国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

不同方式急性運動對男子籃球運動員炎癥因子和代謝反應(yīng)的影響*

2016-10-28 02:11
廣州體育學(xué)院學(xué)報 2016年5期
關(guān)鍵詞:能量消耗骨骼肌乳酸

湯 靜

(河南工程學(xué)院 體育部,河南 鄭州 451191)

?

不同方式急性運動對男子籃球運動員炎癥因子和代謝反應(yīng)的影響*

湯靜

(河南工程學(xué)院 體育部,河南 鄭州451191)

目的:探討總運動量相配匹的一次高強度間歇運動(HIT)和中等強度持續(xù)運動(MCT)對男子籃球運動員炎癥因子和代謝反應(yīng)的影響。方法:20名男子籃球運動員在電動跑臺上分別進(jìn)行一次HIT(1:1 min,100% sVO2peak)和一次MCT(70% sVO2peak),完成的運動量均為5 km。于安靜時、運動后即刻、運動后30 min和運動后60 min測定血糖、非酯化脂肪酸(NEFA)、尿酸、乳酸、皮質(zhì)醇和細(xì)胞因子(IL-6、IL-10和TNF-α)含量。結(jié)果:血乳酸:HIT組和MCT組在運動后即刻和運動后30 min較安靜時升高(P<0.05),但HIT組高于MCT組(P<0.05)。血漿NEFA:MCT組運動后即刻較安靜時升高(P<0.05),且高于HIT組(P<0.05)。血糖和血尿酸:HIT組與MCT組在各時間點均無顯著性差異(P>0.05)。血漿皮質(zhì)醇和IL-10:HIT組和MCT組運動后各時間點均較安靜時升高(P<0.05),但組間無顯著性差異(P>0.05)。血漿IL-6:HIT組和MCT組運動后即刻和運動后30 min較安靜時升高(P<0.05),組間無顯著性差異(P>0.05),而HIT組IL-6曲線下面積(AUC)高于MCT組(P<0.05)。血漿TNF-α:HIT組和MCT組運動后即刻較安靜時升高(P<0.05),組間無顯著性差異(P>0.05),而HIT組AUC(TNF-α)低于MCT組(P<0.05)。血漿IL-10/TNF-α比值:HIT組和MCT組運動后30 min和60 min較安靜時升高(P<0.05),但組間無顯著性差異(P>0.05)。結(jié)論:總運動量相匹配的不同方式(HIT和MCT)急性運動能夠誘導(dǎo)相似的炎癥反應(yīng)和抗炎反應(yīng)狀態(tài),而代謝反應(yīng)則存在運動方式依賴性,即HIT誘導(dǎo)的生理應(yīng)激明顯高于MCT。

高強度間歇運動;中等強度持續(xù)運動;炎癥因子;代謝反應(yīng);能量消耗

代謝性疾病的發(fā)病率逐年增加,嚴(yán)重影響人類的身心健康和生存質(zhì)量[1]。研究發(fā)現(xiàn)[2],代謝性疾病患者長期處于慢性低度炎癥反應(yīng)狀態(tài),其主要原因與體力活動不足以及食物攝入不均衡有關(guān)。有證據(jù)顯示,一次急性運動即可降低慢性病的危險因素,降低發(fā)病率、改善健康水平和生活質(zhì)量[3];而長期運動則可通過增加組織細(xì)胞(特別是骨骼肌)的能量消耗和氧化能力進(jìn)而有效改善代謝過程(如降低總膽固醇、甘油三酯和低密度脂蛋白并增加高密度脂蛋白)并降低體脂百分比[4]。此外,運動還能夠誘導(dǎo)機體發(fā)生炎癥反應(yīng)[5],其中骨骼肌可大量合成并分泌白細(xì)胞介素6(interleukin-6,IL-6)和IL-10,后者作為白細(xì)胞介素1受體拮抗物(interleukin 1 receptor antagonist,IL-1ra)可降低炎癥因子如腫瘤壞死因子α(tumor necrosis factor alpha,TNF-α)、IL-1β以及IL-2等的水平。

