何俊,王學(xué)東,陳世寶,劉彬,李寧,鄭涵
(1.首都師范大學(xué)資源環(huán)境與旅游學(xué)院,北京100048;2.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,農(nóng)業(yè)部植物營(yíng)養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室,北京100081)
不同污灌區(qū)兩種小麥對(duì)土壤Pb吸收的主控因子與預(yù)測(cè)模型
何俊1,王學(xué)東1,陳世寶2*,劉彬2,李寧2,鄭涵2
(1.首都師范大學(xué)資源環(huán)境與旅游學(xué)院,北京100048;2.中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,農(nóng)業(yè)部植物營(yíng)養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室,北京100081)
采集我國(guó)北方5個(gè)典型污灌區(qū)0~20 cm土壤,添加250 mg·kg-1的Pb進(jìn)行盆栽試驗(yàn),測(cè)定不同污罐區(qū)土壤中兩種不同敏感性小麥對(duì)Pb吸收、轉(zhuǎn)化特征,同時(shí)利用離子色譜儀及WHAM 6.0化學(xué)模型對(duì)污灌區(qū)土壤溶液性質(zhì)及自由Pb2+進(jìn)行測(cè)定,探究污灌區(qū)土壤中小麥對(duì)Pb吸收的主控因子及其預(yù)測(cè)模型。結(jié)果表明,不同污灌區(qū)土壤中兩種小麥對(duì)Pb的富集系數(shù)(BCF)及Pb的根-莖葉轉(zhuǎn)運(yùn)系數(shù)(TF)均有顯著(P<0.05)差異,Pb敏感性品種輪選987根與莖葉的富集系數(shù)均明顯高于耐Pb品種白麥126。山東棕壤中小麥對(duì)Pb的富集系數(shù)最大,而天津潮土的最小,最大相差255.9%;Pb污染土壤中小麥對(duì)Pb的富集系數(shù)及根-莖葉轉(zhuǎn)運(yùn)系數(shù)(TF)均大于相應(yīng)的對(duì)照處理土壤。小麥根、莖葉中Pb含量與土壤溶液中自由Pb2+含量呈極顯著正相關(guān)(P<0.01),線性擬合方程分別為:y=0.772x+54.805(R2=0.904),y=0.087x+12.980(R2=0.897);基于土壤主控因子的小麥Pb吸收模型表明,不同污罐區(qū)土壤小麥中Pb和土壤溶液自由Pb2+含量與土壤pH、OC含量呈負(fù)相關(guān),而與土壤溶液Cl-、Na+離子含量呈正相關(guān)。除了受土壤主要因子影響外,土壤中Cl-、Na+含量升高將增加污灌土壤中Pb的環(huán)境風(fēng)險(xiǎn)。
污灌土壤;鉛;累積特征;主控因子;預(yù)測(cè)模型
目前,農(nóng)田土壤重金屬污染及其對(duì)農(nóng)產(chǎn)品的健康風(fēng)險(xiǎn)日益受到關(guān)注[1-4]。在農(nóng)田重金屬污染源中,污水灌溉是農(nóng)田重金屬主要污染源之一[5-7]。污水灌溉雖使水肥資源得到充分利用,但長(zhǎng)期污灌易引起重金屬等污染物的累積,當(dāng)超過(guò)環(huán)境容量時(shí),重金屬便可通過(guò)食物鏈對(duì)人類(lèi)健康造成潛在威脅[8-9]。目前我國(guó)污灌農(nóng)田超過(guò)400萬(wàn)hm2,其中30%的土壤受重金屬污染,尤其是北方旱作地區(qū)(如北京、天津、河北、遼寧等)。污水含有較為豐富的營(yíng)養(yǎng)物質(zhì),因而適當(dāng)使用污水進(jìn)行農(nóng)田灌溉,可以顯著促進(jìn)作物產(chǎn)量的增加,但如果過(guò)度使用污水灌溉則會(huì)引起土壤重金屬超標(biāo)或鹽堿化等環(huán)境風(fēng)險(xiǎn)[10-11]。近年來(lái),農(nóng)田土壤重金屬污染問(wèn)題日益凸顯,而由污灌引起的農(nóng)田重金屬污染及其環(huán)境風(fēng)險(xiǎn)逐漸被學(xué)者關(guān)注[10-12]。在不同來(lái)源重金屬污染土壤中,由污灌引起的土壤往往含有較高的鹽基離子和復(fù)合污染等特點(diǎn),但針對(duì)污灌區(qū)不同性質(zhì)土壤中重金屬的形態(tài)轉(zhuǎn)化及其生物有效性研究鮮見(jiàn)報(bào)道。本文選取北方5個(gè)典型污灌區(qū)(北京、天津、河北、山東、遼寧)的土壤進(jìn)行盆栽試驗(yàn),測(cè)定不同土壤中小麥根、莖葉Pb富集系數(shù)、轉(zhuǎn)運(yùn)系數(shù),同時(shí)利用離子色譜和WHAM模型對(duì)土壤溶液性質(zhì)進(jìn)行測(cè)定,以探究不同污灌區(qū)土壤中影響Pb植物有效性的主控因子與預(yù)測(cè)模型,以期為我國(guó)污灌農(nóng)田重金屬污染風(fēng)險(xiǎn)評(píng)價(jià)及防治提供參考。
