鐘莉娜,王軍,趙文武
(1.中國地質(zhì)大學(xué)(北京)土地科學(xué)技術(shù)學(xué)院,100083,北京;2.國土資源部土地整治中心土地整治重點(diǎn)實(shí)驗(yàn)室,100035,北京;3.北京師范大學(xué)資源學(xué)院,100875,北京)
基于修正簡易模型的陜北黃土丘陵溝壑區(qū)降雨侵蝕力分布特征
鐘莉娜1,2,王軍2?,趙文武3
(1.中國地質(zhì)大學(xué)(北京)土地科學(xué)技術(shù)學(xué)院,100083,北京;2.國土資源部土地整治中心土地整治重點(diǎn)實(shí)驗(yàn)室,100035,北京;3.北京師范大學(xué)資源學(xué)院,100875,北京)
降雨侵蝕力經(jīng)典模型計(jì)算結(jié)果準(zhǔn)確,但計(jì)算過程繁瑣、數(shù)據(jù)量大且難獲?。缓喴啄P陀?jì)算便捷,但結(jié)果不夠準(zhǔn)確。本文分析了8種黃土丘陵溝壑區(qū)降雨侵蝕力模型的差異,并對(duì)簡易模型進(jìn)行修正。以經(jīng)典模型為基準(zhǔn)值,對(duì)與經(jīng)典模型結(jié)果最為接近的簡易模型進(jìn)行修正,基于修正后的簡易模型分析黃土丘陵溝壑區(qū)降雨侵蝕力的時(shí)空分布特征。在此過程中用到的方法主要是數(shù)理統(tǒng)計(jì)法和模型差異分析方法。經(jīng)典模型更能準(zhǔn)確估算陜北黃土丘陵溝壑區(qū)降雨侵蝕力;擬合模型y=0.849x-29.651可以提高章文波降雨侵蝕力簡易模型的模擬精度(擬合優(yōu)度0.734);陜北黃土丘陵溝壑區(qū)2006—2012年間降雨侵蝕力總體呈現(xiàn)上升趨勢(shì);汾川河流域、清澗河流域上游降雨侵蝕力較高,下游次之;延河流域、大理河流域下游降雨侵蝕力較高,上游次之。降雨侵蝕力簡易算法經(jīng)修正后可以較好的估算黃土丘陵溝壑區(qū)的降雨侵蝕力的時(shí)空分布特征,陜北黃土丘陵溝壑區(qū)2006—2012年間降雨侵蝕力時(shí)空分布不均,降雨侵蝕力整體較高。
降雨侵蝕力;簡易算法修正;時(shí)空分布;陜北黃土丘陵溝壑區(qū)
降雨侵蝕力(R因子)是通用土壤流失方程USLE及其修正版RUSLE中的一個(gè)基礎(chǔ)因子[1]。土壤侵蝕與植被覆蓋和降雨因子密切相關(guān),短歷時(shí)、高強(qiáng)度降雨是引起土壤侵蝕的主要因素,特別是在地表相對(duì)裸露的坡地[2];因此,降雨侵蝕力計(jì)算結(jié)果的準(zhǔn)確性將直接影響土壤侵蝕的定量研究。
EI30算法是美國通用土壤流失方程中土壤侵蝕力因子R的經(jīng)典計(jì)算方法,在全球有廣泛的應(yīng)用,也受到廣大學(xué)者普遍認(rèn)可。降雨侵蝕力簡易算法也多以EI30算法為精度的衡量標(biāo)準(zhǔn)。由于基于降雨強(qiáng)度和降雨動(dòng)能建立的降雨侵蝕力計(jì)算模型已被廣泛應(yīng)用且應(yīng)用效果良好,有學(xué)者稱之為降雨侵蝕力的經(jīng)典算法[3]。經(jīng)典算法基于降雨強(qiáng)度和對(duì)應(yīng)的降雨動(dòng)能計(jì)算降雨侵蝕力,需要長期且連續(xù)的降雨過程數(shù)據(jù),計(jì)算繁瑣費(fèi)時(shí),不適合較大時(shí)空尺度上的土壤侵蝕評(píng)價(jià)[4]。為此,國內(nèi)外許多學(xué)者提出利用年、月、日降雨量等常規(guī)降雨資料估算降雨侵蝕力的模型,并在各地區(qū)得到廣泛應(yīng)用[5-6]。用年、月、日降雨量等常規(guī)降雨資料估算降雨侵蝕力模型的簡易算法且已為廣大學(xué)者普遍接受。許多學(xué)者在分析降雨侵蝕力時(shí)空分布規(guī)律時(shí)往往直接采用現(xiàn)有的簡易模型,并未考慮模型在研究區(qū)是否適用,是否需要修正;另外,現(xiàn)有的降雨侵蝕力模型有很多,在進(jìn)行相關(guān)研究時(shí)如何選擇也是學(xué)者需要關(guān)注的問題。
