高連興 蘇 展 陳中玉,3 劉志俠 呂長(zhǎng)義 李 華
(1.沈陽(yáng)農(nóng)業(yè)大學(xué)工程學(xué)院, 沈陽(yáng) 110866; 2.沈陽(yáng)農(nóng)業(yè)大學(xué)花生研究所, 沈陽(yáng) 110866;3.鹽城工業(yè)職業(yè)技術(shù)學(xué)院汽車工程學(xué)院, 鹽城 224005)
?
對(duì)輥半喂入式小區(qū)育種花生摘果裝置設(shè)計(jì)與試驗(yàn)
高連興1,2蘇展1陳中玉1,3劉志俠1呂長(zhǎng)義1李華1
(1.沈陽(yáng)農(nóng)業(yè)大學(xué)工程學(xué)院, 沈陽(yáng) 110866; 2.沈陽(yáng)農(nóng)業(yè)大學(xué)花生研究所, 沈陽(yáng) 110866;3.鹽城工業(yè)職業(yè)技術(shù)學(xué)院汽車工程學(xué)院, 鹽城 224005)
花生小區(qū)育種涉及品種多、小區(qū)處理多、每小區(qū)產(chǎn)量小,且嚴(yán)格要求小區(qū)之間和品種之間的花生不能混雜。為解決小區(qū)花生育種收獲中存在的人工摘果費(fèi)工、費(fèi)時(shí)、效率低且容易出現(xiàn)混雜等問(wèn)題,提出了半喂入式花生摘果裝置總體方案:采用差相組配的對(duì)輥結(jié)構(gòu)、回轉(zhuǎn)直徑可調(diào)節(jié)的直桿式、弓齒式和矩形齒式作為摘果元件,進(jìn)行了花生摘果輥與摘果元件的結(jié)構(gòu)與參數(shù)設(shè)計(jì),研制出一種小型對(duì)輥半喂入式小區(qū)育種花生摘果裝置。以遼寧省主栽的花生品種“花育30”為試驗(yàn)材料,對(duì)3種摘果元件的摘果性能進(jìn)行了試驗(yàn)研究,結(jié)果表明矩形齒式摘果元件摘果效果最佳;以摘果對(duì)輥重疊距離、摘果對(duì)輥差相角和摘果對(duì)輥轉(zhuǎn)速為試驗(yàn)因素,以花生摘凈率、損傷率為試驗(yàn)指標(biāo),通過(guò)正交試驗(yàn)表明:摘果對(duì)輥重疊距離為10 mm、摘果對(duì)輥差相角為45°、摘果對(duì)輥轉(zhuǎn)速為400 r/min時(shí),花生摘果綜合指標(biāo)最優(yōu),摘凈率為98.96%,莢果損傷率為1.03%。
育種花生; 摘果裝置; 半喂入; 對(duì)輥式
我國(guó)作為花生生產(chǎn)與出口大國(guó),雖然在花生育種和高產(chǎn)栽培等生物技術(shù)領(lǐng)域研究處于領(lǐng)先水平,對(duì)提高我國(guó)花生產(chǎn)量與品質(zhì)發(fā)揮了重要作用,但是因缺少小區(qū)育種花生摘果機(jī)械,花生收獲中的摘果作業(yè)仍靠人工進(jìn)行,效率低下且容易混雜;有些地區(qū)采用普通的花生摘果機(jī),不但機(jī)型較大、且摘果元件固定而難以調(diào)節(jié),清種不便,不能適應(yīng)小區(qū)摘果作業(yè)的需要,嚴(yán)重制約花生育種研究進(jìn)程。小區(qū)育種花生與普通花生不同,每小區(qū)種植面積小、產(chǎn)量小,但小區(qū)處理數(shù)量很多、品種多,還要求小區(qū)間的花生不能混雜。
摘果是小區(qū)花生收獲的關(guān)鍵,研制適宜小區(qū)育種需要的花生摘果機(jī)不僅可以提高收獲效率、降低損失和莢果損傷,而且可以有效解決小區(qū)和品種間的種子混雜問(wèn)題。
國(guó)內(nèi)外專家對(duì)花生摘果機(jī)和聯(lián)合收獲機(jī)的摘果裝置進(jìn)行了較為深入的研究,其中,尚書(shū)旗等研制了全喂入軸流式摘果裝置的4HQL-2型、4HJL-2型自走式花生聯(lián)合收獲機(jī),及采用波紋式摘果對(duì)輥裝置的4HBL-4型半喂入式聯(lián)合收獲機(jī)[1-6];胡志超等研制了采用葉片式雙輥筒差相組配式刷脫原理的4LH-2型、4HLB-4型、4HLJ-8型半喂入自走式花生聯(lián)合收獲機(jī),及采用自動(dòng)導(dǎo)秧折彎?rùn)C(jī)構(gòu)、后傾弧形葉片的4HZB-2A型半喂入式花生摘果機(jī)[7-8];高連興等研制了多功能組合式全喂入花生摘果裝置及螺旋弓齒式全喂入花生摘果機(jī)[9-13]。然而,針對(duì)小區(qū)育種花生摘果裝置的研究,目前尚未見(jiàn)有文獻(xiàn)報(bào)道。本文針對(duì)小區(qū)花生育種收獲特點(diǎn)及花生育種科研需要,設(shè)計(jì)一種對(duì)輥半喂入式小區(qū)育種花生摘果裝置,并進(jìn)行性能試驗(yàn)及參數(shù)優(yōu)化。
小區(qū)育種花生摘果與普通花生摘果相比,除要求摘果裝置莢果損傷率更低以外,還要既能適應(yīng)濕花生摘果也要適應(yīng)干花生摘果,適應(yīng)不同品種性狀的花生摘果,且方便清出殘留在摘果裝置中的花生莢果,以免不同品種和處理的花生果實(shí)混雜。基于上述要求,確定了對(duì)輥半喂入式摘果裝置的總體方案(圖1),以直桿、弓齒和矩形齒3種摘果元件進(jìn)行對(duì)比試驗(yàn)確定最佳摘果元件。