1.1 污灌區(qū)土壤樣品采集
在前期資料[13-16]調(diào)研基礎(chǔ)上,根據(jù)我國(guó)農(nóng)田污灌水(工業(yè)廢水、城市再生水、生活污水及其復(fù)合污水等)主要類(lèi)型,分別采集了5種典型污灌區(qū)農(nóng)田(0~20 cm)土壤進(jìn)行盆栽試驗(yàn)。每個(gè)地點(diǎn)以梅花型5點(diǎn)取樣法采集土壤約200 kg,具體包括:(1)北京大興區(qū)北野場(chǎng)灌區(qū):有近30年污水灌溉歷史,污灌區(qū)面積約14.8 km2,主要以城市再生水污灌為主;(2)遼寧沈陽(yáng)市張士污灌區(qū):污灌區(qū)建立于1962年,污灌歷史超過(guò)25年,以工業(yè)廢水和部分城市生活污水復(fù)合污灌為主;(3)天津北(塘)排污河灌區(qū):以城市污水與污泥污染為主;(4)山東濟(jì)南市華山鎮(zhèn)小清河污灌區(qū):以工業(yè)廢水與城市再生水污灌為主,主要種植作物為小麥和玉米;(5)河北省清苑縣污灌區(qū):污水類(lèi)型為歷史型的城市混合污水為主,包括工業(yè)廢水和生活污水,以小麥-玉米輪作為主。所有土樣經(jīng)室內(nèi)風(fēng)干后,剔除雜物,然后過(guò)2 mm尼龍篩,測(cè)定理化性質(zhì)(表1)。
表1 不同污灌區(qū)土壤基本理化性質(zhì)Table 1 Basic physic-chemical properties of the sewage irrigation soils
1.2土壤性質(zhì)測(cè)定方法[17]
(1)土壤pH(電位法):水土比為2.5∶1,加水振蕩30 min,靜置后使用PHS-3C酸度計(jì)測(cè)定;(2)陽(yáng)離子交換量(CEC)采用乙酸鈉-火焰光度法[18]:稱土5 g裝入50 mL離心管,分別用33 mL pH8.2 NaOAc溶液和乙醇重復(fù)振蕩清洗各3次,再用1 mol·L-1pH 7 NH4OAc重復(fù)洗滌2次,將兩次清洗液倒入1000 mL錐形瓶中,用pH 7 NH4OAc定容后用火焰光度計(jì)(Agilent,日本)測(cè)定鈉濃度,并計(jì)算土壤交換量;(3)有機(jī)碳(OC)用重鉻酸鉀容量法:稱土0.3 g裝入硬質(zhì)試管,加入0.136 mol·L-1K2Cr2O7-H2SO4溶液10 mL后蓋上小漏斗,放入170~180℃的石蠟中煮沸5 min,冷卻后,將其洗入250 mL三角瓶,使液體體積為60~70 mL,加鄰啡羅啉指示劑3~4滴,再用0.2 mol·L-1的標(biāo)準(zhǔn)硫酸亞鐵溶液滴定至棕紅色。
1.3 Pb污染土壤制備
向不同灌區(qū)土壤中添加Pb(NO3)2(分析純)溶液,使Pb添加濃度為0(CK)和250 mg·kg-1(T1),攪拌均勻后,保持每種土壤的70%最大田間持水量(MWHC)平衡4周,備用。
1.4 盆栽實(shí)驗(yàn)
為了驗(yàn)證實(shí)驗(yàn)結(jié)果的適用性價(jià)值,選取由中國(guó)農(nóng)科院提供的北方兩種不同Pb耐性的小麥品種(耐Pb品種白麥-126及Pb敏感性品種輪選-987)進(jìn)行實(shí)驗(yàn)。選取健康飽滿的種子,用10%的H2O2溶液浸泡30 min消毒,再用蒸餾水清洗干凈。蒸餾水浸泡小麥種子至有白色小芽露頭,移入培養(yǎng)皿中(鋪有滅菌濾紙),保持蒸餾水沒(méi)過(guò)種子,置于氣候箱內(nèi)培養(yǎng)36~48 h,條件設(shè)置為32℃、無(wú)光照。待胚根長(zhǎng)至接近2 mm移種至盆中,每盆裝土1.0 kg,置于溫室(25±2℃,自然光照)中進(jìn)行培養(yǎng),表面覆土約1 cm,每盆15粒種子,每個(gè)處理3次重復(fù)。一周后定植10株。進(jìn)行實(shí)驗(yàn)2個(gè)月后收獲,將植株分為根與莖葉,先在105℃下殺青,再在60℃下烘干至恒重待測(cè)。
1.5 污灌土壤溶液提取與性質(zhì)測(cè)定
土壤溶液提取方法[19]:稱土25.0 g(已平衡四周)裝入墊有玻璃棉的注射器內(nèi)部,在干土中添加去離子水使土壤達(dá)到最大持水量后,培養(yǎng)過(guò)夜(24 h),接著用離心機(jī)先后進(jìn)行低速(3500 r·min-1)和高速(15 000 r·min-1)離心處理各50 min,最后用0.22 μm的濾膜過(guò)濾,將濾液裝瓶冷藏待測(cè)。
離子測(cè)定方法[21-22]:采用離子色譜法測(cè)定土壤溶液離子含量,使用Metrohm AS分離柱,淋洗液采用2.5 mmol·L-1Na2CO3+1.7 mmol·L-1NaHCO3,流速0.7 mL·min-1,進(jìn)行上機(jī)測(cè)定,得到F-、Cl-、Br-和 Li+、Na+、K+、Ca2+、Mg2+10種離子的含量。
