但并未產(chǎn)生量間關(guān)系的質(zhì)變或方向發(fā)生變化。另外,相關(guān)研究表明,黏粒質(zhì)量分?jǐn)?shù)與粒徑分布均勻性有密切關(guān)系[5],從這個(gè)意義上說,柳樹人工林土壤粒徑分布非均勻性較高,這與表2中柳樹人工林土壤較大的黏粒質(zhì)量分?jǐn)?shù)和空間變異系數(shù)相契合。
圖1 不同植被類型土壤分形維數(shù)D與顆粒組成的相關(guān)關(guān)系Fig.1 Correlation between fractal dimension and soil particle size under different vegetation types
表3 不同緩沖距離土壤分形維數(shù)D與顆粒組成的相關(guān)關(guān)系Tab.3 Correlation between fractal dimension and soil particle size under different buffer distances
在不同緩沖距離上,D值與砂粒質(zhì)量分?jǐn)?shù)呈顯著的負(fù)相關(guān)關(guān)系(P<0.01),而與黏粒質(zhì)量分?jǐn)?shù)呈顯著的正相關(guān)關(guān)系(P<0.01);因此,不同緩沖距離上土壤顆粒分形維數(shù)與黏粒和砂粒質(zhì)量分?jǐn)?shù)有較強(qiáng)的相關(guān)關(guān)系得到印證(表2和表3)。D值與粉粒質(zhì)量分?jǐn)?shù)的相關(guān)關(guān)系在不同緩沖距離表現(xiàn)差異,其中,0~3 km范圍內(nèi)呈正相關(guān),但不顯著,在>3 km的緩沖區(qū)內(nèi),呈顯著的正相關(guān)關(guān)系(P<0.05)。總體上,研究區(qū)土壤隨土壤顆粒變細(xì)分形維數(shù)增大,隨著土壤顆粒增大分形維數(shù)變小。受黃河下游水位變化和泥沙沖刷與沉積等因素的影響,0~3 km緩沖距離內(nèi)土壤顆粒空間分布不均勻、變異系數(shù)較大,而3~4.5 km及其以外區(qū)域,受人類活動(dòng)影響顯著,土壤顆??臻g變異系數(shù)明顯低于0~3 km緩沖區(qū)域。其中,細(xì)顆粒尤其是粉粒質(zhì)量分?jǐn)?shù)表現(xiàn)最為明顯,表現(xiàn)為平均質(zhì)量分?jǐn)?shù)較高、空間變異最?。灰虼?,黃河下游河岸緩沖帶土壤同時(shí)受黃河水沙變化和人類活動(dòng)的影響,土壤顆粒組成的變化及量間關(guān)系沿單一環(huán)境梯度變化規(guī)律復(fù)雜,線性關(guān)系不顯著。
3.3 土壤顆粒和分形特征與土壤養(yǎng)分的關(guān)系
Pearson相關(guān)分析結(jié)果(表4)表明,分形維數(shù)D值與土壤全碳(TC)、總有機(jī)碳(TOC)和全氮(TN)存在顯著的正相關(guān)關(guān)系(P<0.01),而與其他養(yǎng)分因子相關(guān)性不顯著。與D相似,土壤黏粒質(zhì)量分?jǐn)?shù)與TC、TOC和TN呈顯著的正相關(guān)關(guān)系(P<0.01),與其他養(yǎng)分因子相關(guān)性不顯著;土壤砂粒質(zhì)量分?jǐn)?shù)與TC、TOC和TN呈顯著的負(fù)相關(guān)關(guān)系(P<0.01),與其他養(yǎng)分因子負(fù)相關(guān)但均不顯著;土壤粉粒質(zhì)量分?jǐn)?shù)與TN在0.05水平顯著正相關(guān),與其他養(yǎng)分因子呈正相關(guān)但均不顯著。