規(guī)律運動誘導(dǎo)的代謝和炎癥變化依賴于運動持續(xù)時間、強度以及總運動量等因素。最近的研究提示[6,7],高強度間歇運動(high-intensity interval training,HIT),即以較高甚至最高強度進(jìn)行多次持續(xù)時間為數(shù)秒到數(shù)分鐘的運動,且每兩次運動之間安排使參訓(xùn)者不足以完全恢復(fù)的靜息或低強度運動的訓(xùn)練方法,整個過程可認(rèn)為是被不足以完全恢復(fù)的間歇期分隔的多次重復(fù)運動。研究證實,與傳統(tǒng)的中等強度持續(xù)運動(moderate-intensity continuous training,MCT)相比,HIT完成的時間短、總運動量小,且可產(chǎn)生相似的健康促進(jìn)效應(yīng),如改善最大有氧能力、降低脂肪含量、控制體重等,因此HIT是一種省時有效的運動模式[6]。

值得注意的是,影響炎癥反應(yīng)最主要的因素是總運動量(運動負(fù)荷),而后者則是運動時間和運動強度的總和[8]。不同研究中的運動方案往往只強調(diào)運動強度,而運動時間和運動量并不一致[9-11],特別是在以探討不同運動方式對代謝反應(yīng)和炎癥反應(yīng)影響差異的研究中,運動時間和運動量是必須考慮的因素。運動量未嚴(yán)格控制與匹配,這在一定程度上存在方法學(xué)缺陷,可導(dǎo)致對不同運動方式干預(yù)效果的解釋造成影響。因此,本研究的目的旨在探討總運動量相配匹的MCT和 HIT對男子籃球運動員炎癥反應(yīng)(炎癥因子和抗炎癥因子)和代謝反應(yīng)(運動時糖、脂肪以及調(diào)節(jié)激素等的物質(zhì)代謝以及總的能量代謝)的影響,對比不同運動方式的健康效應(yīng)。

1 研究對象和方法

1.1研究對象

20名男子籃球運動員(國家二級水平)自愿參加本實驗。受試者身體健康,無代謝性疾病、心腦血管疾病以及運動系統(tǒng)疾病,近期無運動性傷病、無服用藥物與營養(yǎng)補劑。測試前告知實驗?zāi)康囊约跋嚓P(guān)風(fēng)險并簽訂知情同意書。

1.2測試程序

受試者共完成3次測試,每次間隔72h~96h。第1次:身體形態(tài)學(xué)參數(shù)測定,利用遞增負(fù)荷跑臺運動實驗測定峰值攝氧量(peak oxygen uptake,VO2peak)和峰值攝氧量跑速(speed at VO2peak,sVO2peak)。第2~3次:受試者分別進(jìn)行一次HIT和一次MCT,測試順序采用隨機交叉原則,每名受試者測試時間保持一致。測試前至少24 h避免劇烈運動、飲酒、吸煙,保證至少8 h充足睡眠。測試程序見圖1。

注:△為取血時間點;R(rest),安靜狀態(tài);W(warm up),熱身運動;IP(immediately after exercise),運動后即刻;30 min、60 min:運動后30 min、運動后60 min(下同)圖1 整體實驗設(shè)計

1.3身體形態(tài)學(xué)參數(shù)測定

測量身高、體重并計算身體質(zhì)量指數(shù)(body mass index,BMI)。利用生物電阻抗法測定受試者的身體成分,儀器為身體成分分析儀(Inbody 720,韓國)。受試者測試前保持空腹?fàn)顟B(tài)并排空大小便,于軟件界面輸入年齡、身高和體重后,受試者赤足站在儀器的金屬踏板上,手持把手。測試指標(biāo)包括脂肪含量(fat mass,F(xiàn)M)、去脂體重(fat free mass,F(xiàn)FM)和體脂百分比(percentage of body fat,PBF)。所有測試均由同一名實驗人員操作完成以減少測量誤差。