1.6 溶液中自由Pb2+含量測(cè)定
使用WHAM 6.0計(jì)算土壤溶液自由Pb2+含量[19]。測(cè)定時(shí),依次輸入溶液pH、TOC及各陰、陽(yáng)離子(Na+、K+、Ca2+、Mg2+、F-、Cl-、Br-、NO3-、PO34-、SO24-等)濃度等進(jìn)行模型計(jì)算,得出土壤溶液自由Pb2+含量。由于實(shí)驗(yàn)室屬于開(kāi)放性系統(tǒng),溶液CO2濃度采用標(biāo)準(zhǔn)大氣壓條件下的含量參與計(jì)算。
1.7 數(shù)據(jù)的處理
論文其他數(shù)據(jù)采用Excel 2007、SPSS 19.0進(jìn)行相關(guān)和回歸分析,差異性水平為P<0.05。
2.1 不同污灌區(qū)土壤中小麥生物量的變化
表2為不同污灌區(qū)土壤中兩種小麥的生物量變化??傮w來(lái)看,輪選987的生物量要明顯低于白麥126;同時(shí),在外源添加250 mg·kg-1Pb后,北京和遼寧土壤中小麥輪選987根部的生物量出現(xiàn)下降,而天津土壤中輪選987莖葉部位生物量要低于對(duì)照土壤,白麥126生物量也具有類(lèi)似的結(jié)果。在低濃度條件下,土壤中外源添加重金屬Pb可能對(duì)植物的生長(zhǎng)具有一定的刺激作用[23],而當(dāng)超過(guò)這一范圍后,植物的生長(zhǎng)便會(huì)受到抑制[24]。此外,不同污灌區(qū)土壤中小麥生長(zhǎng)狀態(tài)的差異說(shuō)明了土壤性質(zhì)對(duì)植物的生長(zhǎng)具有較大影響。
表2 不同地區(qū)污灌土壤小麥生物量(g·盆-1,DW)變化Table 2 The biomass of the wheat in different sewage irrigation soils
2.2 小麥植株P(guān)b含量變化
不同污灌區(qū)土壤中兩種小麥根和莖葉部位Pb含
量如圖1所示。總體看,Pb敏感性品種輪選987根與莖葉部位Pb含量明顯高于耐Pb品種白麥126的。對(duì)照處理中,輪選987莖葉Pb含量為14.4~21.3 mg· kg-1,最大相差47.9%;白麥126莖葉鉛含量為8.6~16.0 mg·kg-1,最大相差86.0%。不同Pb處理土壤中,輪選987和白麥126莖葉鉛含量分別為22.6~35.5 mg·kg-1和10.1~19.2 mg·kg-1,最大相差57.1%和90.1%,隨著外源重金屬Pb的添加,小麥根部和莖葉Pb含量也出現(xiàn)明顯增加。此外,兩種小麥在不同污灌區(qū)土壤中根部Pb變化趨勢(shì)與莖葉部位相似,見(jiàn)圖1。2.3小麥植株對(duì)土壤Pb富集系數(shù)
本實(shí)驗(yàn)中Pb的富集系數(shù)(BCF)定義為:植株不同部位(根或莖葉)中Pb含量(mg·kg-1)與土壤中Pb濃度(mg·kg-1)的比值。圖2為不同污灌區(qū)土壤中兩種小麥根和莖葉部位對(duì)Pb的富集系數(shù)。總體上看,無(wú)論是T1處理或?qū)φ仗幚硗寥乐?,Pb敏感性品種輪選987根與莖葉的富集系數(shù)均明顯高于耐Pb品種白麥126。對(duì)照土壤中,輪選987 Pb富集系數(shù)為0.44~0.81,最大相差84.1%,白麥126莖葉Pb富集系數(shù)為0.31~0.68,最大相差119.4%;T1處理中,白麥126和輪選987的富集系數(shù)分別為0.034~0.121和0.114~0.186,最大相差255.9%和63.2%。從圖2看出,不同污灌區(qū)土壤中小麥對(duì)Pb的富集系數(shù)有較大差異。對(duì)照土壤中,山東棕壤中小麥對(duì)Pb的富集系數(shù)最大,而天津潮土的最小;向Pb污灌區(qū)土壤中外源添加重金屬Pb后,兩種小麥莖葉對(duì)土壤Pb的富集系數(shù)均明顯降低,其中山東棕壤中小麥的富集系數(shù)變化最顯著。此外,不同污灌區(qū)土壤中兩種小麥根部對(duì)重金屬Pb的富集系數(shù)變化趨勢(shì)與莖葉的相似。植物對(duì)土壤中Pb的富集能力除了與土壤基本性質(zhì)、Pb的濃度變化有關(guān)外,還與植物不同品種間的差異有較大關(guān)系。
圖1 不同污灌區(qū)土壤中小麥不同部位Pb含量變化Figure 1 Accumulation of Pb in roots and shoots of wheat in the sewage irrigation soils
本文將小麥Pb的根-莖葉轉(zhuǎn)運(yùn)系數(shù)(TF)定義為:莖葉中Pb含量(mg·kg-1)與根部Pb含量(mg·kg-1)的比值。表3為不同污灌區(qū)土壤中兩種小麥對(duì)重金屬Pb的根-莖葉轉(zhuǎn)運(yùn)系數(shù)。由表3可見(jiàn),無(wú)論輪選987或白麥126,向土壤外源添加重金屬Pb后,其根-莖葉轉(zhuǎn)運(yùn)系數(shù)TF明顯降低。這說(shuō)明,在植物對(duì)土壤中Pb吸收轉(zhuǎn)運(yùn)過(guò)程中,植物根系是Pb進(jìn)入植物體進(jìn)行長(zhǎng)距離轉(zhuǎn)運(yùn)的第一道屏障,隨著土壤中Pb脅迫的增加,植物通過(guò)將Pb束縛在根部從而阻止Pb的進(jìn)一步轉(zhuǎn)運(yùn)可能是植物產(chǎn)生耐性的生理機(jī)制之一[25]。從總體上看,輪選987 Pb根-莖葉轉(zhuǎn)運(yùn)系數(shù)要顯著高于白麥