目前用于計(jì)算黃土丘陵溝壑區(qū)降雨侵蝕力的公式有很多,但不同類型的降水資料提供的信息豐富程度不同,降雨侵蝕力的估算精度也有所差別。本文整理了多種曾用于黃土丘陵溝壑區(qū)降雨侵蝕力估算的簡易算法和經(jīng)典算法,分別計(jì)算安塞集水區(qū)的降雨侵蝕力,分析不同算法計(jì)算結(jié)果的差異,并以經(jīng)典算法為基準(zhǔn)值,對(duì)與之結(jié)果最為接近的簡易算法進(jìn)行修正,用修正后的簡易算法分析黃土丘陵溝壑區(qū)降雨侵蝕力的時(shí)空分布特征。
選擇水土流失比較嚴(yán)重的陜北黃土丘陵溝壑區(qū)作為研究區(qū)域,位于E 108°45′~110°25′,N 36°10′~37°55′N之間,總面積17 488 km2,包括延河流域、清澗河流域、汾川河流域和無定河流域中的大理河流域,主要涉及延安、延長、安塞、子長、清澗等縣市。研究區(qū)氣候?qū)儆谥袦貛Т箨懶园敫珊导撅L(fēng)氣候,四季變化明顯,干濕分明,年溫差大[7]。90%以上的降水集中在5—9月,6—9月為汛期,多暴雨。地表為黃土層,黃土顆粒細(xì),土質(zhì)松軟,在流水侵蝕的作用下極易造成土壤侵蝕。
2.1 數(shù)據(jù)來源
以土地利用變化較小的1980—1989年為研究時(shí)段,收集安塞集水區(qū)內(nèi)鐮刀灣、楊山、化子坪、譚家營、坪橋、安塞和郝家坪降水站點(diǎn)的雨量資料和降雨過程資料(圖1),包括7個(gè)站點(diǎn)全年的降雨過程數(shù)據(jù)(包括次降雨持續(xù)時(shí)間及30min最大降雨強(qiáng)度數(shù)據(jù))、日降雨數(shù)據(jù)以及月降雨數(shù)據(jù)。1980—1989年安塞水文站的年含沙量及輸沙量數(shù)據(jù)。2006—2012年大理河、清澗河、汾川河、延河流域57個(gè)降雨站點(diǎn)的空間分布見圖1。數(shù)據(jù)源于《中華人民共和國水文年鑒·黃河流域水文資料》。
2.2 研究方法
2.2.1 降雨侵蝕力因子計(jì)算方法 分析統(tǒng)計(jì)8種曾用于估算黃土丘陵溝壑區(qū)降雨侵蝕力的計(jì)算方法。采用不同方法計(jì)算1980—1989年安塞集水區(qū)內(nèi)鐮刀灣等7個(gè)降水站點(diǎn)的降雨侵蝕力,統(tǒng)計(jì)區(qū)域平均值得到基于不同算法的安塞集水區(qū)年降雨侵蝕力(表1)。各計(jì)算公式的單位不一致,本文對(duì)各公式的計(jì)算結(jié)果進(jìn)行標(biāo)準(zhǔn)化處理之后,將安塞年降雨侵蝕力與安塞水文站的年含沙量、輸沙量數(shù)據(jù)進(jìn)行相關(guān)分析,選擇較適合的降雨侵蝕力計(jì)算方法。
2.2.2 模型差異分析方法 模型的有效系數(shù)Ef越高,表明模型與基準(zhǔn)值的差異性越小,準(zhǔn)確度越高[16],該指標(biāo)由J.E.Nash等提出[16]:
圖1 安塞集水區(qū)降雨站點(diǎn)分布Fig.1 Spatial distribution of rainfall stations in Ansai watershed