這與較多針對(duì)不同流域、生態(tài)系統(tǒng)和氣候條件的研究結(jié)果一致[3-4,14,34]:由于土壤顆粒對(duì)養(yǎng)分元素的吸附保持能力存在差異,土壤顆粒越細(xì)或黏粒質(zhì)量分?jǐn)?shù)越高,黏結(jié)性越強(qiáng)并形成緊密的團(tuán)聚體,分形維數(shù)越高,越有利于C、N等在土壤中留存;反之,TOC質(zhì)量分?jǐn)?shù)的降低會(huì)在一定程度上破壞土壤團(tuán)聚體的形成和穩(wěn)定性,降低土壤結(jié)構(gòu)保持和養(yǎng)分保蓄功能,導(dǎo)致土壤抗侵蝕力降低,當(dāng)TOC下降至某一水平時(shí),甚至能導(dǎo)致土壤穩(wěn)定性喪失。盡管如此,不同的研究所得的結(jié)果并非一致。例如:Liu Yanyan等[13]對(duì)高山草地土壤顆粒分形維數(shù)與土壤理化性質(zhì)和物種多樣性的關(guān)系研究中發(fā)現(xiàn),在輕度與中等程度干擾草地上,D與SOM呈顯著的負(fù)相關(guān),在輕度與重度干擾草地上,D與TN呈顯著的負(fù)相關(guān);伏耀龍等[36]對(duì)岷江上游干旱河谷土壤粒徑分布分形維數(shù)特征研究中指出D與 SOM、TN和TP質(zhì)量分?jǐn)?shù)相關(guān)性不顯著。本研究中TP質(zhì)量分?jǐn)?shù)與D值和顆粒組成相關(guān)性不顯著,這與Liu Xiaojun等[3]對(duì)長(zhǎng)江典型流域土壤顆粒分形與TP的關(guān)系研究不太一致,其結(jié)果表明,TP質(zhì)量分?jǐn)?shù)與粉粒和黏粒質(zhì)量分?jǐn)?shù)分別在0.01和0.05水平呈顯著的負(fù)相關(guān),與砂粒質(zhì)量分?jǐn)?shù)在0.01水平呈顯著正相關(guān),并與D值呈顯著的線性關(guān)系(P<0.01)。根據(jù)前人研究,河岸緩沖帶土壤TP質(zhì)量分?jǐn)?shù)與其地形地貌過程、土地利用和植被類型等因子有著復(fù)雜的聯(lián)系[23-25,37],因此影響TP質(zhì)量分?jǐn)?shù)的環(huán)境因子有待進(jìn)一步分析。
表4 河岸緩沖帶土壤分形維數(shù)D和顆粒組成與土壤養(yǎng)分的相關(guān)性Tab.4 Correlation between riparian soil particle size,fractal dimension and nutrient factors
3.4 土壤顆粒和分形特征與群落特征的關(guān)系
CCA結(jié)果表明(圖2),二維排序圖第1軸和第2軸解釋物種-環(huán)境關(guān)系的貢獻(xiàn)率分別為91.7%和8%,7個(gè)群落特征中,草本高度、喬木胸徑、高度和郁閉度與第1軸相關(guān)性較強(qiáng),海拔、喬木密度和草本蓋度與第2軸相關(guān)性較強(qiáng)。第1軸上,草本高度、喬木胸徑、高度和郁閉度與土壤顆粒分形維數(shù)D值、粉粒質(zhì)量分?jǐn)?shù)和黏粒質(zhì)量分?jǐn)?shù)呈正相關(guān),與砂粒質(zhì)量分?jǐn)?shù)呈負(fù)相關(guān),表明喬木徑級(jí)越高、郁閉度越高、生物量越大,土壤分形維數(shù)、粉粒和黏粒質(zhì)量分?jǐn)?shù)就越高、砂粒質(zhì)量分?jǐn)?shù)就越低,這與植被通過枯枝落葉的分解和根系穿插作用增加土壤有機(jī)質(zhì)和改善土壤結(jié)構(gòu)有關(guān)[34,36]。河岸坡面侵蝕嚴(yán)重地區(qū),土壤養(yǎng)分隨細(xì)顆粒受水蝕影響而流失,但坡面不同植被覆蓋和種植年限對(duì)泥沙和養(yǎng)分的攔截過濾效果不同[6,11,34];因此從某種意義上講土壤顆粒分形維數(shù)特征在一定程度上可以表征河岸坡面植被覆蓋變化對(duì)產(chǎn)流、產(chǎn)沙和養(yǎng)分流失的影響[3]。海拔與第2軸相關(guān)性較強(qiáng);但由于第2軸解釋物種-環(huán)境數(shù)據(jù)關(guān)系的貢獻(xiàn)率僅為8%;因此,與伏耀龍等的研究[36]不同,本研究區(qū)土壤分形維數(shù)和顆粒組成受海拔影響較小,其原因與研究區(qū)海拔梯度(76~108 m)較小有關(guān)[3]。