126的,即重金屬Pb在植株內(nèi)更易發(fā)生轉(zhuǎn)移,與兩者對(duì)Pb的耐受性一致。此外,不同污灌區(qū)土壤間兩種小麥的根-莖葉遷移系數(shù)并沒(méi)有表現(xiàn)出明顯的規(guī)律性,可能是小麥品種、小麥本身對(duì)重金屬Pb毒性忍耐機(jī)制以及土壤環(huán)境介質(zhì)條件等的差異造成的。
采用SPSS19.0將土壤溶液自由Pb2+含量[p(Pb2+)]與兩種小麥根和莖葉部位重金屬Pb含量進(jìn)行Pearson相關(guān)分析。結(jié)果表明,p(Pb2+)與小麥根部和莖葉中Pb含量呈極顯著相關(guān)關(guān)系(P<0.01)。分別將p(Pb2+)與小麥根和莖葉部位Pb含量進(jìn)行線性回歸分析。根部鉛含量與p(Pb2+)的線性擬合方程為:
y=0.772x+54.805,R2=0.904
圖2 不同污灌區(qū)土壤中小麥對(duì)Pb的富集系數(shù)Figure 2 Bioconcentration factors(BCF)of Pb by the wheat in sewage irrigation soils
表3 不同污灌區(qū)土壤中小麥對(duì)Pb的根-莖葉轉(zhuǎn)運(yùn)系數(shù)(TF)Table 3 Root to shoot transfer factors of Pb by the wheat in sewage irrigation soils
莖葉鉛含量與p(Pb2+)的線性擬合方程為:
y=0.087x+12.980,R2=0.897
因此,小麥根和莖葉對(duì)重金屬Pb的吸收與土壤中自由Pb2+濃度呈顯著的正相關(guān)關(guān)系。
為了探究Pb的來(lái)源及環(huán)境介質(zhì)對(duì)其生物有效性的影響,實(shí)驗(yàn)中提取不同處理土壤溶液,利用離子色譜測(cè)試了各污灌區(qū)的土壤溶液性質(zhì)(表4)。結(jié)果發(fā)現(xiàn),各污灌區(qū)土壤溶液的pH、EC及陰陽(yáng)離子含量之間均有較大差異。其中,土壤陰離子:Cl-最大相差分別為108.4%、115.4%和86.1%,陽(yáng)離子Ca2+、Mg2+、Na+最大相差分別為91.8%、111.3%和41.5%;EC變化為75~332 μS·cm-1,最大相差342.7%。
采用SPSS 19.0對(duì)小麥Pb吸收與污灌區(qū)土壤溶液性質(zhì)的相關(guān)性進(jìn)行分析結(jié)果表明,小麥BCF根、BCF莖葉、TF根-莖葉、土壤溶液理化性質(zhì)及溶液陰陽(yáng)離子間具有一定的相關(guān)性。表5為基于不同毒性終點(diǎn)的Pb濃度值與土壤性質(zhì)及溶液離子濃度間Pearson相關(guān)性分析結(jié)果。由表5可知,土壤中Pb的有效性及溶液自由Pb2+的負(fù)對(duì)數(shù)p(Pb2+)與pH、CEC、OC呈正相關(guān);土壤溶液離子中,p(Pb2+)與K+、Na+、Ca2+呈負(fù)相關(guān);在土壤溶液陰離子中,Cl-、NO-3含量與土壤中Pb
土壤溶液中可交換Pb含量與溶液競(jìng)爭(zhēng)性陽(yáng)離子、配位體含量等有關(guān)。通過(guò)WHAM 6.0模型測(cè)得溶液中的Pb主要以自由Pb2+、低分子有機(jī)或無(wú)機(jī)配位體結(jié)合態(tài)等形式存在。T1處理中,溶液自由Pb2+濃度變化[△p(Pb2+)]與溶液Cl-、EC、Ca2+及Na+呈顯著正相關(guān),而與溶液pH、OC、CEC呈負(fù)相關(guān)。土壤膠體對(duì)Pb2+的吸附能力與土壤膠體的吸附點(diǎn)位、溶液中競(jìng)爭(zhēng)性陽(yáng)離子含量等因素有關(guān)。常見(jiàn)的Ca2+、Na+等陽(yáng)離子因參與到吸附點(diǎn)位的競(jìng)爭(zhēng),降低了土壤膠體對(duì)Pb2+的吸附;同時(shí)Cl-等陰離子因具有促進(jìn)解吸作用,進(jìn)一步阻礙了土壤膠體對(duì)Pb2+的吸附[26]。
