張?jiān)僭? 周小強(qiáng), 丁衛(wèi)平, 甘向陽(yáng), 何 帆, 胡滿(mǎn)佳
(湖南理工學(xué)院 數(shù)學(xué)學(xué)院, 湖南 岳陽(yáng) 414006)
非線(xiàn)性擾動(dòng)Schrodinger方程的低正則性問(wèn)題
張?jiān)僭? 周小強(qiáng), 丁衛(wèi)平, 甘向陽(yáng), 何 帆, 胡滿(mǎn)佳
(湖南理工學(xué)院 數(shù)學(xué)學(xué)院, 湖南 岳陽(yáng) 414006)
非線(xiàn)性擾動(dòng)Schrodinger方程; Fourier限制模方法; 壓縮映射原理; 局部適定性
考慮帶有Kerr law非線(xiàn)性項(xiàng)的非線(xiàn)性擾動(dòng)Schrodinger方程
(Ⅰ) 非線(xiàn)性 Schrodinger 方程:
(Ⅱ) 含有導(dǎo)數(shù)項(xiàng)的非線(xiàn)性 Schrodinger 方程:
本節(jié)將利用Fourier限制模方法建立三線(xiàn)性估計(jì), 然后得到(1)的局部適定性. 為此, 需給出一些基本引理. 首先引入符號(hào):
[1] Zai Yun Zhang, Zhen Hai Liu, Xiu Jin Miao and Yue Zhong Chen. New exact solutions to the perturbed nonlinear Schr?dinger’s equation with Kerr law nonlinearity[J]. Appl. Math. Comput, 2010(216): 3064~3072
[2] Zaiyun Zhang, Jianhua Huang,Well-posedness and unique continuation property for the generalized Ostrovsky equation with low regularity[J].Math. Meth. Appl. Sci, 2016(39): 2488~2513
[3] Y. Tsutsumi, L2-solutions for nonlinear Schrodinger equations and nonlinear groups[J]. Funkcial. Ekvac, 1987(30): 115~125
[4] H. Takaoka, Well-posedness for the one dimensional Schrodinger equation with the derivative nonlinearity[J].Adv. Diff. Eq, 1999(4): 561~680
[5] C. E. Kenig, G. Ponce, L. Vega, On the support of solutions to the generalized KdV equation[J].Ann. Inst. H. Poincare Anal. Non Lineaire, 2002(19):191~208
[6] T. Ozawa, Y. Tsutsumi, Space-time estimates for null gauge forms and nonlinear Schrodinger equations[J].Diff. Integ. Eqs, 1998(11): 201~222.
[7] B. L. Guo, S. B. Tan, Global smooth solution for nonlinear evolution of Hirota type[J].Science in China, Ser. A, 1992(35): 1425~1433
[8] 張?jiān)僭? 非線(xiàn)性色散波方程的低正則性問(wèn)題[D]. 國(guó)防科技大學(xué)博士后出站報(bào)告, 2015
Low Regularity for the Perturbed Nonlinear Schrodinger's Equation with Kerr Law Nonlinearity
ZHANG Zai-yun , ZHOU Xiao-qiang, DING Wei-ping, GAN Xiang-yang, HE Fan, HU Man-jia
(College of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China)
the perturbed Schrodinger's equation; Fourier restriction norm method; contracting mapping principle; local wellposedness
O175.29
A
1672-5298(2016)03-0001-03
2016-07-21
湖南省自然科學(xué)基金項(xiàng)目(2016JJ2061); 湖南省教育廳優(yōu)秀青年項(xiàng)目(15B102); 中國(guó)博士后科學(xué)基金特別資助項(xiàng)目(2014T70991); 中國(guó)博士后科學(xué)基金面上項(xiàng)目(2013M532169)
張?jiān)僭?1975- ), 男, 湖南寧鄉(xiāng)人, 博士, 湖南理工學(xué)院數(shù)學(xué)學(xué)院副教授. 主要研究方向: 應(yīng)用數(shù)學(xué)