1)研究區(qū)0~20 cm土壤質(zhì)地空間分布上比較均一,不同粒級(jí)的土壤顆粒質(zhì)量分?jǐn)?shù)呈非均勻分布。其中,黏粒(<0.002 mm)和粉粒(0.002~0.02、0.02~0.05mm)質(zhì)量分?jǐn)?shù)較高(>75.5%),砂粒質(zhì)量分?jǐn)?shù)較低,植被類型(柳樹和楊樹人工林)和河岸緩沖距離(<1.5 km、1.5~3 km、3~4.5 km和>4.5 km)對(duì)土壤顆粒組成與分形維數(shù)的影響差異不顯著??傮w上,黃河中下游河岸緩沖帶土壤顆粒分形維數(shù)在2.75左右,結(jié)構(gòu)良好,具有較好的透水性和保水保肥力性能。
2)Pearson相關(guān)分析與CCA分析結(jié)果表明:研究區(qū)土壤顆粒分形維數(shù)D值與土壤全碳(TC)、總有機(jī)碳(TOC)和全氮(TN)存在顯著的正相關(guān)關(guān)系(P<0.01),而與其他養(yǎng)分因子相關(guān)性不顯著;土壤黏粒質(zhì)量分?jǐn)?shù)與TC、TOC和TN呈顯著的正相關(guān)關(guān)系(P<0.01),相反,砂粒質(zhì)量分?jǐn)?shù)與TC、TOC和TN呈顯著的負(fù)相關(guān)關(guān)系(P<0.01),而粉粒質(zhì)量分?jǐn)?shù)只與TN在0.05水平顯著正相關(guān)。群落特征中,草本高度、喬木胸徑、高度和郁閉度與土壤顆粒分形維數(shù)D值和粉粒質(zhì)量分?jǐn)?shù)和黏粒質(zhì)量分?jǐn)?shù)呈正相關(guān),與砂粒質(zhì)量分?jǐn)?shù)呈負(fù)相關(guān),說明喬木徑級(jí)越高、郁閉度越高、生物量越大,土壤分形維數(shù)、粉粒和黏粒質(zhì)量分?jǐn)?shù)就越高、砂粒質(zhì)量分?jǐn)?shù)就越低。另外,與其他研究結(jié)果不同,由于研究區(qū)海拔梯度較小,土壤分形維數(shù)和顆粒組成受海拔影響較小。
3)黃河中下游河岸緩沖帶受人類活動(dòng)與自然因素的共同作用,土壤結(jié)構(gòu)疏松、有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)降低和沙化嚴(yán)重等問題突顯,本研究結(jié)果可為河岸坡面侵蝕控制、植被恢復(fù)以及土壤肥力和結(jié)構(gòu)狀況評(píng)價(jià)具有理論和實(shí)踐意義。
圖2 土壤顆粒與分形特征和植物群落特征關(guān)系的CCA二維排序圖Fig.2 Two-dimensional CCA ordination diagram for relationship between soil particle size,fractal dimension and plant community characteristics in the riparian buffer zone along the Yellow River
[1] Ry z·ak M,Bieganowski A.Methodological aspects of determining soil particle-size distribution using the laser diffraction method[J].Journal of Plant Nutrition and Soil Science,2011,174(4):624.