圖1 對(duì)輥半喂入式小區(qū)育種花生摘果裝置結(jié)構(gòu)簡(jiǎn)圖Fig.1 Structural schematic of double-roller semi-feeding peanut picking device 1.摘果齒 2.上摘果輥鏈輪 3.下摘果輥鏈輪 4.風(fēng)機(jī)帶輪 5.風(fēng)機(jī)鏈輪 6.電動(dòng)機(jī) 7.電動(dòng)機(jī)帶輪 8.振動(dòng)篩偏心輪 9.輥筒蓋 10.輥架 11.上摘果輥 12.下摘果輥 13.下料板 14.機(jī)架 15.振動(dòng)篩 16.連桿 17.風(fēng)機(jī) 18.喂入口
對(duì)輥半喂入式小區(qū)育種花生摘果裝置總體結(jié)構(gòu)如圖1所示,主要由上摘果輥、下摘果輥、傳動(dòng)鏈輪、滾筒蓋、喂入口、下料板、氣力清選裝置、振動(dòng)篩清選裝置、機(jī)架、電動(dòng)機(jī)及傳動(dòng)系統(tǒng)等構(gòu)成。其中,上摘果輥與下摘果輥成對(duì)且差相配置——對(duì)輥,摘果輥上固定有可更換的直桿式、弓齒式或矩形齒式摘果元件。
摘果作業(yè)時(shí)人工手持花生植株莖部,將花生莢果部位接觸兩個(gè)同速、相向轉(zhuǎn)動(dòng)的上摘果輥與下摘果輥構(gòu)成的摘果區(qū),摘果元件的梳刷和刮拉等作用使花生莢果不斷地被摘下;摘下的花生莢果與少量碎葉等沿下料板落到振動(dòng)篩過(guò)程中,風(fēng)機(jī)將碎葉和碎莖稈等吹走,分離出花生莢果;振動(dòng)篩進(jìn)一步將殘余雜質(zhì)清除并將花生莢果運(yùn)送至出料口;當(dāng)每一小區(qū)處理的花生摘果完成后,停機(jī)、拉開(kāi)輥筒蓋清理遺留的花生莢果,從而保證花生莢果不混雜。
摘果輥及摘果元件是花生摘果裝置的關(guān)鍵部件之一,其結(jié)構(gòu)型式與參數(shù)直接影響花生莢果摘凈率、損傷率、摘果效率和操作安全性等。
2.1摘果對(duì)輥設(shè)計(jì)
結(jié)構(gòu)相同且上下斜置的開(kāi)式摘果輥(圖2)由輥軸、輥架和4排摘果元件(摘果齒或摘果桿)等構(gòu)成。十字形輥架焊接在輥軸兩端,輥架端部螺紋用來(lái)連接摘果元件并可調(diào)節(jié)其回轉(zhuǎn)直徑;上、下摘果輥成對(duì)傾斜配置以方便人工喂入;上、下摘果輥通過(guò)軸端鏈傳動(dòng)實(shí)現(xiàn)等速、相向轉(zhuǎn)動(dòng)。
圖2 摘果對(duì)輥結(jié)構(gòu)簡(jiǎn)圖Fig.2 Schematic of double-roller for picking 1.矩形齒 2.摘果元件 3.輥架 4.輥軸
摘果輥主要設(shè)計(jì)參數(shù)為:摘果元件回轉(zhuǎn)直徑D與長(zhǎng)度L、對(duì)輥中心距L1、斜置角α、對(duì)輥重疊距離L2、對(duì)輥差相角β、摘果元件排數(shù)N、摘果輥轉(zhuǎn)速n等。
結(jié)合沈陽(yáng)農(nóng)業(yè)大學(xué)花生研究所小區(qū)花生育種收獲實(shí)踐發(fā)現(xiàn),每個(gè)處理的摘果量不大,每次人工喂入花生2~4株,因而選定摘果輥有效長(zhǎng)度330 mm;摘果元件回轉(zhuǎn)直徑調(diào)節(jié)范圍170~240 mm;由于摘果元件回轉(zhuǎn)直徑較小且需要差相配置,確定每個(gè)摘果輥的摘果元件為4排。
考慮到摘果過(guò)程中上下輥對(duì)花生植株產(chǎn)生的夾持拉力影響人工喂入安全性,基于試驗(yàn)初定上、下摘果對(duì)輥重疊距離10 mm,即摘果元件回轉(zhuǎn)直徑為200 mm,且可通過(guò)改變摘果元件回轉(zhuǎn)直徑適當(dāng)調(diào)節(jié),對(duì)輥差相角為35°~55°,且可通過(guò)鏈輪嚙合齒位進(jìn)行調(diào)節(jié);摘果對(duì)輥轉(zhuǎn)速為350~450 r/min,即摘果元件線速度為3.68~4.71 m/s。為保證上述參數(shù)更加合理,需要在此基礎(chǔ)上進(jìn)行試驗(yàn)后最終具體確定。摘果對(duì)輥工作原理如圖3所示。
圖3 摘果對(duì)輥工作原理圖Fig.3 Working schematic of double-roller for picking1.矩形齒 2.摘果元件 3.輥架 4.輥軸
2.2摘果元件設(shè)計(jì)
摘果元件結(jié)構(gòu)型式與分布規(guī)律也是影響花生摘果性能、植株夾持拉力的重要因素。目前半喂入摘果裝置常用直板、弧形板、螺旋葉片式等整體結(jié)構(gòu),依靠高速旋轉(zhuǎn)的摘果葉片拍打、刮拽作用進(jìn)行摘果,花生莢果因受力較大導(dǎo)致莢果損傷率高、帶柄率高和斷枝多等問(wèn)題[14-16];特別直板型摘果葉片在摘取鮮濕花生時(shí),因一次同時(shí)摘下多個(gè)莢果,摘果輥對(duì)花生植株夾持拉力大而不均,容易將花生植株拉入摘果區(qū),人工喂入時(shí)容易出現(xiàn)傷手的危險(xiǎn)。為解決上述問(wèn)題,需要對(duì)預(yù)定的3種摘果元件即直桿式、弓齒式和矩形齒式進(jìn)行初步試驗(yàn),并最終選定摘果元件形式。