式中:Er為相對(duì)偏差,Robsn和Rcalm為模型估算和基準(zhǔn)月平均降雨侵蝕力,MJ·mm/(km2·h)。相對(duì)偏差可以用來衡量模型的估算值對(duì)基準(zhǔn)值的偏離程度[17]。
表1 降雨侵蝕力計(jì)算方法Tab.1 Methods of rainfall erosivity
3.1 基于不同算法的降雨侵蝕力計(jì)算結(jié)果比較
將基于不同計(jì)算方法得到的年降雨侵蝕力與安塞集水區(qū)水文資料(輸沙量和含沙量)進(jìn)行相關(guān)分析,得到不同計(jì)算方法的年降雨侵蝕力與安塞集水區(qū)水文資料的相關(guān)系數(shù),其結(jié)果如圖2所示。另外,從圖2中也可以看出經(jīng)典算法(R7、R8)與水文要素(輸沙量與含沙量)的相關(guān)系數(shù)明顯高出簡易算法(R1—R6)與水文要素的相關(guān)系數(shù)。江忠善等[14]建立的降雨侵蝕力公式R7較王萬忠[15]的降雨侵蝕力公式R8與水文要素的相關(guān)性更高,更能準(zhǔn)確反映安塞集水區(qū)的土壤侵蝕狀況。簡易算法中,章文波等[9]的降雨侵蝕力公式R2與水文要素具有更高的相關(guān)性。綜合考慮降雨侵蝕力估算結(jié)果的準(zhǔn)確性和數(shù)據(jù)的可獲得性,選擇章文波的降雨侵蝕力公式R2來估算研究區(qū)的降雨侵蝕力。為進(jìn)一步提高章文波降雨侵蝕力公式計(jì)算結(jié)果的準(zhǔn)確度,本文分析江忠善建立的降雨侵蝕力經(jīng)典算法R7與章文波建立的降雨侵蝕力簡易算法R2的差異性,并基于R7對(duì)R2進(jìn)行修正。
表1 (續(xù))Continued from Tab.1
圖2 不同降雨侵蝕力因子計(jì)算方法與水文數(shù)據(jù)的相關(guān)性Fig.2 Correlation between different calculation models of rainfall erosivity and hydrological data
3.2 經(jīng)典算法R7與簡易算法R2的差異性分析
以經(jīng)典算法R7估算的月降雨侵蝕力作為基準(zhǔn)值,利用有效系數(shù)和相對(duì)偏差來分析R2與R7的差異。統(tǒng)計(jì)1981—1989年6—9月的月平均降雨量和降雨侵蝕力數(shù)據(jù),并分析R2相對(duì)R7的有效系數(shù)和相對(duì)偏差(表2)。1981—1989年期間月平均降雨量為8月>7月>9月>6月。R2相對(duì)于R7的有效系數(shù)為9月>6月>7月>8月,而研究期間,安塞集水區(qū)各月侵蝕性降雨(>12 mm)次數(shù)排序?yàn)?月>7月>6月>9月,二者排序恰好相反,說明R2的準(zhǔn)確度與侵蝕性降雨的次數(shù)成反比。另外,R2的相對(duì)偏差月份之間相差不大,有效系數(shù)越大,相對(duì)偏差越小說明模型的模擬精度越高;因此R2對(duì)黃土丘陵溝壑區(qū)9月份降雨侵蝕的模擬精度相對(duì)較高。
R2與R7產(chǎn)生差異的主要原因是R2采用日降雨量和月降雨量因子估算降雨侵蝕力,并未明顯包含降雨強(qiáng)度概念,與EI經(jīng)典算法的物理意義不相接近;同時(shí),黃土丘陵溝壑區(qū)土質(zhì)松散,遇水容易溶解,一場十幾毫米的短歷時(shí)、高強(qiáng)度局地性暴雨要比七八十毫米的長歷時(shí)、低強(qiáng)度區(qū)域性暴雨的侵蝕量大得多:因此,降雨強(qiáng)度因素對(duì)黃土丘陵溝壑區(qū)水土流失的影響程度要比雨量因子大得多。