土壤溶液的理化性質(zhì)是影響重金屬毒性的主要原因之一。土壤中簡(jiǎn)單有機(jī)物能夠增加重金屬的溶出,促進(jìn)重金屬污染的進(jìn)一步擴(kuò)散,而復(fù)雜有機(jī)質(zhì)可以與重金屬結(jié)合,對(duì)重金屬具有一定的固定作用[27];土壤溶液pH的變化則直接決定了重金屬在土壤中的存在狀態(tài)。當(dāng)土壤為酸性時(shí),重金屬多以自由離子形式存在于土壤溶液中;而在堿性土壤中,金屬離子常與OH-等陰離子結(jié)合[22]。本文通過(guò)多元回歸線性分析得到的預(yù)測(cè)模型即顯示了有機(jī)質(zhì)及pH等土壤理化性質(zhì)對(duì)小麥不同部位Pb毒性具有較大影響。土壤溶液性質(zhì)(陰、陽(yáng)離子含量、種類(lèi)和配位體等)是影響土壤重金屬的另一重要因素。例如土壤溶液中陰離子Cl-因?yàn)榭梢耘c自由Pb2+形成配合物而減少土壤膠體對(duì)Pb2+的吸附,所以Cl-含量的增加,在一定程度上可以促進(jìn)Pb的解吸,從而增加Pb在土壤-植物系統(tǒng)中的遷移轉(zhuǎn)化。土壤陽(yáng)離子如Na+、K+、Ca2+等因與Pb2+競(jìng)爭(zhēng)有機(jī)配體、粘土礦物等的吸附點(diǎn)位而降低了土壤膠體對(duì)Pb2+的吸附,增加土壤溶液中Pb2+的含量[28-29]。
利用SPSS19.0將小麥植株對(duì)Pb吸收影響因子進(jìn)行多元逐步回歸分析,得到基于不同主控因子的小麥不同部位Pb含量、土壤溶液自由Pb2+[p(Pb2+)]及其變化量[△p(Pb2+)]與土壤主控因子間的多元回歸方程(表6)。對(duì)于小麥根部Pb含量而言,對(duì)其影響最大的是土壤pH值,其次為土壤有機(jī)質(zhì)OC、土壤電導(dǎo)率EC和陰離子Cl-。當(dāng)同時(shí)引入pH、OC、EC和Cl-時(shí),預(yù)測(cè)模型的決定系數(shù)達(dá)到0.721,P值均小于0.05。小麥莖葉Pb含量與根部相似,當(dāng)引入OC、EC、CEC時(shí),預(yù)測(cè)模型的決定系數(shù)達(dá)到0.739,P<0.05;同樣的,隨著主控因子的逐步增加,p(Pb2+)和△p(Pb2+)預(yù)測(cè)模型的決定系數(shù)也逐漸增大,且模型均在0.05置信區(qū)間內(nèi)顯著(P<0.05)。
表4 不同污灌區(qū)土壤溶液理化性質(zhì)及離子含量(mg·L-1)Table 4 Basic properties and anions/cations contents of the soil solutions
表5 基于不同毒性終點(diǎn)的Pb濃度值與土壤性質(zhì)及溶液離子濃度間Pearson相關(guān)性分析Table 5 Pearson correlation between Pb bioavailabilities and soil properties,soil solution ions
(1)在本研究所選擇的五個(gè)主要污灌區(qū)中,不同污灌區(qū)土壤中小麥對(duì)Pb的富集系數(shù)及其植株內(nèi)Pb
的根-莖葉轉(zhuǎn)運(yùn)系數(shù)均有較大差異,其中,山東棕壤中小麥對(duì)Pb的富集系數(shù)最大,而天津潮土的最小,最大相差255.9%;說(shuō)明土壤類(lèi)型明顯影響小麥對(duì)土壤中鉛的富集。
(2)小麥根、莖葉Pb含量與土壤溶液中自由Pb2+含量呈極顯著正相關(guān)(P<0.01),兩種小麥的擬合方程分別為:y=0.772x+54.805(R2=0.904),y=0.087x+ 12.980(R2=0.897);說(shuō)明不同性質(zhì)土壤中植物根、莖葉中Pb含量與土壤溶液自由離子Pb2+含量具有顯著相關(guān)性。
(3)基于土壤主控因子的小麥Pb吸收回歸方程表明,不同污罐區(qū)土壤小麥中Pb和土壤溶液自由Pb2+含量與土壤pH、OC含量呈負(fù)相關(guān),而與土壤溶液Cl-、Na+離子含量呈正相關(guān),由污灌引起的土壤中鹽基離子濃度升高可能會(huì)增加土壤中Pb的富集環(huán)境風(fēng)險(xiǎn)。
表6 小麥對(duì)Pb吸收與土壤性質(zhì)間的預(yù)測(cè)模型Table 6 Predicted models of Pb uptake by wheat cultivars in soils based on soil properties
[1]馬祥愛(ài),秦俊梅,馮兩蕊.長(zhǎng)期污水灌溉條件下土壤重金屬形態(tài)及生物活性的研究[J].中國(guó)農(nóng)學(xué)通報(bào),2010,26(22):318-322.
MA Xiang-ai,QIN Jun-mei,F(xiàn)ENG Liang-rui.Chemical fractions and bioavailability of heavy metals in long-term sewage-irrigated soils[J]. Chinese Agricultural Science Bulletin,2010,26(22):318-322.
[2]樊霆,葉文玲,陳海燕,等.農(nóng)田土壤重金屬污染狀況及修復(fù)技術(shù)研究[J].生態(tài)環(huán)境學(xué)報(bào),2013,22(10):1727-1736.
