福建省環(huán)境監(jiān)測中心站
?
柱胞藻毒素研究進(jìn)展
福建省環(huán)境監(jiān)測中心站
耿軍靈
柱胞藻毒素(CYN)是由淡水藍(lán)藻產(chǎn)生的一種細(xì)胞毒素,現(xiàn)被列為世界上重要的藻毒素之一。該毒素分子結(jié)構(gòu)穩(wěn)定,其毒性主要抑制蛋白質(zhì)和谷胱甘肽的合成,本文綜述了CYN的特性、檢測及其去除方法。
柱胞藻毒素 藍(lán)藻 毒性 研究進(jìn)展
柱胞藻毒素(CYN)是一種具細(xì)胞毒性的生物堿,主要抑制蛋白質(zhì)和谷胱甘肽合成[1,2],最早發(fā)現(xiàn)產(chǎn)CYN的藍(lán)藻是擬柱胞藻()。CYN具細(xì)胞毒性、肝毒性、遺傳毒性和神經(jīng)毒性,還有可能致癌[3],該毒素還能在一些水生生物體內(nèi)積累[4]。產(chǎn)CYN的藍(lán)藻分布廣泛,亞洲、歐洲、大洋洲、北美洲、南美洲和南極洲均有發(fā)現(xiàn),我國南方的淡水水源中也有產(chǎn)CYN的藍(lán)藻分布[5]。澳大利亞、新西蘭、美國俄亥俄州和俄勒岡州飲用水的CYN指導(dǎo)標(biāo)準(zhǔn)不超過1μg/L[6],我國目前還沒有相關(guān)標(biāo)準(zhǔn)。國外對CYN研究報道較多,我國關(guān)于這方面的報道相對缺乏。本文主要介紹CYN的特性、檢測及水處理方法研究進(jìn)展。
1.1 CYN的理化性質(zhì)
CYN是由一個3環(huán)胍基與羥甲基尿嘧啶聯(lián)合組成一種3環(huán)類生物堿(見圖1a),易溶于水和有機(jī)溶劑,其分子量為415 Da[7,8]。CYN在中性和酸性條件下結(jié)構(gòu)穩(wěn)定,煮沸4h不降解;堿性條件下則相對易降解,煮沸能加速其降解[9]。另外兩種類似于CYN的天然化合物分別是7-epicylindrospermopsin (7-epi-CYN)(見圖1b)和7-deoxycylindrospermopsin (7-deoxy- CYN)(見圖1c)[10,11]。7-epi-CYN毒性類似于CYN[11,12]。而對于7-deoxy-CYN,起初認(rèn)為是無毒的,但后來研究證實7-deoxy-CYN能夠抑制蛋白質(zhì)合成,其毒性亦類似于CYN[13]。Wimmer等(2014)從泰國藻株中分離出另外兩種新的CYN類似物,即7-deoxy-desulfo-cylindrospermopsin、7-deoxydesulfo-12-acetylcylindrospermopsin[14],但Anglada等(2015)認(rèn)為從泰國藻株中分離出的CYN類似物與Chonudomkul等(2004)對日本和澳大利亞藻株的遺傳分離鑒定無差異[15]。
(a)
(b)
(c)
1.2 CYN的毒性
首次報道的CYN中毒事件是1979年澳大利亞昆士蘭州棕櫚島上飲用水中毒事件,當(dāng)?shù)?38名兒童和10名成年人因各種癥狀的腸胃炎被送往醫(yī)院,其初期癥狀為厭食、便秘、肝腫大、嘔吐、頭痛、發(fā)燒和腹痛等;后期出現(xiàn)酸中毒性休克和血性腹瀉[16]。Hawkins等(1985)對小鼠腹腔注射細(xì)胞提取液,發(fā)現(xiàn)小鼠的肝、腎、腎上腺、肺和小腸細(xì)胞出現(xiàn)壞死[17]。用小鼠進(jìn)行生物測定,腹腔注射致死中量(LD50)為0.2mg/kg[12],口服LD50為4.4~6.9mg/kg[18]。Zare&Bahador(2015)用0.5mL含CYN的藍(lán)藻細(xì)胞提取液對小鼠進(jìn)行腹腔注射,1min后發(fā)現(xiàn)小鼠出現(xiàn)癱瘓、眩暈、失去平衡和呼吸障礙等[19]。Bazin等(2012)用不同濃度的CYN對小鼠進(jìn)行腹腔注射或飼喂,24h后進(jìn)行測試,發(fā)現(xiàn)用100μg/kg 腹腔注射或用4mg/kg飼喂的小鼠均出現(xiàn)DNA斷裂[20]。Fonseca等(2014)用含CYN的細(xì)胞提取液對小鼠進(jìn)行腹腔注射,48h后測試發(fā)現(xiàn)小鼠的肝臟和骨髓細(xì)胞出現(xiàn)突變[21]。