[2] Huang Guanhua,Zhang Renduo,Huang Quanzhong. Modeling soil water retention curve with a fractalmethod[J].Pedosphere,2006,16(2):137.
[3] Liu Xiaojun,Li Zhanbin,Li Peng.Particle fractal dimension and total phosphorus of soil in a typical watershed of Yangtze River,China[J].Environmental Earth Sciences,2014,73(10):6091.
[4] 王德,傅伯杰,陳利頂,等.不同土地利用類型下土壤粒徑分形分析:以黃土丘陵溝壑區(qū)為例[J].生態(tài)學(xué)報(bào),2007,27(7):3081. Wang De,F(xiàn)u Bojie,Chen Liding,et al.Fractal analysis on soil particle size distributions under different land-use types:a case study in the loess hilly areas of the Loess Plateau,China[J].Acta Ecologica Sinica,2007,27(7):3081.(in Chinese)
[5] 管孝艷,楊培嶺,任樹梅,等.基于多重分形理論的壤土粒徑分布非均勻性分析[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2009,17(2):196. Guan Xiaoyan,Yang Peiling,Ren Shuhai,et al.Heterogeneity analysis of particle size distribution for loamy soil based on multi fractal theory[J].Journal of Basic Science&Engineering,2009,17(2):196.(in Chinese)
[6] 茹豪,張建軍,李玉婷,等.黃土高原土壤粒徑分形特征及其對(duì)土壤侵蝕的影響[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(4):176. Ru Hao,Zhang Jianjun,Li Yuting,et al.Fractal features of soil particle size distributions and its effect on soil erosion of Loess Plateau[J].Transactions of the Chinese Society for Agricultural,2015,46(4):176.(in Chinese)
[7] Li Yi,LiMin,Horton R.Single and joint multifractal analysis of soil particle size distributions[J].Pedosphere,2011,21(1):75.
[8] Huang Guanhua,Zhang Renduo.Evaluation of soil water retention curve with the pore-solid fractal model[J]. Geoderma,2005,127(1/2):52.
[9] 楊培嶺,羅遠(yuǎn)培,石元春.用粒徑的重量分布表征的土壤分形特征[J].科學(xué)通報(bào),1993,38(20):1896. Yang Peiling,Luo Yuanpei,Shi Yuanchun.Fractal characteristics of soil by weight distribution of particle size[J].Chinese Science Bulletin,1993,38(20):1896.(in Chinese)
[10]Tyler SW,Wheatcraft SW.Fractal scaling of soil particle-size distributions:analysis and limitations[J].Soil Science Society of America Journal,1992,56(2):362.
[11]于東明,胡小蘭,張光燦,等.江子河小流域不同植被類型土壤粒徑的多重分形特征[J].中國(guó)水土保持科學(xué),2011,9(5):79. Yu Dongming,Hu Xiaolan,Zhang Guangcan,et al. Multi fractal analysis on soil particle size distribution for different vegetation types in Jiangzihe small watershed[J].Science of Soil and Water Conservation,2011,09(5):79.(in Chinese)
[12]高廣磊,丁國(guó)棟,趙媛媛,等.四種粒徑分級(jí)制度對(duì)土壤體積分形維數(shù)測(cè)定的影響[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2014,22(6):1060. Gao Guanglei,Ding Guodong,Zhao Yuanyuan,et al. Effects of soil particle size classification system on calculating volume-based fractal dimension[J].Journal of Basic Science and Engineering,2014,22(6):1060.(in Chinese)
[13]Liu Yanyan,Gong Yanming,Wang Xin,et al.Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees[J].Journal of Arid Land,2013,5(4):480.