FAN Ting,YE Wen-ling,CHEN Hai-yan,et al.Review on contamination and remediation technology of heavy metal in agricultural soil[J].E-cology and Environmental Sciences,2013,22(10):1727-1736.
[3]楊軍,陳同斌,雷梅,等.北京市再生水灌溉對(duì)土壤、農(nóng)作物的重金屬污染風(fēng)險(xiǎn)[J].自然資源學(xué)報(bào),2011,26(2):209-217.
YANG Jun,CHEN Tong-bin,LEI Mei,et al.Assessing the effect of irrigation with reclaimed water:The soil and crop pollution risk of heavy metals[J].Journal of Natural Resources,2011,26(2):209-217.
[4]梁鎮(zhèn)海,陳翠翠,韓玉蘭,等.基于模糊數(shù)學(xué)的太原市敦化灌區(qū)污灌土壤重金屬污染評(píng)價(jià)[J].環(huán)境化學(xué),2010,29(6):1152-1157.
LIANG Zhen-hai,CHEN Cui-cui,HAN Yu-lan,et al.Soil heavy metal pollution evaluation of Dunhua sewage irrigation area by fuzzy mathematics model[J].Environmental Chemistry,2010,29(6):1152-1157.
[5]Luo L,Ma Y B,Zhang S Z,et al.An inventory of heavy metal inputs to agricultural soils in China[J].Journal of Environmental Management,2009,90:2524-2530.
[6]Balkhair K S,Ashraf M A.Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia[J].SaudiJournalof Biological Sciences,2016,23(Suppl1):32-44.
[7]Liu W H,Zhao J Z,Ouyang Z Y,et al.Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing,China[J].Environment International,2005,31(6):805-812.
[8]崔邢濤,欒文樓,石少堅(jiān),等.石家莊污灌區(qū)土壤重金屬污染現(xiàn)狀評(píng)價(jià)[J].地球與環(huán)境,2010(1):36-42.
CUI Xing-tao,LUAN Wen-lou,SHI Shao-jian,et al.The investigation and the assessment of the heavy metal pollution on sewage irrigation region in Shijiazhuang city[J].Earth and Environment,2010(1):36-42.
[9]劉小娟,解靜芳,范仁俊,等.太原市污灌區(qū)土壤有效態(tài)銅鋅和錳含量評(píng)價(jià)[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(3):506-509.
LIU Xiao-juan,XIE Jing-fang,F(xiàn)AN Ren-jun,et al.the assessment on available contents of Cu,Zn and Mn in soil of sewage irrigation in Tianjin,China[J].Journal of Agro-Environment Science,2010,29(3):506-509.
[10]辛術(shù)貞,李花粉,蘇德純.我國(guó)污灌污水中重金屬含量特征及年代變化規(guī)律[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(11):2271-2278.
XIN Shu-zhen,LI Hua-fen,SU De-chun.Concentration characteristics and historical changes of heavy metals in irrigation sewage in China[J].Journal of Agro-Environment Science,2011,30(11):2271-2278.