3.3 簡易算法R2的修正
以R2為自變量,以R7為因變量,建立R2與R7的擬合模型,對(duì)降雨侵蝕力簡易算法R2進(jìn)行修正。由圖3看出,R2與R7的關(guān)系滿足線性分布,擬合模型為R7=0.849R2-29.651,擬合優(yōu)度為0.734,即
式中:R為月降雨侵蝕力,MJ·mm/(hm2·h);D為第j日侵蝕性降雨量,mm(降雨量≥12 mm,否則以0計(jì)算);K為侵蝕性降雨時(shí)間,d。
式中:Pd12為日雨量≥12mm的日平均雨量,mm;Py12為日雨量≥12mm的年平均雨量,mm。
3.4 黃土丘陵溝壑區(qū)降雨侵蝕力的時(shí)空分布特征
表2 R2相對(duì)于R7的差異比較Tab.2 Comparison of the differences between R2and R7
降雨侵蝕力空間變化分析計(jì)算研究區(qū)降雨侵蝕力2006—2012年的多年平均值均值得到圖4,可以看出:汾川河流域、清澗河流域上游降雨侵蝕力較高,下游次之;延河流域、大理河流域下游降雨侵蝕力較高,上游次之。總體來說,延河和大理河流域降雨侵蝕力較低,而清澗河和汾川河流域降雨侵蝕力較高。研究區(qū)降雨侵蝕力存在2個(gè)高值區(qū),分別是清澗河上游地區(qū)和汾川河上游地區(qū),低值區(qū)分別位于大理河中游和延河流域上中游。
降雨侵蝕力時(shí)間變化分析統(tǒng)計(jì)研究區(qū)2006—2012年的降雨侵蝕力得到圖5??梢钥闯?,2006—2012年間降雨侵蝕力總體呈現(xiàn)上升趨勢(shì),但由于2008年和2010年降雨量較小導(dǎo)致2008年和2010年的降雨侵蝕力較低。
圖3 R2與R7的擬合模型Fig.3 Fitting model of R2and R7
圖4 多年降雨侵蝕力均值空間分布(MJ·mm·hm-2·h-1·a-1)Fig.4 Spatial distribution ofmean annual rainfall erosivity
1)相對(duì)于降雨侵蝕力簡易算法,經(jīng)典算法更能準(zhǔn)確估算陜北黃土丘陵溝壑區(qū)降雨侵蝕力。章文波等[9]的降雨侵蝕力簡易算法對(duì)9月份陜北黃土丘陵溝壑區(qū)降雨侵蝕的模擬精度相對(duì)較高。簡易算法與經(jīng)典算法差異存在的主要原因是降雨強(qiáng)度因素對(duì)黃土丘陵溝壑區(qū)土壤侵蝕的影響程度要比雨量因子大的多,而簡易算法采用日降雨量和月降雨量因子估算降雨侵蝕力,并未明顯包含降雨強(qiáng)度概念。
圖5 降雨侵蝕力年際變化Fig.5 Interannual variation of rainfall erosivity
2)江忠善等[14]的降雨侵蝕力經(jīng)典算法與章文波等[9]的降雨侵蝕力簡易算法滿足線性分布,擬合模型y=0.849x-29.651可以提高章文波的降雨侵蝕力簡易算法的模擬精度(擬合優(yōu)度0.734)。
3)陜北黃土丘陵溝壑區(qū)2006—2012年間降雨侵蝕力總體呈現(xiàn)上升趨勢(shì)。汾川河流域、清澗河流域上游降雨侵蝕力較高,下游次之;延河流域、大理河流域下游降雨侵蝕力較高,上游次之。
修正后的降雨侵蝕力簡易算法可以較好的估算黃土丘陵溝壑區(qū)的降雨侵蝕力。相較于經(jīng)典算法,簡易算法既節(jié)約人力物力,也節(jié)省時(shí)間成本,同時(shí)也有較好的模擬精度,可以在大尺度上推廣使用。
[1] LAIR L.Soil degradation by erosion[J].Land Degradation&Development,2001,12(12):519.
