阿如娜 套格圖桑
(內(nèi)蒙古師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院, 呼和浩特 010022)
?
長(zhǎng)短波相互作用方程組的無(wú)窮序列新解?
阿如娜?套格圖桑
(內(nèi)蒙古師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院, 呼和浩特010022)
本文對(duì)長(zhǎng)短波相互作用方程組作行波變換后轉(zhuǎn)化成第一種橢圓方程,利用第一種橢圓方程的解和B?cklund變換,構(gòu)造了長(zhǎng)短波相互作用方程組的無(wú)窮序列新解.這里包括了橢圓函數(shù)解、雙曲函數(shù)解、指數(shù)函數(shù)解和有理函數(shù)解.
第一種橢圓方程,無(wú)窮序列新解,B?cklund變換
引言
(1)
這里ψ(x,t)便是長(zhǎng)波的振幅,v(x,t)表示短波包絡(luò).
一直以來(lái),有許多關(guān)于長(zhǎng)短波相互作用方程組的研究.如,文獻(xiàn)[2]中利用F-展開(kāi)法獲得了方程(1)的由Jacobi橢圓函數(shù)表示的周期波解;文獻(xiàn)[3]中推廣了Jacobi橢圓函數(shù)展開(kāi)法[4]得到了長(zhǎng)短波相互作用方程的準(zhǔn)確包絡(luò)周期解;文獻(xiàn)[5]中利用多項(xiàng)式完全判別系統(tǒng)方法[6-12]得到了方程(1)的所有單行波解的分類(lèi),這些解包括三角函數(shù)、雙曲函數(shù)和橢圓函數(shù)解.
文獻(xiàn)[5]獲得了長(zhǎng)短波交互系統(tǒng)的由三角函數(shù)、雙曲函數(shù)和橢圓函數(shù)組成的有限多個(gè)解.本文通過(guò)行波變換,將方程(1)轉(zhuǎn)換成了第一種橢圓方程,進(jìn)而利用第一種橢圓方程的解和B?cklund變換構(gòu)造了方程(1)的無(wú)窮序列新解.
1.1第一種橢圓方程(2)的解
(2)
文獻(xiàn)[13]給出第一種橢圓方程(2)的下列解.
情況1.當(dāng)A=1,B=-1-k2,C=k2時(shí),(3)~(4)式是第一種橢圓方程(2)的解:
(3)
(4)
情況2.當(dāng)A=1-k2,B=2k2-1,C=-k2時(shí),得到第一種橢圓方程(2)的如下解:
(5)
情況3.當(dāng)A=-1+k2,B=2-k2,C=-1時(shí),獲得了第一種橢圓方程(2)的下列解:
(6)
情況4.當(dāng)A=0時(shí),獲得了第一種橢圓方程(2)的如下形式的解:
(7)
(8)
(9)
情況5.當(dāng)B2-4AC=0時(shí),得到第一種橢圓方程(2)的如下解:
(10)
(11)
情況6.當(dāng)A=B=0時(shí),(12)式是第一種橢圓方程(2)的解:
(12)
1.2第一種橢圓方程的B?cklund變換
若zn-1(ξ)(n=1,2,…)是第一種橢圓方程(2)的解,則下列zn(ξ)(n=1,2,…)也是第一種橢圓方程(2)的解.
(13)
(B2-4AC=0),
(14)
(A=B=0).
(15)
其中SL<0,l,m,g,f,r是任意常數(shù),A,B和C是方程(2)的系數(shù).
對(duì)方程(1)作行波變換
(16)
后,得到如下方程
c=2p,
(17)
(18)
u″(ξ)-u(ξ)v(ξ)-(p+q2)u(ξ)=0,
(19)
這里p,q和c是待定常數(shù),h是積分常數(shù).
將式(18)代入式(19),化簡(jiǎn)后用u′(ξ)乘以方程的兩邊,并對(duì)ξ積分一次后得到下列方程
(u′(ξ))2=a+bu2(ξ)+du4(ξ),
(20)
觀察方程(20)后得知,方程(20)是第一種橢圓方程.由上面提到的第一種橢圓方程(2)的解和B?cklund變換可得到方程(20)的無(wú)窮序列新解.
情況1.長(zhǎng)短波相互作用方程組(1)的橢圓函數(shù)型無(wú)窮序列解
通過(guò)下列迭代公式可得到長(zhǎng)短波相互作用方程組(1)的橢圓函數(shù)型無(wú)窮序列解.
(21)
情況2.長(zhǎng)短波相互作用方程組(1)的雙曲函數(shù)型無(wú)窮序列解
利用以下公式,可構(gòu)造長(zhǎng)短波相互作用方程組(1)的雙曲函數(shù)型無(wú)窮序列解.
(22)
情況3.長(zhǎng)短波相互作用方程組(1)的指數(shù)函數(shù)型無(wú)窮序列解
由式(11),(14),(16)和(17),可得到長(zhǎng)短波相互作用方程組(1)的指數(shù)函數(shù)型無(wú)窮序列解.
(23)
情況4.長(zhǎng)短波相互作用方程組(1)的有理函數(shù)型無(wú)窮序列解
通過(guò)下列疊加公式,可獲得長(zhǎng)短波相互作用方程組(1)的有理函數(shù)型無(wú)窮序列解.