[14]Gao Guanglei,Ding Guodong,Wu Bin,et al.Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts[J]. Plos One,2014,9(2):e88559.
[15]Crawford JW,Sleemant B D,Young IM.On the relation between number-size distributions and the fractal dimension of aggregates[J].Journal of Soil Science,1993,44(4):555.
[16]王國(guó)梁,周生路,趙其國(guó).土壤顆粒的體積分形維數(shù)及其在土地利用中的應(yīng)用[J].土壤學(xué)報(bào),2005,42(4):545. Wang Guoliang,Zhou Shenglu,Zhao Qiguo.Volume fractal dimension of soil particles and its applications to land use[J].Acta Pedologica Sinica,2005,42(4):545.(in Chinese)
[17]Chen Xiaoyan,Zhou Ji.Volume-based soil particle fractal relation with soil erodibility in a small watershed of purple soil[J].Environmental Earth Sciences,2013,70(4):1735.
[18]葛東媛,張洪江,鄭國(guó)強(qiáng),等.重慶四面山4種人工林地土壤粒徑分形特征[J].水土保持研究,2011,18(2):148. Ge Dongyuan,Zhang Hongjiang,Zheng Guoqiang,etal. Fractal characteristics of particle-size in four plantation in simian mountain of Chongqing[J].Research of Soil& Water Conservation,2011,18(2):148.(in Chinese)
[19]Hufford K M,Mazer S J,Schimel JP.Soil heterogeneity and the distribution of native grasses in California:Can soil properties inform restoration plans?[J].Ecosphere,2014,5(4):244.
[20]Jiang Penghui,Cheng Liang,LiManchun,et al.Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data:A case study of the middle Hei he River basin,China[J].Science of the Total Environment,2015,506-507:259.
[21]Liu Xia,Zhang Guangcan,Heathman G C,etal.Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng,China[J].Geoderma,2009,154(1):123.
[22]李曉鵬,劉建立,張佳寶,等.華北沖積平原壤質(zhì)潮土的土壤粒徑分形空間尺度分析[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(4):118. Li Xiaopeng,Liu Jianli,Zhang Jiabao,et al.Analysis of fractal magnitude of soil particles in loamy Chao soils in North China Plain[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(4):118.(in Chinese)
[23]Tang Qiang,Bao Yuhai,He Xiubin,et al.Sedimentation and associated trace metal enrichment in the riparian zone of the Three Gorges Reservoir,China[J].Science of the Total Environment,2014,479/480(1):258.
[24]Gageler R,Bonner M,Kirchh of G,et al.Early response of soil properties and function to riparian rain forest restoration[J].Plos One,2014,9(8):e104198.
[25]Woodward K B,F(xiàn)ellows C S,Mitrovic SM,et al.Patterns and bioavailability of soil nutrients and carbon across a gradient of inundation frequencies in a lowland river channel,Murray-Darling Basin,Australia[J]. Agriculture Ecosystems&Environment,2015,205:1.