1.4遞增負(fù)荷運動心肺實驗

受試者進(jìn)行一次遞增負(fù)荷力竭運動跑臺實驗,起始負(fù)荷為8 km/h,隨后每2 min遞增1 km/h,運動過程中給予口頭鼓勵。利用氣體代謝分析系統(tǒng)(Quark PFT Cosmed,意大利)測定通氣指標(biāo)并將最后30 s的平均攝氧量作為VO2peak并記錄sVO2peak。利用遙測心率表(Polar FS1,芬蘭)記錄心率(heart rate,HR),囑受試者根據(jù)主觀感覺疲勞量表(rating of perceived exertion,RPE)(6~20級)讀出RPE值。符合以下5個標(biāo)準(zhǔn)中的3個即終止實驗:(1)出現(xiàn)VO2平臺(即相鄰兩級負(fù)荷VO2之差≤ 150 mL/min);(2)達(dá)到年齡預(yù)測最大心率(maximal heart rate,HRmax);(3)RPE值≥ 18;(4)呼吸交換律(respiratory exchange ratio,RER)≥ 1.10;(5)受試者力竭。

1.5一次HIT實驗

受試者進(jìn)行5 min熱身運動(即在電動跑臺上以50% sVO2peak跑步)后休息2 min,隨后開始正式實驗:以100% sVO2peak跑步1 min后消極性休息1 min(即處于安靜狀態(tài)),如此反復(fù)直至完成5 km距離。見圖1。

1.6一次MCT實驗

熱身部分同1.5。正式實驗時,以70% sVO2peak持續(xù)跑步,直至完成5 km距離。見圖1。

1.7運動能量消耗測定

評估運動能量消耗時,需分別考慮三個能量系統(tǒng)(有氧氧化系統(tǒng)、無氧乳酸系統(tǒng)、無氧非乳酸系統(tǒng))的供能比例,其中有氧代謝系統(tǒng)供能用運動中的VO2估測,無氧乳酸系統(tǒng)供能用血乳酸的變化值估計,無氧非乳酸系統(tǒng)供能用運動后過量氧耗的快時相部分估計。 運動過程中以及運動后60 min,連續(xù)監(jiān)測VO2,有氧氧化系統(tǒng)供能為運動中的VO2與安靜VO2之差。運動后1、3、5、7 min取指血測定血乳酸含量。將安靜時的血乳酸值記作[La]rest,血乳酸的最高值記作[La]peak,血乳酸的變化值(△[La])為血乳酸最高值與安靜值之差,即△[La]=[La]peak-[La]rest。血乳酸值每變化1 mmol/L相當(dāng)于消耗3 ml/kg O2[12],將△[La]對應(yīng)的VO2換算為無氧乳酸系統(tǒng)供能。運動后過量氧耗的快時相部分用改良的雙指數(shù)函數(shù)進(jìn)行擬合,無氧非乳酸供能為擬合曲線振幅與τ值的乘積[13]。運動總能量消耗為三個能量系統(tǒng)供能之和,單位為kcal。

1.8血液指標(biāo)測定

分別于安靜時、運動后即刻、運動后30 min和運動后60 min取肘正中靜脈血5 mL,EDTA抗凝,4℃離心(3 000 轉(zhuǎn)/min)15 min取血漿,﹣20℃低溫冰箱凍存待測。IL-6、IL-10和TNF-α用酶聯(lián)免疫吸附試驗(Enzyme-Linked Immunosorbent Assay,ELISA)測定,儀器為美國產(chǎn)BIO-RAD Model 680型酶標(biāo)儀。血糖、尿酸和乳酸用酶法測定,非酯化脂肪酸(Non-ester fatty acid,NEFA)用比色法測定,儀器為美國產(chǎn)MD-100半自動生化分析儀。血漿皮質(zhì)醇用放免法測定,儀器為美國產(chǎn)FMQ-9013C型γ放免分析儀。試劑盒均購自南京建成生物工程研究所,嚴(yán)格按照說明書進(jìn)行。