Guillén等(2015)報道了CYN對羅非魚具有神經(jīng)毒性[22]。Sieroslawska等(2015)報道CYN對鯉魚L.也產(chǎn)生不利影響,包括對魚的白細(xì)胞氧化應(yīng)激和遺傳毒性[23]。Young等(2008)報道CYN可能干擾人體內(nèi)分泌,致使孕酮激素和雌激素比例失調(diào),從而使女性受孕或維持妊娠困難[24]。Poniedzia?ek等(2015)研究溫帶不產(chǎn)CYN的細(xì)胞提取液和不同濃度的CYN溶液對人體中性粒細(xì)胞和淋巴細(xì)胞的影響,結(jié)果發(fā)現(xiàn)不產(chǎn)生CYN的通過迄今未知的代謝物危害人體健康,同時證實CYN對人體免疫細(xì)胞具慢性毒性[25]。Poniedzia?ek等人(2014)研究CYN對人體血液中性粒細(xì)胞的影響,發(fā)現(xiàn)CYN能顯著降低中性粒細(xì)胞內(nèi)活性氧類物質(zhì)(),在一定環(huán)境濃度下,CYN通過減少NADPH氧化酶產(chǎn)生的ROS,從而降低了人體中性粒細(xì)胞抗感染能力[26]。
目前,關(guān)于CYN的檢測方法主要有鏡檢鑒定法、生物檢測法、化學(xué)檢測法和PCR檢測法等。
2.1 鏡檢鑒定法
用顯微鏡對藍(lán)藻進(jìn)行分類鑒定已被廣泛應(yīng)用,傳統(tǒng)光學(xué)顯微鏡和其他顯微鏡技術(shù)如透射電子顯微鏡、熒光顯微鏡和激光共聚焦掃描顯微鏡等都已用于檢測藍(lán)藻[27]。此法是根據(jù)藍(lán)藻的形態(tài)特征,對潛在產(chǎn)CYN的藻類用顯微鏡進(jìn)行分類鑒定。迄今為止,已發(fā)現(xiàn)能夠產(chǎn)生CYN的藍(lán)藻種類有、、.、、、、、、、、、、.[4]和[28]。用顯微鏡檢測產(chǎn)CYN藍(lán)藻的方法比較經(jīng)濟(jì),但耗時耗力,且?guī)в需b定者的主觀性。另外,藍(lán)藻的形態(tài)特征易受環(huán)境條件和其生命周期的影響,長時間的實驗室培養(yǎng)會改變藍(lán)藻的形態(tài)特征[27]。因此,根據(jù)藻類的形態(tài)特征用顯微鏡對潛在產(chǎn)CYN的藍(lán)藻進(jìn)行鑒定受藍(lán)藻生長條件的限制。
2.2 生物檢測法
生物檢測法通常是用水華藍(lán)藻細(xì)胞粗提物或純化的毒素對小鼠進(jìn)行飼喂或腹腔注射,利用測試LD50和解剖觀察內(nèi)部器官病變確定其毒性[27]。微生物枝額蟲()和鹵蟲()作為24h生物測定,已被成功用于CYN檢測[29,30]。生物方法操作簡單,能夠監(jiān)測到新的毒素,但無法確定毒素的結(jié)構(gòu)和類型。
2.3 化學(xué)檢測法
目前,檢測CYN應(yīng)用比較廣泛的化學(xué)法為高效液相色譜/光電二極管陣列檢測器(HPLC-PDA/UV)和液相色譜-串聯(lián)質(zhì)譜(LC-MS/MS)法。CYN在波長262nm處有紫外吸光度,可以用HPLC-PDA/UV進(jìn)行檢測,Harada等(1994)首次使用HPLC-PDA檢測水體中CYN[27],Welke等(2005)研究發(fā)現(xiàn)色譜柱中CYN量為1~300ng時,用HPLC-PDA/UV測量具有良好的線性峰面積,但測自然水體中微量CYN時受到局限[31]。Meriluoto&Codd(2005)認(rèn)為,C18吸附劑不適用于CYN,用石墨化碳固相萃取、用HPLC-PDA/UV檢測水體中的CYN則能夠達(dá)到滿意的結(jié)果,而檢測與CYN近緣關(guān)系的毒素時,應(yīng)結(jié)合使用LC-MS/MS方法檢測[32]。LC-MS/MS技術(shù)由于其高靈敏度和選擇性而成為檢測CYN的基準(zhǔn)方法[33]。Guzmán-Guillén等(2012)優(yōu)化使用石墨化碳固相萃取,用LC-MS/MS量化分析CYN,其檢出限和定量限分別是0.5μg/L和0.9μg/L,認(rèn)為該方法適用于水體中微量CYN的測量[34]。Maul等(2014)研究使用穩(wěn)定同位素稀釋質(zhì)譜法(SIDA-LC- MS/MS)測定CYN,并進(jìn)行比對,認(rèn)為該方法具有高靈敏度、低方差和高回收率的特點,既適用于直接測定水體和食物中的CYN,也可作為基準(zhǔn)分析方法用于評價其他(快速)檢測CYN的方法[33]。