2.3傳動(dòng)系統(tǒng)設(shè)計(jì)
為保證摘果輥筒轉(zhuǎn)動(dòng)、振動(dòng)篩振動(dòng)和清選風(fēng)機(jī)參數(shù)需要,設(shè)計(jì)了傳動(dòng)系統(tǒng)如圖4所示,主傳動(dòng)由電動(dòng)機(jī)帶輪帶動(dòng)風(fēng)機(jī)左側(cè)帶輪,風(fēng)機(jī)鏈輪帶動(dòng)摘果對(duì)輥鏈輪等速相向轉(zhuǎn)動(dòng);副傳動(dòng)由風(fēng)機(jī)右側(cè)帶輪帶動(dòng)振動(dòng)篩帶輪,使振動(dòng)篩偏心輪獲得動(dòng)力而帶動(dòng)振動(dòng)篩振動(dòng)。
圖4 傳動(dòng)系統(tǒng)示意圖Fig.4 Schematic of transmission system1.上摘果輥鏈輪 2.下摘果輥鏈輪 3.風(fēng)機(jī)鏈輪 4.偏心輪 5.振動(dòng)篩帶輪 6.電動(dòng)機(jī)帶輪 7.風(fēng)機(jī)右側(cè)帶輪 8.風(fēng)機(jī)左側(cè)帶輪
3.1對(duì)輥半喂入式花生摘果裝置整機(jī)參數(shù)
對(duì)輥半喂入式小區(qū)育種花生摘果裝置如圖5所示,其總體結(jié)構(gòu)與性能參數(shù)見(jiàn)表1。
圖5 對(duì)輥半喂入式小區(qū)育種花生摘果裝置Fig.5 Double-roller semi-feeding peanut picking device for breeding in mini type area
3.2試驗(yàn)材料與儀器設(shè)備
花生摘果試驗(yàn)在沈陽(yáng)農(nóng)業(yè)大學(xué)農(nóng)機(jī)實(shí)驗(yàn)室進(jìn)行,試驗(yàn)材料取自沈陽(yáng)農(nóng)業(yè)大學(xué)花生試驗(yàn)基地,品種為“花育30”。所用試驗(yàn)設(shè)備有SFY60型紅外線快速水分測(cè)定儀(深圳市冠亞電子科技有限公司)、DT2236型數(shù)顯轉(zhuǎn)數(shù)表、恒泰HT1000F型變頻器和雙杰牌電子秤等。
3.3試驗(yàn)方案與結(jié)果
根據(jù)花生摘果關(guān)鍵部件參數(shù)設(shè)計(jì)結(jié)果以及初步的摘果試驗(yàn),選取摘果對(duì)輥重疊距離、摘果對(duì)輥差相角及摘果對(duì)輥轉(zhuǎn)速為試驗(yàn)因素,以摘凈率y1(%)、損傷率y2(%)為指標(biāo),分別進(jìn)行單因素試驗(yàn)和回歸正交旋轉(zhuǎn)組合試驗(yàn)。每組試驗(yàn)進(jìn)行5次,每次試驗(yàn)用花生30株,每次人工手握3株花生,試驗(yàn)結(jié)果取平均值。
表1 對(duì)輥半喂入式小區(qū)育種花生摘果裝置主要參數(shù)Tab.1 Main parameters of double-roller semi-feeding peanut picking device for breeding in mini type area
(1)3種摘果元件的單因素試驗(yàn)
在摘果對(duì)輥重疊距離為10 mm、摘果對(duì)輥差相角為45°和摘果對(duì)輥轉(zhuǎn)速為400 r/min下,花生莢果摘凈率和莢果損傷率分別為:直桿式摘果元件為97.21%和1.03%,弓齒式摘果元件為98.74%和1.09%,矩形齒摘果元件為99.13%和1.14%。摘果元件對(duì)花生植株夾持拉力為:直桿式摘果元件為9.84~18.76 N,弓齒式摘果元件為3.68~5.76 N,矩形齒摘果元件為4.56~7.32 N。
可見(jiàn),直桿式元件的摘果損傷率為1.03%,三者中最低,但摘凈率也最低;矩形齒元件摘凈率最高,為99.13%,但莢果損傷率1.14%為最高;總體比較來(lái)看,3種摘果元件的摘凈率和損傷率差異不顯著。然而,摘果元件對(duì)花生植株夾持拉力差異很大:直桿式高達(dá)9.84~18.76 N,是其余兩種元件的2~3倍,而且變化范圍較大;弓齒式和矩形齒摘果元件之間的植株夾持力比較接近。因此,出于人工作業(yè)安全考慮,選用矩形齒摘果元件進(jìn)行深入試驗(yàn)研究。
(2)矩形齒摘果元件性能正交試驗(yàn)
根據(jù)摘果關(guān)鍵部件設(shè)計(jì)和初步試驗(yàn)結(jié)果,為分析矩形齒式摘果元件的摘果性能,在摘果對(duì)輥重疊距離為-10~30 mm、摘果對(duì)輥差相角35°~55°、摘果對(duì)輥轉(zhuǎn)速350~450 r/min范圍內(nèi),進(jìn)行三元二次回歸正交旋轉(zhuǎn)組合試驗(yàn),因素水平編碼表如表2所示,試驗(yàn)結(jié)果見(jiàn)表3。X1、X2、X3為因素編碼值。