1.9統(tǒng)計學(xué)處理

所有數(shù)據(jù)均以“均數(shù)±標(biāo)準(zhǔn)差”表示。先用Shapiro-Wilk檢驗數(shù)據(jù)正態(tài)性分布;各指標(biāo)的時程變化比較使用重復(fù)測量的方差分析,多重比較使用LSD檢驗;同一指標(biāo)組間(HIT vs. MCT)比較使用獨立樣本t檢驗。P<0.05為差異具有統(tǒng)計學(xué)意義。

2 結(jié)果

2.1受試者一般特征

受試者人口統(tǒng)計學(xué)參數(shù)(樣本量、年齡、訓(xùn)練年限)、身體形態(tài)學(xué)參數(shù)(身高、體重、身體成分)以及運動能力參數(shù)(VO2peak)等一般特征見表1。

表1 受試者一般特征

2.2HIT組與MCT組負(fù)荷特征的比較

HIT組與MCT組負(fù)荷特征的比較見表2。HIT組運動持續(xù)時間、跑速、能量消耗、HRmax和[La]peak均高于MCT組(P<0.05)。

表2 HIT與MCT運動負(fù)荷、能量消耗以及生理反應(yīng)的比較

注:#P<0.05 vs. MCT組

2.3HIT組與MCT組代謝反應(yīng)的比較

血糖:組內(nèi)與安靜時比較,HIT組與MCT組運動后即刻、運動后30 min和60 min均無顯著性變化(P>0.05);組間比較,HIT組與MCT組在各時間點均無顯著性差異(P>0.05)。見圖2。

血乳酸:組內(nèi)與安靜時比較,HIT組在運動后即刻升高(P<0.05),30 min下降但仍高于安靜時(P<0.05),60 min恢復(fù)(P>0.05),MCT組變化規(guī)律與HIT組一致;組間比較,運動后即刻和運動后30 min時HIT組高于MCT組(P<0.05)。見圖3。

圖2 血糖的時程變化

注:*P<0.05 vs. 安靜時;#P<0.05 vs. MCT組圖3 血乳酸的時程變化

血漿NEFA:組內(nèi)與安靜時比較,HIT組運動后即刻、運動后30 min和60 min均無顯著性差異(P>0.05),MCT組運動后即刻升高(P<0.05),30 min恢復(fù)(P>0.05);組間比較,運動后即刻MCT組高于HIT組(P<0.05)。見圖4。

血漿皮質(zhì)醇:組內(nèi)與安靜時比較,HIT組和MCT組運動后即刻、運動后30 min和60 min均升高(P<0.05);組間比較,HIT組與MCT組在各時間點均無顯著性差異(P>0.05)。見圖5。

血尿酸:組內(nèi)與安靜時比較,HIT與MCT運動后即刻、運動后30 min和60 min均無顯著性變化(P>0.05);組間比較,HIT組與MCT組在各時間點均無顯著性差異(P>0.05)。見圖6。

注:*P<0.05 vs. 安靜時;#P<0.05 vs. MCT組

注:*P<0.05 vs. 安靜時

注:*P<0.05 vs. 安靜時

2.4HIT組與MCT組炎癥因子的比較

血漿IL-6:組內(nèi)與安靜時比較,HIT組和MCT組運動后即刻和運動后30 min均升高(P<0.05),60 min恢復(fù)(P>0.05);組間比較,HIT組與MCT組在各時間點均無顯著性差異(P>0.05),而HIT組AUC(IL-6)高于MCT組(P<0.05)。見圖7~8。

血漿TNF-α:組內(nèi)與安靜時比較,HIT組和MCT組運動后即刻升高(P<0.05),60 min恢復(fù)(P>0.05);組間比較,HIT組與MCT組在各時間點均無顯著性差異(P>0.05),而HIT組AUC(TNF-α)低于MCT組(P<0.05)。見圖9~10。

血漿IL-10:組內(nèi)與安靜時比較,HIT組和MCT組運動后即刻、運動后30 min和60 min均升高(P<0.05);組間比較,HIT組與MCT組在各時間點均無顯著性差異(P>0.05)。見圖11。 血漿IL-10/TNF-α比值:組內(nèi)與安靜時比較,HIT組和MCT組運動后30 min和60 min均升高(P<0.05);組間比較,HIT組與MCT組在各時間點均無顯著性差異(P>0.05)。見圖12。