2.4 PCR檢測法
PCR檢測是建立在藍(lán)藻毒素生物合成基因的基礎(chǔ)上,該方法能夠快速、靈敏地檢測產(chǎn)毒素的藍(lán)藻種群[35]。Rasmussen等(2008)研究發(fā)現(xiàn),在產(chǎn)CYN的藍(lán)藻菌株中,aoaA、aoaB和aoaC基因序列總是存在,而不產(chǎn)CYN的菌株這些基因序列不完整,認(rèn)為實時PCR能夠很好地跟蹤監(jiān)測水體中產(chǎn)CYN的藍(lán)藻[36]。目前,實時PCR、多重PCR和定量PCR均有用于跟蹤監(jiān)測產(chǎn)CYN藍(lán)藻[35-37]。
如何有效去除水體中的產(chǎn)毒藍(lán)藻及其產(chǎn)生的毒素,使水質(zhì)安全達(dá)標(biāo),是人們所關(guān)注的。傳統(tǒng)的水處理工藝如絮凝、過濾等能有效去除藍(lán)藻細(xì)胞及細(xì)胞內(nèi)毒素,但無法去除溶于水體中的藻毒素[6]。微濾和超濾比傳統(tǒng)的沙濾更能有效地去除藍(lán)藻細(xì)胞和細(xì)胞內(nèi)毒素[38]。Ho等(2011)報道活性炭粉末能有效吸附水體中的CYN[39]。研究表明,氯氣能有效氧化降解CYN[40],臭氧也可以有效氧化降解CYN,且其氧化降解產(chǎn)物對人體無害[41]。TiO2光催化適用于降解水體中的CYN和尿嘧啶類化合物[42]。氯氣和臭氧雖然能有效氧化降解CYN,但易引起細(xì)胞溶解,從而導(dǎo)致水體中細(xì)胞外毒素濃度增加[6]。藻毒素的有效處理方法是去除藻細(xì)胞并保持其不受機(jī)械損傷,防止額外的細(xì)胞內(nèi)毒素釋放到水中,先用過濾方法去除細(xì)胞內(nèi)CYN,然后結(jié)合使用活性炭、生物降解、氧化和小孔徑膜過濾技術(shù)有效去除水中的CYN[6]。
水體富營養(yǎng)化產(chǎn)生的藍(lán)藻水華可能導(dǎo)致嚴(yán)重問題,特別是有毒代謝產(chǎn)物釋放到水體中,會破壞水體生態(tài)系統(tǒng)并導(dǎo)致生物多樣性減少,甚至對人類的健康造成威脅。本文建議加強水源地綜合治理,減少氮、磷等排入地表水,創(chuàng)建不利于藍(lán)藻水華產(chǎn)生的條件,關(guān)注地表水尤其是飲用水源地的浮游植物種群動態(tài)變化,將藻毒素及其類似物納入常規(guī)監(jiān)測范疇,保障飲用水安全;對于藻毒素超標(biāo)的水體,根據(jù)產(chǎn)毒藍(lán)藻藻種的性質(zhì)、毒素種類及特性,采用安全有效的水處理措施,去除產(chǎn)毒藍(lán)藻細(xì)胞及藻毒素,使其達(dá)到安全飲用標(biāo)準(zhǔn)。
[1] Froscio S M, Humpage A R, Wickramasinghe W, et al. Interaction of the cyanobacterial toxin cylindrospermopsin with the eukaryotic protein synthesis system[J]. Toxicon, 2008(51): 191–198.
[2] Runnegar M T, Kong S M, Zhong Y Z,et al. Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes[J].Biochemical pharmacology, 1995,49(2):219-225.
[3] Dziga D, Kokocinski M, MaksylewiczA,et al. Cylindrospermopsin Biodegradation Abilities of Aeromonassp. Isolated from Rusalka Lake[J]. Toxins, 2016(8): 55.