表2 因素水平編碼Tab.2 Coding of level and factor
表3 試驗(yàn)設(shè)計(jì)與結(jié)果Tab.3 Experimental design and results
3.4建立數(shù)學(xué)模型
對(duì)試驗(yàn)數(shù)據(jù)采用Design-Expert軟件進(jìn)行回歸分析,分別得出摘凈率y1(%)和損傷率y2(%)的回歸數(shù)學(xué)模型為
y1=98.98-0.82X1-0.40X2+0.53X3+
0.26X1X2+0.23X1X3+0.12X2X3-
(1)
y2=0.96-0.21X1+0.089X2+0.12X3+
0.016X1X2+0.021X1X3+0.054X2X3+
(2)
為檢查回歸方程的顯著性,對(duì)式(1)進(jìn)行方差分析,結(jié)果見(jiàn)表4。
由表4可知,回歸方程在α=0.05水平上非常顯著且其失擬檢驗(yàn)F=2.85,F(xiàn)0,05(5,8)=3.69,F(xiàn) 表4 方差分析Tab.4 Variance analysis 注:*為顯著,** 為非常顯著。 對(duì)回歸系數(shù)進(jìn)行顯著性檢驗(yàn)分析,剔除不顯著項(xiàng),得到花生莢果摘凈率回歸方程為 y1=98.98-0.82X1-0.40X2+0.53X3- (3) 花生莢果損傷率回歸方程為 y2=0.96-0.21X1+0.089X2+0.12X3+ (4) 3.5試驗(yàn)因素對(duì)花生莢果摘凈率與損傷率的影響 針對(duì)所建立的數(shù)學(xué)模型,應(yīng)用Design-Expert軟件繪制三維因素響應(yīng)曲面效果圖。 如圖6所示,3個(gè)試驗(yàn)因素對(duì)摘凈率的總體影響規(guī)律是:摘果對(duì)輥重疊距離在10 mm左右時(shí)摘凈率較好,摘果對(duì)輥轉(zhuǎn)速在400~425 r/min之間時(shí)摘凈率較高,摘果對(duì)輥差相角在45°左右時(shí)摘凈率較高,3個(gè)試驗(yàn)因素過(guò)大或過(guò)小均會(huì)降低摘果裝置的摘凈率。 如圖7所示,3個(gè)試驗(yàn)因素對(duì)損傷率的總體影響規(guī)律是:摘果對(duì)輥重疊距離在10~20 mm之間損傷率較低,摘果對(duì)輥差相角在45°左右時(shí)損傷率較低,摘果對(duì)輥轉(zhuǎn)速越小,損傷率越低。 圖7 3種試驗(yàn)因素對(duì)損傷率的影響Fig.7 Impact of three different factors on breaking rate 3.6最佳參數(shù)組合與驗(yàn)證試驗(yàn) 為求得花生摘果裝置最佳工藝參數(shù),采用多目標(biāo)非線性優(yōu)化理論方法,進(jìn)行回歸方程優(yōu)化分析,目標(biāo)函數(shù)為 (5) 約束條件為 (6) 通過(guò)現(xiàn)有回歸方程對(duì)其進(jìn)行優(yōu)化求解,可得摘果裝置最優(yōu)工藝參數(shù)如表5所示。 表5 試驗(yàn)因素參數(shù)優(yōu)化結(jié)果Tab.5 Results of optimized parameters 將因素優(yōu)化組合進(jìn)行圓整:摘果對(duì)輥重疊距離為10 mm、摘果對(duì)輥差相角為45°、摘果對(duì)輥轉(zhuǎn)速為400 r/min,在相同試驗(yàn)條件下進(jìn)行試驗(yàn),測(cè)得摘凈率為98.96%,損傷率為1.03%,試驗(yàn)值與理論值擬合較好。 (1)針對(duì)育種花生品種多、小區(qū)處理多、小區(qū)產(chǎn)量小、品種之間和小區(qū)之間花生不能混雜的特點(diǎn)與要求,提出采用直桿式、弓齒式及矩形齒式3種摘果元件的半喂入對(duì)輥摘果方案,設(shè)計(jì)出對(duì)輥半喂入式小區(qū)育種花生摘果裝置。 (2)通過(guò)樣機(jī)試驗(yàn)表明,摘果元件以矩形齒式為最佳,摘果齒相互交錯(cuò),通過(guò)逐漸、多次作用將花生莢果摘下,不但花生莢果摘凈率高、損傷率低,而且摘果過(guò)程中拉力小而均勻,沒(méi)有安全隱患。 (3)進(jìn)行對(duì)輥半喂入式小區(qū)育種花生摘果裝置性能試驗(yàn),得到優(yōu)化后摘果裝置最佳參數(shù)組合為:摘果對(duì)輥重疊距離10 mm、摘果對(duì)輥差相角45°、摘果對(duì)輥轉(zhuǎn)速400 r/min。此條件下試驗(yàn)測(cè)得摘凈率為98.96%,損傷率為1.03%。性能試驗(yàn)結(jié)果表明摘果裝置作業(yè)性能良好,能夠顯著提高育種花生摘果作業(yè)效率。 