注:*P<0.05 vs. 安靜時圖7 血漿IL-6的時程變化

注:#P<0.05 vs. MCT組;AUC,area under curve,曲線下面積圖8 HIT組和MCT組血漿AUC(IL-6)的比較

注:*P<0.05 vs. 安靜時

注:#P<0.05 vs. MCT組;AUC,area under curve,曲線下面積

注:*P<0.05 vs. 安靜時

注:*P<0.05 vs. 安靜時

3 討論

本研究發(fā)現(xiàn),即使總運動量相匹配,HIT組與MCT組的總運動能量消耗亦存在顯著差異。在運動方案設(shè)計上,HIT組能量消耗較MCT組高18.6%,總運動時間是MCT組的1.37倍,但除去間歇期HIT組實際運動時間只有21 min,明顯低于MCT組的30.8 min。最近的一項研究指出[14],盡管HIT組(1:1 min,90%HRmax強度蹬車,間歇期以50 W負(fù)荷進(jìn)行積極性休息,共完成10組)運動時的能量消耗低于MCT組(70%HRmax強度持續(xù)蹬車50 min)(352 ± 34 vs. 547 ± 65 kcal),但24 h后兩種運動方式的總能量消耗并無顯著性差異。上述研究提示,相對于MCT,一次HIT可對機體造成更為深刻的生理應(yīng)激。由于急性運動能夠上調(diào)多種激素水平(如皮質(zhì)醇),其主要作用是參與脂解(脂肪組織)和糖原分解(骨骼肌和肝臟)、促進(jìn)能源底物(主要是NEFA和葡萄糖)在骨骼肌的利用[15],因此本研究中兩種運動方式能量消耗的差異可能與激素的變化有關(guān)。本研究中兩種方式運動后血漿皮質(zhì)醇含量均持續(xù)升高,HIT組血乳酸峰值顯著高于MCT組,而血漿NEFA峰值明顯低于MCT組,提示HIT時的能量主要依賴于無氧代謝,MCT則更多依賴有氧代謝供能。此外,本研究還發(fā)現(xiàn)血漿皮質(zhì)醇在兩種運動方式間并無顯著性差異,然而運動后1 h內(nèi)HIT能量消耗較MCT高出20.1%(646.7±52.3 vs. 538.4±49.5 kcal)。本研究中不同運動方式能量消耗差異可能是運動方案設(shè)計造成的,同時也提示,在完成相同運動量時,HIT的能量消耗明顯高于MCT。

在本研究中,運動后即刻MCT組血漿NEFA水平顯著性升高,而HIT組則無顯著性改變。在定量負(fù)荷持續(xù)運動中,脂質(zhì)的利用率明顯高于間歇運動。此外,Jeppense等[16]的研究指出,運動分解脂質(zhì)的效率依賴于乙酰輔酶A/輔酶A含量比值、肉堿的利用度以及氫離子濃度。由于HIT以無氧代謝為主,氫離子濃度較高,因此抑制了脂肪分解代謝途徑,其具體機制尚需進(jìn)一步證實。此外,運動后HIT組血漿NEFA無變化的原因還可能與運動/間歇過程中骨骼肌對脂肪酸的高攝取率有關(guān)。研究認(rèn)為[16],HIT間歇期脂肪酸的清除效果較高,因此HIT運動模式可能在刺激脂解作用中扮演重要角色,同時也提示HIT過程中有氧代謝亦參與供能,其供能比例隨運動時間的延長而增加。有研究發(fā)現(xiàn)[4],短期(2周)HIT(反復(fù)Wingate實驗)即能夠改善骨骼肌氧化能力,若持續(xù)數(shù)周則可誘導(dǎo)機體產(chǎn)生生理適應(yīng),如降低運動中糖原利用率和乳酸堆積,增強骨骼肌和全身脂質(zhì)氧化能力。最新的一項研究顯示[17],低運動量HIT方案(30 s Wingate實驗,間歇3 min,完成4組,即運動時間只有2 min)完成最后1組后血漿NEFA即顯著性升高。血漿NEFA升高是由于機體脂解作用加強、對可利用的能量底物需求增加以維持運動時骨骼肌收縮之緣故;但若運動時間過短,骨骼肌對NEFA攝取減少,從而造成血循環(huán)中NEFA含量升高。結(jié)合本研究的結(jié)果,我們認(rèn)為,由于HIT運動量較大(5 km)、運動時間較長,骨骼肌大量攝取脂肪酸,因此運動后循環(huán)中NEFA含量變化不明顯。