[4] Susan Kinnear. Cylindrospermopsin: A Decade of Progress on Bioaccumulation Research[J]. Marine Drugs, 2010, 8(3):542-564.
[5] Rzymski P&Poniedzia?ek B. In search of environmental role of cylindrospermopsin: A review on global distribution and ecology of its producers[J].Water research, 2014(66): 320-337.
[6] Anglada L V D, Strong J. Drinking Water Health Advisory for the Cyanobacterial Toxin Cylindrospermopsin[A]. United States Environmental Protection Agency, 2015.
[7] Ohtani I, Moore R E Runnegar M. Cylindrospermopsin, a potent hepatotoxin from the blue-green alga Cylindrospermopsisraciborskii[J]. Journal of the American Chemical Society, 1992, 114(20):7942-7944.
[8] Shaw G R, Seawright AA,Moore M R,et al. Cylindrospermopsin, a cyanobacterial alkaloid: evaluation of its toxicologic activity[J].Therapeutic Drug Monitoring, 2000, 22(1):89–92.
[9] Adamski M, ?mudzki P, Chrapusta E, et al. Effect of pH and temperature on the stability of cylindrospermopsin. Characterization of decomposition products[J]. Algal Research, 2016(15):129–134.
[10] Norris R L, Eaglesham G K,Pierens G, et al.Deoxycylindrospermopsin, an analog of cylindrospermopsin from Cylindrospermopsisraciborskii[J]. Environmental Toxicology, 1999, 14(1): 163-165.
[11] Banker R, TeltschB, Sukenik A, et al. 7-Epicylindrospermopsin,a toxic minor metabolite of the cyanobacterium Aphanizomenonovalisporum from lake Kinneret, Israel[J].Journal of Natural Products, 2000,63(3):387-389.
[12] Banker R, Carmeli S, WermanM,et al. Uracil moiety is required for toxicity of the cyanobacterialhepatotoxincylindrospermopsin[J]. Journal of Toxicolo- gy and Environmental Health Part A, 2001(62): 281-288.
[13] Looper R E, Runnegar M T &Williams R M.Synthesis of the putative structure of 7-deoxycylindrospermopsin: C7 oxygenation is not required for the inhibition of protein synthesis[J]. AngewandteChemie International Edition, 2005,44(25): 3879–3881.
[14] Wimmer K M, Strangman W K, Wright J L C. 7-Deoxy-desulfo- cylindrospermopsin and 7-deoxy-desulfo-12-acetylcylindrospermopsin: Two new cylindrospermopsin analogs isolated from a Thai strain of Cylindros- permopsisraciborskii[J]. Harmful Algae, 2014(37): 203–206.
[15] Anglada L V D, Donohue J M, Strong J, et al. Health Effects Support Document for the Cyanobacterial Toxin Cylindropermopsin[A].United States Environmental Protection Agency, 2015.
[16] Adamski M, Chrapusta E, Bober B, etal.Cylindrospermopsin: cyanobacterial secondary metabolite. Biological aspects and potential risk for human health and life[J]. International Journal of Oceanographyand and Hydrobiology, 2014, 43(4):442-449.
[17] Hawkins P R, Runnegar M T C, Jackson A R B, et al. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermo- psisraciborskii (Woloszynska) Seenaya and SubbaRaju isolated form a domestic supply reservoir[J]. Applied & Environmental Microbiology, 1985, 50(5):1292-1295.
[18] SeawrightAA, Nolan CC, Shaw G R.The oral toxicity for mice of the tropical cyanobacteriumCylindrospermopsisraciborskii(Woloszynska)[J].Environmental Toxicology, 1999,14(1):135-142.
[19] Zare M&Bahador N. Cylindrospermopsin toxin production by cyanobacterialisolates from Kor River and evaluation of their effect using bioassay technique[J]. Environmental and Experimental Biology, 2015(13): 117–121.
[20] Bazin E, Huet S, JarryG, etal.Cytotoxic and genotoxic effects of cylindrospermopsin in mice treated by gavage or intraperitoneal injection[J]. Environ Toxicol, 2012,27(5):277-284.
[21] Fonseca A L, Silva J D, Nunes E A, et al. In vivo genotoxicity of treated water containing the cylindrospermopsin-producer Cylindrospermopsisraci- borskii[J]. Journal of Water and Health, 2014, 12(3):474-483.
[22] Guillén R G, Manzano I L, Moreno I M, et al.Cylindrospermopsin induces neurotoxicity in tilapia fish (Oreochromisniloticus) exposed to Aphanizomenonovalisporum[J]. Aquatic Toxicology, 2015(161): 17-24.