1王東偉,尚書(shū)旗,韓坤. 4HJL-2型花生聯(lián)合收獲機(jī)摘果機(jī)構(gòu)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(14):15-25. WANG Dongwei, SHANG Shuqi, HAN Kun. Design and test of picking mechanism in 4HJL-2 peanut combines[J]. Transactions of the CSAE, 2013,29(14):15-25. (in Chinese) 2徐繼康,楊然兵,李瑞川,等.半喂入花生收獲機(jī)除膜摘果裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(增刊):88-93. XU Jikang, YANG Ranbing, LI Ruichuan, et al. Design and experiment of film removing and peanut picking device for half-feeding harvester[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(Supp.):88-93. (in Chinese) 3楊然兵,許玉鳳,梁潔,等.花生機(jī)械收獲中根、莖、果節(jié)點(diǎn)的力學(xué)試驗(yàn)與分析(英文)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(9):127-132. YANG Ranbing, XU Yufeng, LIANG Jie, et al. Tests and analyses of mechanical properties of peanut root, stem and nut node in mechanical harvest[J]. Transactions of the CASE, 2009, 25(9): 127-132. (in Chinese) 4王東偉,尚書(shū)旗,趙大軍,等.4HBL-4型二壟四行半喂入自走式花生聯(lián)合收獲機(jī)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(10):86-92 WANG Dongwei, SHANG Shuqi, ZHAO Dajun, et al. Type 4HBL-4 two-ridges and four-lines semi-feeding self-propelled peanut combine harvestert[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(10):86-92. (in Chinese) 5尚書(shū)旗,李國(guó)瑩,楊然兵,等.4HQL-2型全喂入花生聯(lián)合收獲機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009, 25(6):125-130. SHANG Shuqi, LI Guoying, YANG Ranbing, et al. Development of 4HQL-2 type whole-feed peanut combine[J]. Transactions of the CSAE, 2009, 25(6):125-130. (in Chinese) 6王曉燕,梁潔,尚書(shū)旗,等.半喂入式花生摘果試驗(yàn)裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(9):94-98. WANG Xiaoyan, LIANG Jie, SHANG Shuqi, et al. Design and experiment of half feeding type peanut picker[J]. Transactions of the CSAE ,2008,24(9):94-98. (in Chinese) 7胡志超,王海鷗,王建楠,等.4HLB-2型半喂入花生聯(lián)合收獲機(jī)試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(4):79-84. HU Zhichao, WANG Haiou, WANG Jiannan, et al. Experiment on 4HLB-2 type half feed peanut combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(4):79-84. (in Chinese) 8胡志超,彭寶良,尹文慶,等.4LH2型半喂入自走式花生聯(lián)合收獲機(jī)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(3):148-153. HU Zhichao, PENG Baoliang, YIN Wenqing, et al. Design of 4LH2 type half-feed and self-propelled peanut combine[J]. Transactions of the CSAE, 2008,24(3):148-153. (in Chinese) 9高連興,李獻(xiàn)奇,關(guān)萌,等.