另一方面,我們觀察到,運動誘導(dǎo)機體產(chǎn)生了廣泛的炎癥應(yīng)答反應(yīng),即多種炎癥因子在運動中和運動后表達(dá)顯著上調(diào)。骨骼肌是某些炎癥因子的主要來源組織,其上調(diào)幅度依賴于運動持續(xù)時間、運動強度與總運動量[18]。運動誘導(dǎo)的細(xì)胞因子具有多種功能,如IL-6和TNF-α能夠發(fā)揮抗炎效應(yīng)并促進(jìn)糖脂代謝,刺激脂解作用和糖原分解以保證運動中和運動后骨骼肌與其他組織充足的能量供應(yīng),因此在調(diào)節(jié)能量代謝中起重要作用[19]。本研究中,MCT組血漿TNF-α(AUC)和皮質(zhì)醇含量同步升高,這種免疫-內(nèi)分泌模式的變化有利于促進(jìn)脂肪分解,從而使運動后血漿NEFA水平上調(diào)。Castellani等[20]觀察到,急性力竭運動可誘導(dǎo)脂肪組織發(fā)生促炎癥反應(yīng),即脂肪組織中IL-6 和TNF-α基因表達(dá)顯著上調(diào),有利于脂解作用和脂肪酸動員,后者作為底物為運動中和運動后骨骼肌及其他組織供能。另一方面,HIT組血漿IL-6(AUC)和皮質(zhì)醇含量同時升高,有助于糖原分解以及骨骼肌對葡萄糖的利用。上述結(jié)果提示,運動誘導(dǎo)的炎癥因子動力學(xué)變化并不依賴于運動方式,具體機制尚不明確。此外,本研究中HIT和MCT組血漿IL-10含量和IL-10/TNF-α比值均顯著升高,表明運動具有抗炎作用。運動可誘導(dǎo)骨骼肌分泌肌源性IL-6增多,運動后IL-1ra和IL-10水平上調(diào)[21],因此運動能夠促使機體處于抗炎狀態(tài)。IL-10升高與高水平IL-6和TNF-α有關(guān),其主要作用在于抑制促炎反應(yīng)加劇,避免機體處于持續(xù)的炎癥反應(yīng)狀態(tài)[22]。不同運動方式均通過上調(diào)IL-10/TNF-α比值發(fā)揮抗炎作用,提示HIT和MCT可作為不同人群如肥胖、糖尿病、高血壓、血脂紊亂等的運動康復(fù)策略。

需要提及的是,本研究中不同運動方式的運動量(外部負(fù)荷)雖然基本一致,但HIT總做功和能量消耗較高、生理應(yīng)激(內(nèi)部負(fù)荷)較大。今后的研究應(yīng)探討能量消耗相匹配的HIT和MCT對炎癥因子和代謝反應(yīng)的影響差異,以進(jìn)一步闡明不同運動方式的健康效應(yīng)與相關(guān)機制。

4 結(jié)論

總運動量相匹配的不同運動方式(HIT和MCT)能夠誘導(dǎo)相似的炎癥反應(yīng)和抗炎反應(yīng)狀態(tài),而代謝反應(yīng)則存在運動方式依賴性。由于HIT組血乳酸峰值高于MCT組,而NEFA低于MCT組,因此HIT時的能量主要依賴于無氧代謝,即HIT誘導(dǎo)的生理應(yīng)激明顯高于MCT。