[2] 楊韶洋,劉霞,姚孝友,等.沂蒙山區(qū)降雨侵蝕力空間分布推算方法[J].中國水土保持科學(xué),2015,13(2):1. Yang Shaoyang,Liu Xia,Yao Xiaoyou,et al.Calculat-ing methods of rainfall erosivity spatial distribution in Yimeng Mountain Area[J].Science of Soil and Water Conservation,2015,13(2):1.(in Chinese)
[3] 胡續(xù)禮,潘劍君,楊樹江,等.幾種降雨侵蝕力模型的比較研究[J].水土保持通報(bào),2006,26(1):68. Hu Xuli,Pan Jianjun,Yang Shujiang,et al.Comparative study on rainfall erosivity models using daily rainfall amounts[J].Bulletin of Soil and Water Conservation,2006,26(1):68.(in Chinese)
[4] Oliveira P T S,Wend land E,Nearing M A.Rainfall erosivity in Brazil:A review[J].Catena,2013,100(2):139.
[5] Fiener P,Neuhaus P,Botschek J.Long-term trends in rainfall erosivity-analysis of high resolution precipitation time series(1937- 2007)from Western Germany[J]. Agricultural and Forest Meteorology,2013,171/172(8):115.
[6] Maetens W,Vanmaercke M,Poesen J,et al.Effects of land use on annual runoff and soil loss in Europe and the Mediterranean A meta-analysis of plot data[J].Progress in Physical Geography,2012,36(5):599.
[7] 王浩,張光輝,張永萱,等.黃土高原小流域次降雨徑流深預(yù)報(bào)模型[J].中國水土保持科學(xué),2015,13(5):31. Wang Hao,Zhang Guanghui,Zhang Yongxuan,et al. Rainfall event based runoff prediction model for small watersheds in the Loess Plateau[J].Science of Soil and Water Conservation,2015,13(5):31.(in Chinese)
[8] 殷水清,謝云.黃土高原降雨侵蝕力時(shí)空分布[J].水土保持通報(bào),2005,25(4):29. Yin Shuiqing,Xie Yun.Temporal and spatial variations of rainfall erosivity in the Loess Plateau[J].Bulletin of Soil and Water Conservation,2005,25(4):29.(in Chinese)
[9] 章文波,付金生.不同類型雨量資料估算降雨侵蝕力[J].資源科學(xué),2003,25(1):35. Zhang Wenbo,F(xiàn)u Jinsheng.Rainfall erosivity estimation under different rainfall amount[J].Resources Science,2003,25(1):35.(in Chinese)
[10]劉秉正.渭北地區(qū)R的估算及分布[J].西北林學(xué)院學(xué)報(bào),1993,8(2):21. Liu Binzheng.Estimation and distribution of rainfall erosive power index[J].Journal of Northwest Forestry University,1993,8(2):21.(in Chinese)
[11]Wischmeier HW,Smith D D.Rainfall energy and its relationship to soil loss[J].Transactions American Geophysical Union,1958,39(2):285.
[12]孫保平,趙廷寧,齊實(shí).USLE在西吉縣黃土丘陵溝壑區(qū)的應(yīng)用[J].中國科學(xué)院水利部西北水土保持研究所集刊:黃土高原試驗(yàn)區(qū)土壤侵蝕和綜合治理減沙效益研究專集,1990,12:50. Sun Baoping,Zhao Tingnin,Qi Shi.Application of USLE in Xiji county in Loess Hilly Gully Region[J].Research of Soil and Water Conservation,1990,12:50.(in Chinese)
[13]趙文武,徐海燕,解純營.黃土丘陵溝壑區(qū)延河流域降雨侵蝕力的估算[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(S1):38. Zhao Wenwu,Xu Haiyan,Xie Chunying.Estimation of rainfall erosivity watershed in Yanhe River of Loess Hilly Gully Region[J].Transactions of the Chinese Society of Agricultural Engineering,2008,24(S1):38.(in Chinese)
[14]江忠善,李秀英.黃土高原土壤流失預(yù)報(bào)方程中降雨侵蝕力和地形因子的研究[J].中國科學(xué)院西北水土保持研究所集刊,1988,7:40. Jiang Zhongshan,Li Xiuying.Study on rainfall erosivity and topographic factors in soil erosion in Loess Plateau prediction equation[J].Memoir of Northwestern Institute of Soil and Water Conservation Academia Sinica,1988,7:40.(in Chinese)
[15]王萬忠.黃土地區(qū)降雨侵蝕力R指標(biāo)的研究[J].中國水土保持,1987,12:34. Wang Wangzhong.Study on index of erosivity(R)of rainfall in loess area[J].Soil and Water Conservation in China,1987,12:34.(in Chinese)
[16]Nash JE,Sutcliffe JV.River flow forecasting through conceptualmodels part:a discussion of principles[J]. Journal of Hydrology,1970,10(3):282.