[11]陳濤,常慶瑞,劉京,等.長(zhǎng)期污灌農(nóng)田土壤重金屬污染及潛在環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(11):2152-2159.
CHEN Tao,CHANG Qing-rui,LIU Jing,et al.Pollution and potential environment risk assessment of soil heavy metals in sewage irrigation area[J].Journal of Agro-Environment Science,2012,31(11):2152-2159.
[12]陳衛(wèi)平,呂斯丹,張煒鈴,等.再生(污)水灌溉生態(tài)風(fēng)險(xiǎn)與可持續(xù)利用[J].生態(tài)學(xué)報(bào),2014,34(1):163-172.
CHEN Wei-ping,Lü Si-dan,ZHANG Wei-ling,et al.Ecological risks and sustainable utilization of reclaimed water and wastewater irrigation[J].Acta Ecologica Sinica,2014,34(1):163-172.
[13]吳文勇,尹世洋,劉洪祿,等.污灌區(qū)土壤重金屬空間結(jié)構(gòu)與分布特
征[J].農(nóng)業(yè)工程學(xué)報(bào),2013,29(4):165-173.
WU Wen-yong,YIN Shi-yang,LIU Hong-lu,et al.Spatial structure and distribution characteristics of soil heavy metals in wastewater irrigation district[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(4):165-173.
[14]殷永超,吉普輝,宋雪英,等.龍葵(Solanum nigrum L.)野外場(chǎng)地規(guī)模Cd污染土壤修復(fù)試驗(yàn)[J].生態(tài)學(xué)雜志,2014,11:3060-3067.
YIN Yong-chao,JI Pu-hui,SONG Xue-ying,et al.Field experiment on phytoremediation of cadmium contaminated soils using Solanum nigrum L.[J].Chinese Journal of Ecology,2014,11:3060-3067.
[15]杜曉林.小清河污灌區(qū)土壤重金屬形態(tài)分析及生物有效性研究[D].濟(jì)南:山東大學(xué),2012:7-12.
DU Xiao-lin.Chemical fractionation and bioavailability of heavy metals in sewage-irrigated soils from Xiaoqing River[D].Jinan:Shandong University,2012:7-12.
[16]吳迪梅.河北省污水灌溉對(duì)農(nóng)業(yè)環(huán)境的影響及經(jīng)濟(jì)損失評(píng)估[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2003:3-16.
WU Di-mei.Impacts of wastewater irrigation on agricultural environment and its economic loss evaluation in Hebei Province[D].Beijing:China Agricultural University,2003:3-16.
[17]魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國(guó)農(nóng)業(yè)科技出版社,1999.
LU Ru-kun.Soil agricultural chemical analysis method[M].Beijing:China Agricultural Scientech Press,1999.
[18]鮑士旦.土壤農(nóng)化分析[M].第三版.北京:中國(guó)農(nóng)業(yè)出版,2013. BAO Shi-dan.Soil and agricultural chemistry analysis[M].The third edition.Beijing:China Agriculture Press,2013.
[19]田昕竹,陳世寶,王學(xué)東,等.土壤溶液性質(zhì)對(duì)Zn的形態(tài)變化及其微生物毒性的影響[J].中國(guó)環(huán)境科學(xué),2014,10:2602-2609.
TIAN Xin-zhu,CHEN Shi-bao,WANG Xue-dong,et al.Influence of soil solution properties on the transformation of Zn forms and its toxicity threshold to soil microbes as determined by substrated induced nitrification[J].China Environmental Science,2014,10:2602-2609.
[20]張曉晴,韋東普,李波,等.土壤溶液性質(zhì)對(duì)水溶性鎳的西紅柿毒害的影響[J].土壤,2013(6):1062-1069.
ZHANG Xiao-qing,WEI Dong-pu,LI Bo,et al.The influence of soil solution properties on soluble nickel toxicity to tomato shoot[J].Soils, 2013(6):1062-1069.
[21]Kapusta P,Lukaszewska G S,Stefanowicz A M.Direct and indirect effects of metal contamination on soil biota in a Zn-Pb post-mining and smelting area[J].Environ Poll,2011,159:1516-1522.
[22]朱朝娟.電導(dǎo)抑制-離子色譜法在陰離子和有機(jī)酸分析中的應(yīng)用研究[D].西南大學(xué),2011:5-10.
ZHU Chao-juan.Application studies of anions and organic acid by ion chromatography with suppressed conductivity detection[D].Southwest University,2011:5-10.
[23]Schabenberger O,Tharp B E,Kells J J.Statistical test for hormesis and effectivedosagesinherbicidedose-response[J].AgronomyJournal,1999,91:713-721.
[24]Naidu R,Bolan N S.Contaminant chemistry in soils:Key concepts and bioavailability[J].Developments in Soil Science,2008,32:9-37.
[25]陳世寶,孫聰,魏威,等.根細(xì)胞壁及其組分差異對(duì)植物吸附、轉(zhuǎn)運(yùn)Zn的影響[J].中國(guó)環(huán)境科學(xué),2012,32(9):1670-1676.