[1] Sijtsma FP, Soedamah-Muthu SS, de Hoon SE, et al. Healthy eating and survival among elderly men with and without cardiovascular-metabolic diseases[J]. Nutr Metab Cardiovasc Dis, 2015, 25(12): 1117-1124

[2] Li HB, Jin C, Chen Y, et al. Inflammasome activation and metabolic disease progression[J]. Cytokine Growth Factor Rev, 2014, 25(6): 699-706

[3] Hansen JS, Zhao X, Irmler M, et al. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery[J]. Diabetologia, 2015, 58(8): 1845-1854

[4] McCormack SE, McCarthy MA, Harrington SG, et al. Effects of exercise and lifestyle modification on fitness, insulin resistance, skeletal muscle oxidative phosphorylation and intramyocellular lipid content in obese children and adolescents[J]. Pediatr Obes, 2014, 9(4): 281-291

[5] Lucas V, Barrera R, Duque FJ, et al. Effect of exercise on serum markers of muscle inflammation in Spanish Greyhounds[J]. Am J Vet Res, 2015, 76(7): 637-643

[6] 黎涌明. 高強度間歇訓(xùn)練對不同訓(xùn)練人群的應(yīng)用效果[J]. 體育科學(xué), 2015 (8): 59-75,96

[7] 施曼莉, 朱榮. 高強度間歇運動對骨骼肌糖原含量的影響及機制研究[J]. 體育科學(xué), 2015 (4): 66-71

[8] Horn PL, West NP, Pyne DB, et al. Routine exercise alters measures of immunity and the acute phase reaction[J]. Eur J Appl Physiol, 2015, 115(2): 407-415

[9] Leggate M, Nowell MA, Jones SA, et al. The response of interleukin-6 and soluble interleukin-6 receptor isoforms following intermittent high intensity and continuous moderate intensity cycling[J]. Cell Stress Chaperones, 2010, 15(6): 827-833

[10] Skelly LE, Andrews PC, Gillen JB, et al. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment[J]. Appl Physiol Nutr Metab, 2014, 39(7): 845-848

[11] Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans[J]. J Physiol, 2008, 586(1): 151-160

[12] Harvey L, Wiegand A, Solomon C, et al. A comparison of upper and lower body energetics during high-intensity exercise[J]. J Sports Med Phys Fitness, 2015, 55(7-8): 708-713

[13] Sousa A, Figueiredo P, Zamparo P, et al. Anaerobic alactic energy assessment in middle distance swimming[J]. Eur J Appl Physiol, 2013, 113(8): 2153-2158

[14] Skelly LE, Andrews PC, Gillen JB, et al. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment[J]. Appl Physiol Nutr Metab, 2014, 39(7): 845-848

[15] Hiemstra I, Heijsman SM, Koers NF, et al. Attenuated salivary cortisol response after exercise test in children with asthma[J]. J Pediatr Endocrinol Metab, 2015, 28(3-4): 359-365

[16] Jeppesen J, Kiens B. Regulation and limitations to fatty acid oxidation during exercise[J]. J Physiol, 2012, 590(5): 1059-1068

[17] Lira FS, Panissa VL, Julio UF, et al. Differences in metabolic and inflammatory responses in lower and upper body high-intensity intermittent exercise[J]. Eur J Appl Physiol, 2015, 115(7): 1467-1474

[18] Kato T, Okita S, Wang S, et al. The effects of taurine administration against inflammation in heavily exercised skeletal muscle of rats[J]. Adv Exp Med Biol, 2015, 803: 773-784

[19] Amadio EM, Serra AJ, Guaraldo SA, et al. The action of pre-exercise?low-level laser therapy (LLLT) on the expression of IL-6 and TNF-α proteins and on the functional fitness of elderly rats subjected to aerobic training[J]. Lasers Med Sci, 2015, 30(3): 1127-1134