雙吸風(fēng)口振動(dòng)式花生莢果清選裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3):110-117. GAO Lianxing, LI Xianqi, GUAN Meng, et al. Design and test on cleaning device of peanut pods with double air-suction inlets with vibration screen[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(3):110-117. (in Chinese) 10關(guān)萌,沈永哲,高連興,等.花生起挖晾曬后的果柄機(jī)械特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(2):87-93. GUAN Meng, SHEN Yongzhe, GAO Lianxing, et al. Mechanical properties of peanut peg after dinging and drying[J]. Transactions of the CSAE,2014,30(2):87-93. (in Chinese) 11關(guān)萌,陳中玉,高連興,等.多功能組合式全喂入花生摘果試驗(yàn)裝置[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(11):88-94. GUAN Meng, CHEN Zhongyu, GAO Lianxing, et al. Multifunctional modular full-feeding peanut picking testing device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(11):88-94. (in Chinese) 12GUAN Meng, ZHAO Baoquan, GAO Lianxing, et al. Effect of curing time on moisture content and mechanical properties of peanut pods[J]. International Agricultural Engineering Journal, 2015,24(2):1-8. 13關(guān)萌.全喂入花生摘果試驗(yàn)裝置與摘果機(jī)關(guān)鍵部件研究[D]. 沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2015. GUAN Meng. Research on picking methods and key components of full-feeding peanut picker[D]. Shenyang:Shenyang Agricultural Univercity,2015. (in Chinese) 14胡志超.半喂入花生聯(lián)合收獲機(jī)關(guān)鍵技術(shù)研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2011. HU Zhichao. Study on key technologies of half-feed peanut combine harvester[D]. Nanjing: Nanjing Agricultural University,2011. (in Chinese) 15呂小蓮,胡志超,張延化.半喂入式花生摘果機(jī)的設(shè)計(jì)與性能測(cè)試[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,34(3):124-129. Lü Xiaolian, HU Zhichao, ZHANG Yanhua. Design and performance testing of the half-feed peanut picker[J]. Journal of Huazhong Agricultural University, 2015,34(3):124-129.(in Chinese) 16胡志超,王海鷗,彭寶良,等.半喂入花生摘果裝置優(yōu)化設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(增刊):131-136. HU Zhichao, WANG Haiou, PENG Baoliang, et al. Optimized design and experiment on semi-feeding peanut picking device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(Supp.):131-136. (in Chinese) Design and Experiment of Double-roller Semi-feeding Peanut Picking Device for Breeding in Mini Type Area Gao