CHEN Shi-bao,SUN Cong,WEI Wei,et al.Difference in cell wall components of roots and its effect on the transfer factor of Zn by plant species[J].China Environmental Science,2012,32(9):1670-1676.
[26]Pietrzykowski M,Socha J,Doorn N S.Linking heavy metal bioavailability(Cd,Cu,Zn and Pb)in Scots pine needles to soil properties in reclaimed mine areas[J].Science of the Total Environment,2014,470-471:501-510.
[27]胡少平.土壤重金屬遷移轉(zhuǎn)化的分子形態(tài)研究[D].杭州:浙江大學(xué),2009:2-11.
HU Shao-ping.Molecular speciation of heavy metals transportation in soil[D].Hangzhou:Zhejiang University,2009:2-11.
[28]王小霞.天津市北京排污灌區(qū)土壤中重金屬形態(tài)的空間分布及影響因素研究[D].天津師范大學(xué),2012:2-14.
WANG Xiao-xia.Study on the speciation distribution of heavy metals and its′influencing factors in the soil of Beijing sewage irrigation area of Tianjin[D].Tianjin Normal University,2012:2-14.
[29]Pietrzykowski M,Socha J,Natalie S.Linking heavy metal bioavailability(Cd,Cu,Zn and Pb)in Scots pine needles to soil properties in reclaimed mine areas[J].Science of the Total Environment,2014,470:501-510.
Key factors affecting the uPtake of Pb by two kinds of wheat(Triticum aestivum Linn)and its Predicted models in sewage irrigated soils
HE Jun1,WANG Xue-dong1,CHEN Shi-bao2*,LIU Bin1,LI Ning2,ZHENG Han2
(1.College of Resource Environment and Tourism,Capital Normal University,Beijing 100048,China;2.National Soil Fertility and Fertilizer Effects Long-term Monitoring Network,Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,Beijing 100081,China)
Five typical kinds of sewage irrigated surface(0~20 cm)soils from North China were collected.The soils were added with 250 mg·kg-1Pb with PbNO3solution and a pot experiment was conducted to study the bioconcentration factors(BCF),root to shoot translocation coefficient(TF)of Pb by wheat characteristed with different sensitivity to Pb in different treated soils.To investigate the factors affecting the bioavailability of Pb in soils,the soil solution properties of sewage irrigation soil and the forms of Pb in solution(free Pb2+)were determined using ion chromatography and WHAM6.0 model.The results showed that significant differences(P<0.05)were found for the bioconcentration factors(BCF)of Pb uptake by two kind of wheat,the root to shoot translocation coefficient(TF)of Pb by the wheat cultivars in different sewage irrigated soils,in general,the bioconcentration factors(BCF)of Pb uptake by the wheat of Pb-sensitive cultivars LX-987 were larger than that for Pb-tolerance cultivar BM-126.The maximum BCFs of Pb in plant shoots was observed with treatment in brown soil from Shandong and minimum BCF with Fluvo-aquic soil from Tianjin,with a maximum variation of 225.9%,in general,the addition of Pb in soils increased the bioconcentration factors(BCFs)and root to shoot translocation coefficient(TFs)of Pb by the wheat cultivars as compared with that in control soils.Significant(P<0.05)positive correlation were observed between the free Pb2+in soil solutions and the concentrations of Pb in the plant roots and shoots,a significant negative correlation(P<0.001)was observed between the Cd concentrations of plant roots and shoots,the linear equation were y=0.772x+54.805(R2=0.904)and y=0.087x+12.980(R2=0.897)respectively.Based on the main properties of the soils,predicted models of Pb bioavailability to wheat were developed,and the results indicated that negative correlation were found between the uptake of Pb by wheat/free Pb2+in soils solution and the soil pH,OC,and CEC contents,however,in terms of Cl-,Na+in soils solution,positive correlations were observed.It can be inferred that the increment of Cl-,Na+,content in field soils will significantly lead to increased environmental risk of Pb in the field soils besides of soil properties.
sewage irrigation soils;lead;accumulation;control factors;predicted model
X503.231
A
1672-2043(2016)10-1873-08
10.11654/jaes.2016-0491
何俊,王學(xué)東,陳世寶,等.不同污灌區(qū)兩種小麥對(duì)土壤Pb吸收的主控因子與預(yù)測(cè)模型[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(10):1873-1880.
HE Jun,WANG Xue-dong,CHEN Shi-bao,et al.Key factors affecting the uptake of Pb by two kinds of wheat(Triticum aestivum Linn)and its predicted models in sewage irrigated soils[J].Journal of Agro-Environment Science,2016,35(10):1873-1880.
2016-04-12
國(guó)家科技支撐計(jì)劃項(xiàng)目(2015BAD05B03);國(guó)家自然科學(xué)基金項(xiàng)目(41271490,21077131)
何?。?989—),男,安徽六安人,碩士研究生,主要從事重金屬污染與防治研究。E-mail:hejun326517@163.com
*通信作者:陳世寶E-mail:chenshibao@caas.cn