[20] Castellani L, Root-Mccaig J, Frendo-Cumbo S, et al. Exercise training protects against an acute inflammatory insult in mouse epididymal adipose tissue[J]. J Appl Physiol (1985), 2014, 116(10): 1272-1280

[21] Gough L, Penfold RS, Godfrey RJ, et al. The immune response to short-duration exercise in trained, eumenorrhoeic women[J]. J Sports Sci, 2015, 33(13): 1396-1402

[22] Borghi SM, Pinho-Ribeiro FA, Zarpelon AC, et al. Interleukin-10 limits intense acute swimming-induced muscle mechanical hyperalgesia in mice[J]. Exp Physiol, 2015, 100(5): 531-544

Effects of Different Acute Exercise Mode on Inflammatory Factor and Metabolic Response in Male Basketball Athletes

TANG Jing

(Dept. of Physical Education,Henan Institute of Engineering,Zhengzhou 451191, China)

Objective: The purpose of this study was to compare the effect of a bout of high-intensity interval exercise (HIT) versus volume matched moderate-intensity continuous exercise (MCT) on inflammatory factors and metabolic responses. Methods: Twenty male basketball athletes completed two experimental sessions, a 5-km run on a treadmill either HIT (1:1 min at 100% sVO2peak) or MCT (70% sVO2peak). Blood samples were collected at rest, immediately, 30 and 60 minutes after exercise session for glucose, non-ester fatty acid (NEFA), uric acid, lactate, cortisol, and cytokines (IL-6, IL-10 and TNF-α) levels. Results: The blood lactate levels exhibited higher values immediately and 30 min post-exercise than at rest (P<0.05), but HIT promoted higher values than MCT (P<0.05). Plasma NEFA levels were higher immediately post-exercise than at rest only in MCT group (P<0.05), yet, MCT promoted higher values than HIT immediately after exercise (P<0.05). Glucose and uric acid levels did not show changes under the different conditions (P>0.05). Plasma cortisol and IL-10 showed higher in all time points post-exercise than at rest (P<0.05), but no significantly different existed between groups (P>0.05). Plasma IL-6 exhibited higher immediately and 30 min post-exercise than at rest (P<0.05), but no significantly different existed between groups (P>0.05), however area under the curve (AUC) of IL-6 in the HIT group was higher than that of MCT (P<0.05). Plasma TNF-α showed higher values immediately post-exercise than at rest (P<0.05), but no significantly different existed between groups (P>0.05), however AUC (TNF-α) in the HIT group was lower than that of MCT (P<0.05). Plasma IL-10/TNF-α ratio was higher 30 min and 60 min post-exercise than at rest (P<0.05), but no significantly different existed between groups (P>0.05). Conclusion: Both exercise protocols (HIT and MCT), when total volume is matched, could induce similar inflammatory response and anti-inflammatory status, however the metabolic response is dependent on exercise modalities,where there is more physiological stress induced by HIT than MCT.

high-intensity interval exercise; moderate-intensity continuous exercise; inflammation factor; metabolic response; energy expenditure

2016-07-12

湯靜(1976- ),女,回族,河南淮陽人, 碩士,副教授

河南省重點科技攻關(guān)項目(152102310117)。

G804.2

A

1007-323X(2016)05-0098-07

研究方向:運動人體健康

猜你喜歡
能量消耗骨骼肌乳酸
太極拳連續(xù)“云手”運動強度及其能量消耗探究
鳶尾素(Irisin):運動誘導(dǎo)骨骼肌自噬的新靶點
中年女性間歇習(xí)練太極拳的強度、能量消耗與間歇恢復(fù)探究分析
乳酸菌發(fā)酵生產(chǎn)D-/L-乳酸的研究進(jìn)展
沒別的可吃
人在運動后為什么會覺得肌肉酸痛
糖尿病性乳酸性酸中毒
運動與骨骼肌的重構(gòu)研究
剔除巨噬細(xì)胞可通過抑制肌再生因子和Akt/mTOR信號通路損害骨骼肌再生
IL-15與骨骼肌能量代謝調(diào)控研究進(jìn)展