[23] Sieroslawska A, Rymuszka A.Cylindrospermopsin induces oxidative stress and genotoxic effects in the fish CLC cell line[J]. Journal of Applied Toxicology, 2015, 35(4):426-433.
[24] Young F M, Micklem J, HumpageA R. Effects of the blue-green algal toxin cylindrospermopsin (CYN) on human granulosa cells in vitro[J]. Reproductive Toxicology, 2008, 25(3): 374-380.
[25] Poniedzia?ek B, Rzymski P, KokocińskiM,etal.Toxic potencies of metabolite(s) of non-cylindrospermops in producing Cylindrospermopsi- sraciborskii isolated from temperate zone in human white cells[J]. Chemosphere, 2015(120): 608-614.
[26] Poniedzia?ek B, Rzymski P, Karczewski J.Cylindrospermopsindecreases the oxidative burst capacity of human neutrophils[J]. Toxicon, 2014, 87(1): 113–119.
[27] CruzAA, Hiskia A, Kaloudis T, et al. A review on cylindrospermopsin: the global occurrence,detection, toxicity and degradation of a potent cyanotoxin[J]. Environmental Science: Processes & Impacts, 2013(15): 1979–2003.
[28] Akcaalan R, K?ker L, O?uzA, et al. First report of cylindrospermopsin production by two cyanobacteria (Dolichospermummendotae and Chrysosporumovalisporum) in Lake Iznik, Turkey[J]. Toxins, 2014, 6(11):3173-3186.
[29] Torokne A K, Laszlo E, Chorus I,et al. Water quality monitoring by ThamnotoxkitFTMincluding cyanobacterial blooms[J]. Water science and technology, 2000(42): 381–385.
[30]. Metcalf J, Lindsay J, Beattie K A, et al. Toxicity of cylindrospermopsin to the brine shrimp Artemiasalina: Comparisons with protein synthesis inhibitors and microcystins[J]. Toxicon, 2002(40): 1115–1120.
[31] Welker M, Bickel H, Fastner J. HPLC-PDA detection of cylindrospermopsin -opportunities and limits[J]. Water Research, 2002, 36(18):4659-4663.
[32] Meriluoto J, Codd G A. Cyanobacterial Monitoring and Cyanotoxin Analysis [M]. ?boAkademisF?rlag-?boAkademi University Press, 2005.
[33] Maul R, KittlerK, HoffmannH, etal. Enhanced LC-MS/MS-analysis of cylindrospermopsin in plant and freshwater matrices using the stable isotope dilution assay[C]. Abstracts from 21st Meeting of the French Society of Toxinology (SFET) / Toxicon, 2014, 164-184.
[34] Guzmán-GuillénR,Ana I,PrietoA,et al. Cylindrospermopsin determination in water by LC-MS/MS: Optimization and validation of the method and application to real samples[J]. Environmental Toxicology and Chemistry, 2012, 31(10): 2233–2238.
[35] Ibrahim Jabber Abed. PCR-Based Test for the Early Warning of Both Cylindrospermopsin and Saxitoxin in Iraqi Freshwater[J]. Journal of Al-Nahrain University, 2015, 18 (3): 109-114.
[36] Rasmussen J P,Giglio S, Monis P T, et al. Development and field testing of a real-time PCR assay for cylindrospermopsin-producing cyanobacteria[J]. Journal of Applied Microbiology, 2008(14): 1503–1515.
[37] Marbun Y R, Yen H, Lin T, et al. Rapid on-site monitoring of cylindrospermopsin-producers in reservoirs using quantitative PCR[J]. Sustainable Environment Research, 2012, 22(3): 143-151.
[38] Westrick J, Szlag D, SouthwellB, et al. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment.[J].Analytical Bioanalytical Chemistry, 2010,397(5): 1705-1714.
[39] Ho L, Lambling P, Bustamante H, et al. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies[J]. Water Research, 2011,45(9):2954-2964.
[40] YanS,JiaA, MerelS, et al. Ozonation of Cylindrospermopsin (Cyanotoxin): Degradation Mechanisms and Cytotoxicity Assessments[J]. Environmental Science and Technology, 2016(50): 1437-1466.
[41] Sylvain M, Michel C, Annick M, et al. Characterization of cylindrospermopsin chlorination[J]. Science of the Total Environment, 2010, 408(16):3433-3442.
[42] Chen L, Zhao C, Dionysiou D, et al.TiO2photocatalytic degradation and detoxification of cylindrospermopsin[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 307–308:115-122.