[26]耿思敏,嚴(yán)登華,羅先香,等.變化環(huán)境下黃河中下游洪澇災(zāi)害發(fā)展新趨勢(shì)[J].水土保持通報(bào),2012,32(3):188. Geng Simin,Yan Denghua,Luo Xianxiang,et al.New evolution tendencies of flood disasters under changing environment in middle and lower reaches of the yellow river[J].Bulletin of Soil&Water Conservation,2012,32(3):188.(in Chinese)
[27]李謝輝,韓薈芬.河南省黃河中下游地區(qū)洪災(zāi)損失評(píng)估與預(yù)測(cè)[J].災(zāi)害學(xué),2014,29(1):87. Li Xiehui,Han Huifen.Loss assessment and prediction of flood disaster in the middle and lower reaches of yellow river in henan province[J].Journal of Catastrophology,2014,29(1):87.(in Chinese)
[28]趙清賀,馬麗嬌,劉倩,等.黃河中下游典型河岸帶植物物種多樣性及其對(duì)環(huán)境的響應(yīng)[J].生態(tài)學(xué)雜志,2015,34(5):1325. Zhao Qinghe,Ma Lijiao,Liu Qian,et al.Plant species diversity and its response to environmental factors in typical river riparian zone in the middle and lower reaches of the Yellow River[J].Chinese Journal of Ecology,2015,34(5):1325.(in Chinese)
[29]王衛(wèi)紅,田世民,孟志華,等.小浪底水庫(kù)運(yùn)用前后黃河下游河道河型變化及成因分析[J].泥沙研究,2012(1):23. WangWeihong,Tian Shimin,Meng Zhihua,etal.Evolution processes of river pattern in Lower Yellow River after commissioning of Xiaolangdi Reservoir.Journal of Sediment Research,2012,(1):23.(in Chinese)
[30]周倩倩.水沙銳減條件下黃河下游游蕩性河道河型轉(zhuǎn)化趨勢(shì)研究[D].保定:華北水利水電大學(xué),2015. Zhou Qianqian.A study on evolution of wandering reaches in the lower Yellow River in reducing water and sediment[D].North China University of Water Resources and E-lectric Power,2015.(in Chinese)
[31]錢寧,周文浩,洪柔嘉.黃河下游游蕩性河道的特性及其成因分析[J].地理學(xué)報(bào),1961,27:1. Qian Ning,Zhou Wenhao,Hong Roujia.The characteristics and genesis analysis of the braided stream of the lower Yellow River.Acta Geographica Sinica,1961,27:1.(in Chinese)
[32]魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國(guó)農(nóng)業(yè)科技出版社,2000. Lu Rukun.Analytical methods of soil agrochemistry[M].Beijing:China Agricultural Science and Technology Press,2000.(in Chinese)
[33]白一茹,汪有科.黃土丘陵區(qū)土壤粒徑分布單重分形和多重分形特征[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(5):42. Bai Yiru,Wang Youke.Mono fractal and multi fractal analysis on soil particle distribution in hilly and gully areas of the Loess Plateau[J].Transactions of the Chinese Society for Agricultural Machinery,2012,43(5):42.(in Chinese)
[34]呂圣橋,高鵬,耿廣坡,等.黃河三角洲灘地土壤顆粒分形特征及其與土壤有機(jī)質(zhì)的關(guān)系[J].水土保持學(xué)報(bào),2011,25(6):134. Lyv Shengqiao,Gao Peng,Geng Guangpo,et al.Characteristics of soil particles and their correlation with soil organic matter in lowlands of the Yellow River Delta[J]. Journal of Soil&Water Conservation,2011,25(6):134.(in Chinese)
[35]劉云鵬,王國(guó)棟,張社奇,等.陜西4種土壤粒徑分布的分形特征研究[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,31(2):92. Liu Yunpeng,Wang Guodong,Zhang Sheqi,et al.Fractal characteristics of particle-size distribution for four kinds of soil samples in Shaanxi[J].Journal of Northwest A&F University(Natural Science Edition),2003,31(2):92.(in Chinese)
[36]伏耀龍,張興昌,王金貴.岷江上游干旱河谷土壤粒徑分布分形維數(shù)特征[J].農(nóng)業(yè)工程學(xué),2012,28(5):120. Fu Yaolong,Zhang Xingchang,Wang Jingui.Fractal dimension of soil particle-size distribution characteristics in dry valley of upper Minjiang river[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(5):120.(in Chinese)
[37]Miller R B,F(xiàn)ox G A,Penn C J,et al.Estimating sediment and phosphorus loads from stream banks with and without riparian protection[J].Agriculture Ecosystems &Environment,2014,189:70.