Lianxing1,2Su Zhan1Chen Zhongyu1,3Liu Zhixia1Lü Changyi1Li Hua1 (1.CollegeofEngineering,ShenyangAgriculturalUniversity,Shenyang110866,China2.PeanutInstitute,ShenyangAgriculturalUniversity,Shenyang110866,China3.CollegeofAutomotiveEngineering,YanchengInstituteofIndustryTechnology,Yancheng224005,China) Peanut breeding in mini area has the characteristics of various varieties, many deals in mini area, little yield and no mixed peanut in mini area and in variety. In order to solve the problems of time and working consuming, lower efficacy and easy to mix in artificial harvesting, an overall scheme of semi-feeding peanut picking device was proposed. The structure of staggered matched stack form and the picking parts, including reinforced type, bow tooth and rectangular tooth with adjustable swing diameters were adopted. The structure and parameters of peanuts picking parts were designed. Preliminary experiment was carried out for choosing eventual form of picking parts. The main peanut varieties “huayu30” in Liaoning province were selected as test materials, through orthogonal experiment analysis, the three parameters: picking roller rotating speed, angle of picking roller and overlap distance of picking roller were selected as experimental factors, peanut picking rate and peanut breaking rate were selected as experimental indexes. The structure and working parameter of threshing performance were optimized. Experimental results indicated that picking roller rotating speed, angle of picking roller and the overlap distance of picking roller all had significant impact on peanut picking rate and peanut breaking rate. The most optimum combination index of the picking roller rotating speed was 400 r/min, the angle of picking roller was 45° and the overlap distance of picking roller was 10 mm. The results of the analysis of the peanut picking rate was 98.96% and the peanut breaking rate was 1.03%. breading peanut; picking device; semi-feeding; double-roller 10.6041/j.issn.1000-1298.2016.09.014 2016-01-06 2016-05-03 國(guó)家自然科學(xué)基金項(xiàng)目(51575367)和高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金項(xiàng)目(20122103110009) 高連興(1958—),男,教授,博士生導(dǎo)師,主要從事農(nóng)產(chǎn)品收獲與加工機(jī)械研究,E-mail: lianxing_gao@126.com S225 A 1000-1298(2016)09-0093-064 結(jié)論