[17]Stoyanow S V,Rachev S T,Ortobeli S,et al.Relative deviation metrics and the problem of strategy replication[J].Journal of Banking&Finance,2008,32(2):199.
Tem poral and spatial distribution characteristics of rainfall erosivity in loess hilly region of Northern Shaanxi based on the modified simplified models
Zhong Lina1,2,Wang Jun2,Zhao Wenwu3
(1.School of Land Science and Technology,China University of Geosciences,100083,Beijing,China;2.Key Laboratory of Land Consolidation and Rehabilitation,Ministry of Land and Resources,100035,Beijing,China;3.College of Resources Science and Technology,Beijing Normal University,100875,Beijing,China)
[Background]Universal Soil Loss Equation(USLE)is an empirical model widely used in the domain of soil erosion by water.And the rainfall erosivity(R factor)is a basic factor in USLE and the revised universal soil loss equation(RUSLE).The soil erosion and rainfall factors are closely related.The accuracy of the calculated results of rainfall erosivity will directly affect the quantitative study of soil erosion.The calculated results by the classical models are accurate,however,the calculation process is cumbersome,and the data used in the calculation is large and difficult to be obtained. Calculation of rainfall erosivity using simplified models is convenient,but the result is not accurate enough.[Methods]The differences of rainfall erosivity calculated by 8 different models were analyzed,then the simplified models generating the closest values with classical models were modified,and then the simplified models after modification were used to analyze the temporal and spatial distribution characteristics of rainfall erosivity.The main methods used in this process were mathematical statistics and model difference analysis.[Results]1)Compared to the simplified models,classical models were more accurate to estimate the rainfall erosivity in the loess hilly and gully region,the main reasons resulting in this were as,the impact degree of rainfall intensity factor was much higher than the rainfall factor on soil erosion in the loess hilly and gully region,while rainfall intensity was not considered as an impact factor in the simplified models,and the calculation in the simplified models was carried out by daily rainfall and monthly rainfall data.2)The fitting model y=0.849x-29.651 improved the simulation precision of the simplified model of rainfall erosivity by Zhang Wenbo(Goodness of fit was 0.734).The rainfall erosivity of the loess hilly and gully region of Northern Shaanxi Province during 2006- 2012 showed a rising trend.The rainfall erosivity of the upstream of Fenchuan River Basin and Qingjian River Basin was relatively high and the rainfall erosivity of the downstream was in second;the rainfall erosivity of the downstream of Yan he Basin and Dali River Basin was relatively high,and the rainfall erosivity of the upstream was in second.[Conclusions]The simplified rainfall erosivity models after modification may be used to better estimate the rainfall erosivity in the loess hilly and gully region,and by which the manpower,time and costwould be saved;moreover,the favorable simulation accuracy can be obtained,thus they can be used in large scale and provide a scientific basis for the soil and water conservation work in the loess hilly and gully region and even the country-scale investigation of soil erosion.The rainfall erosivity in the loess hilly gully region is calculated better by simplified model after modification,as result,the temporal and spatial distribution of rainfall erosivity in the loess hilly and gully region are high and uneven as a whole from 2006 to 2012.
rainfall erosivity;modification of simplified model;temporal and spatial distribution;loess hilly and gully region of Northern Shaanxi
F301.2
A
1672-3007(2016)05-0008-07
10.16843/j.sswc.2016.05.002
2016- 02- 16
2016- 05- 05
項(xiàng)目名稱:國家自然科學(xué)基金“松嫩平原西部土地整理的時(shí)空格局及生態(tài)效應(yīng)”(41171152),“土地利用格局與土壤流失關(guān)系的尺度效應(yīng)分析與尺度轉(zhuǎn)換”(41171069)
鐘莉娜(1989—),女,博士研究生。主要研究方向:景觀生態(tài)和土地整治。E-mail:zhong_lina@163.com
?通信作者簡介:王軍(1970—),男,博士,研究員。主要研究方向:景觀生態(tài)學(xué),土地可持續(xù)利用與土地整治。E-mail:wangjun@lcrc.org.cn