Fractal dimension characteristic of soil particle size in the riparian buffer zone of them iddle and lower reaches of the Yellow River
Zhao Qinghe1,2,Lu Xunling1,2,Tang Qian1,2,Zhang Yifan1,2,Liu Pu1,2
(1.Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions,Ministry of Education,475004,Kaifeng,Henan,China;2.College of Environment and Planning,Henan University,475004,Kaifeng,Henan,China)
[Background]Riparian soil and vegetation along rivers are important for biodiversity maintenance and biogeochemistry circulation of river ecosystems,and are the basis of many ecosystem services.Influenced by human activities and natural factors,soil structure and vegetation in the riparian buffer zone of the middle and lower reaches of the Yellow River are subjected to degradation to a certain extent.[Methods]Selecting the Zhengzhou-Kaifeng section of the middle and lower reaches of the Yellow River as the studied area,as well as using methods of field investigation,experimental analysis,and canonical correspondence analysis(CCA),the present study was conducted to investigate the fractal dimension characteristics of riparian plantation soil particle size at the surface layer of 0-20 cm under different vegetation types and buffer distances.[Results]The results indicated that the soil particle size distribution(PSD)was heterogeneous with higher contents of silt and clay(more than 75.5%)and lesscontent of sand.However,soil texture was uniform in spatial,since no significant difference was observed between Salix matsudana plantation and Populus tomentasa plantation as well as among the four riparian buffer zones(<1.5 km,sample number(n)=13;1.5-3 km,n=11;3-4.5 km,n= 11;>4.5 km,n=12).The fractal dimension(D)value was approximately equal to 2.75,suggesting a fine soil structure with favorable performance in the retention of water and fertility in the studied area.Result from Pearson correlation analysis indicated that D value and clay content were significantly and positively correlated with soil total carbon(TC),total organic carbon(TOC),and total nitrogen(TN)at the 0.01 level,on the contrary,sand content was significantly and negatively correlated with TC,TOC,and TN at the 0.01 level,while silt content was only significantly and positively correlated with TN at the 0.05 level.Result from CCA indicated that the community characteristics such as the herb height,tree diameter of breast height,tree height,and tree cover were related positively and closely with D value,silt content,and clay content,while were negatively correlated with sand content,suggesting that the larger tree coverage and biomass can lead to the better soil structure.Moreover,inconsistent with other research results,the soil particle size distribution and fractal dimension characteristics were less affected by elevation because of the small gradient variation in the studied area.[Conclusions]The riparian buffer zone of the middle and lower reaches of the Yellow River,which is affected by both human activities and natural factors,is subjected to serious issues of soils such as loose structure,decreased organic matter content,and significant desertification,thus results from this study can provide basis for ecological restoration,bank erosion control,and land management of the degraded riparian zone.
soil particle size;fractal dimension;community characteristics;riparian buffer zone;floodplain of the middle and lower reaches of the Yellow River
Q14
A
1672-3007(2016)05-0037-10
10.16843/j.sswc.2016.05.006
2016- 04- 11
2016- 09- 01
項(xiàng)目名稱:中國(guó)博士后科學(xué)基金資助項(xiàng)目“黃河中下游典型河段河岸帶植被格局與土壤環(huán)境耦合機(jī)制”(2014M550382),“黃河下游典型河岸帶植被格局與坡面侵蝕過程的耦合機(jī)制”(2015T80766);國(guó)家自然科學(xué)基金“華南紅壤區(qū)河岸植被緩沖帶景觀格局對(duì)土壤侵蝕過程的調(diào)控機(jī)理研究”(41301197);教育部黃河中下游數(shù)字地理技術(shù)重點(diǎn)實(shí)驗(yàn)室開放基金“黃河中下游典型河段河岸帶植被格局與土壤環(huán)境的耦合過程與驅(qū)動(dòng)機(jī)制研究”(GTYR2013010);河南省高校科技創(chuàng)新團(tuán)隊(duì)支持計(jì)劃“農(nóng)業(yè)資源開發(fā)與可持續(xù)利用”(16IRTSTHN012)
趙清賀(1982—),男,博士后,講師。主要研究方向:景觀生態(tài)學(xué)。E-mail:zhaoqinghe@henu.edu.cn