(24)
SL<0,l,m,g,f,r,p,q,h,c是任意常數(shù),a,b和d是方程(20)的系數(shù).
文獻(xiàn)[5]得到了長(zhǎng)短波相互作用方程組(1)的三角函數(shù)、雙曲函數(shù)和橢圓函數(shù)解,也包含了文獻(xiàn)[1]中獲得的解.本文利用行波變換將長(zhǎng)短波相互作用方程組(1)轉(zhuǎn)化成了第一種橢圓方程,進(jìn)而利用第一種橢圓方程的解和B?cklund變換構(gòu)造了長(zhǎng)短波相互作用方程組(1)的橢圓函數(shù)型、雙曲函數(shù)型、指數(shù)函數(shù)型和有理函數(shù)型的無(wú)窮序列新解.
1Bekir A, Ayhan B, Ozer M N. Explicit solutions of nonlinear wave equation systems.ChinesePhysicsB,2013,22(1):010202~010208
2聶慧,王明亮. 長(zhǎng)短波相互作用方程組的周期波解.河南科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,26(1): 0087~0090 (Nie H, Wang M L. Periodic wave solutions for long-short wave interaction equations.JournalofHenanUniversityofScienceandTechnology(NaturalScience),2005,26(1):0087~0090 (in Chinese))
3周?chē)?guó)中,郭冠平. 長(zhǎng)短波相互作用方程Jacobi橢圓函數(shù)新的展開(kāi)法求解. 浙江師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,28(1):25~28 (Zhou G Z, Guo G P. The new Jacobi elliptic function expansion method by the long-short wave interaction equation.JournalofZhejiangNormalUniversity(NaturalScience), 2005,28(1):25~28 (in Chinese))
4高翔,化存才. 時(shí)變系數(shù)下耦合KdV和Burgers方程組的孤波解, 動(dòng)力學(xué)與控制學(xué)報(bào),2014,12(4):295~303 (Gao X, Hua C C. Solitary wave solutions for coupled kdv-burgers equations with variable coefficients.JournalofDynamicsandControl,2014,12(4):295~303 (in Chinese))
5Fan H L, Fan X F, Li X. On the exact solutions to the long-short-wave interaction system.ChinesePhysicsB,2014,23(2):25~28
6Liu C S. Classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation.CommunicationsinTheoreticalPhysics, 2007,48(4):601~604
7Liu C S. All single traveling wave solutions to (3+1)-dimensional Nizhnok-Novikov-Veselov equation.CommunicationsinTheoreticalPhysics, 2006,45(6):991~992
8Liu C S. The classification of travelling wave solutions and superposition of multi-solutions to camassa-holm equation with dispersion.ChinesePhysics, 2007,16(7):1832~1837
9Liu C S. Representations and classification of traveling wave solutions to sinh-GSrdon equation.CommunicationsinTheoreticalPhysics, 2008,49(1):153~158
10Liu C S. Solution of ODEu″+p(u)(u′)2+q(u)=0 and applications toclassifications of all single travelling wave solutions to nonlinear mathematical physics equations.CommunicationsinTheoreticalPhysics, 2008,49(2):291~296
11Liu C S. Travelling wave solutions of triple sine-gordon equation.ChinesePhysicsLetters,2004,21(12):2369~2371
12Liu C S. Exact travelling wave solutions for (1+1)-dimensional dispersive long wave equation.ChinesePhysics,2005,14(9):1710~1715
13套格圖桑. 論非線性發(fā)展方程求解中輔助方程法的歷史演進(jìn). 北京:中央民族大學(xué)出版社,2012:328~331 (Taogetusang. Historical evolution of auxiliary equation method for solving nonlinear evolution equations. Beijing: The press of the minzu university of China, 2012,328~331(in Chinese))
*Project supported by the Natural Natural Science Foundation of China(11361040),the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region, China(NJZY16180) and the Natural Science Foundation of Inner Mongolia Autonomous Region,China(2015MS0128)
? Corresponding author E-mail: 369708905@qq.com
09 December 2014,revised 10 August 2015.
NEW INFINITE SEQUENCE SOLUTIONS OF LONG-SHORT-WAVE INTERACTION EQUATIONS?
Aruna?Taogetusang
(CollegeofMathematicalScience,InnerMongoliaNormalUniversity,Huhhot010022,China)
The paper firstly obtained the first kind of elliptic equation for the long-short-wave interaction equations through travelling wave transformation. Based on the solutions and B?cklund transformation of the first kind of elliptic equation, the new infinite sequence solutions of the long-short-wave interaction equations were constructed, including the Jacobi elliptic function, hyperbolic function, exponential function and rational function.
the first kind of elliptic equation,new infinite sequence solutions,B?cklund transformation
E-mail: 369708905@qq.com
10.6052/1672-6553-2015-076
2014-12-09收到第1稿,2015-08-10收到修改稿.
*國(guó)家自然科學(xué)基金資助項(xiàng)目(11361040)、內(nèi)蒙古自治區(qū)高等學(xué)校科學(xué)研究基金(NJZY16180)和內(nèi)蒙古自治區(qū)自然科學(xué)基金資助(2015MS0128)