諶茜
摘 要 本文結(jié)合肺部的解剖學(xué)和生理學(xué)特征以及肺結(jié)核的病理學(xué)特征重點(diǎn)闡釋了抗結(jié)核藥物肺部遞送的優(yōu)勢(shì)和應(yīng)關(guān)注的問(wèn)題。通過(guò)近幾年若干肺部遞送抗結(jié)核藥物的研究實(shí)例說(shuō)明了肺結(jié)核治療的這一新途徑的可行性。
關(guān)鍵詞 肺結(jié)核 肺部遞送 巨噬細(xì)胞靶向 空氣動(dòng)力學(xué)直徑
中圖分類號(hào):R943; R521 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-1533(2016)17-0071-07
A new direction for tuberculosis treatment— the pulmonary delivery of anti-tuberculosis drugs
CHEN Xi*(Sichuan Nursing Vocational College, Chengdu 610100, China)
ABSTRACT This review highlights the advantages of the pulmonary delivery of anti-TB agents and the associated concerns based on the understanding of the characteristics of both the anatomy and physiology of the lung and the TB pathology. The feasibility of this new drug delivery approach has been recently proven by some case-studies on the pulmonary delivery of anti-TB agents.
KEY WORDS tuberculosis; pulmonary delivery; macrophage targeting; aerodynamic diameter
肺結(jié)核是一種由空氣中結(jié)核分枝桿菌引起的細(xì)胞內(nèi)感染性疾病,是一種慢性傳染性疾病。目前肺結(jié)核的治療仍呈現(xiàn)巨大的挑戰(zhàn),一方面是由于過(guò)長(zhǎng)的治療周期,另一方面是復(fù)雜的多種藥物療法帶來(lái)的不可預(yù)知的不良反應(yīng)。將抗結(jié)核藥物通過(guò)感染途徑直接遞送至呼吸系統(tǒng)似乎是一種較為合理的手段。它可避免藥物的首過(guò)效應(yīng),降低藥物導(dǎo)致的全身不良反應(yīng),也為提高藥物對(duì)病灶的靶向作用創(chuàng)造了條件。
1 呼吸系統(tǒng)
1.1 呼吸系統(tǒng)的解剖學(xué)及生理學(xué)基礎(chǔ)
呼吸系統(tǒng)可以被分為兩個(gè)功能區(qū)域,即呼吸道和肺部。呼吸道由鼻腔,咽,喉,氣管,支氣管和各級(jí)支氣管分支組成,是氣體進(jìn)出肺部的通道。這個(gè)部分類似于一棵樹(shù)的樹(shù)干和樹(shù)枝。肺部則包含呼吸性細(xì)支氣管,肺泡管,肺泡囊以及肺泡。呼吸道最遠(yuǎn)端的終端細(xì)支氣管分支為呼吸性細(xì)支氣管,其進(jìn)一步細(xì)分為肺泡管,肺泡囊和肺泡。氣體交換就發(fā)生在肺泡部分。與呼吸道相比,肺部更像是一棵樹(shù)的葉子。
人體呼吸道的表面積約為2~3 m2,而肺泡的表面積則高達(dá)100 m2左右[1]。除了表面積上巨大差異外,兩個(gè)主要的功能區(qū)域的上皮組織結(jié)構(gòu)也存在著顯著的差異。呼吸道包含自上而下由逐漸變細(xì)的上皮組織,人體支氣管(human bronchi)上皮細(xì)胞直徑約為3~5 mm,而終端細(xì)支氣管(terminal bronchioles)的上皮細(xì)胞僅有0.5~1 mm[1],其上均覆蓋著用于保護(hù)的黏液層(圖1)。與此相比,肺泡(alveoli)則是由直徑更小的單層上皮細(xì)胞組成。除了上皮組織直徑上的明顯差異外,由支氣管至肺泡上的上皮組織厚度也從約70 μm驟降至0.1~0.2 μm,這同時(shí)也就表明由肺入血的生物學(xué)屏障在逐漸變薄[3]。
在肺泡中,單層的上皮組織主要由肺泡1型細(xì)胞組成,其約覆蓋肺泡表面積的96%。除此之外,分布于肺泡囊中心的主要是肺泡1型母細(xì)胞及少量能產(chǎn)生肺部表面活性劑的肺泡2型細(xì)胞[4]。肺部表面活性劑構(gòu)成了覆蓋于肺泡上皮組織的內(nèi)襯層。在氣體交換的表面則由肺部巨噬細(xì)胞“巡邏”(每5億個(gè)肺泡有12~14個(gè)巨噬細(xì)胞)[5],它們主要負(fù)責(zé)吞噬和消化異源顆粒、過(guò)多的表面活性劑、病毒和細(xì)菌[6]。
1.2 適于肺部遞送顆粒的基礎(chǔ)要求
吸入的顆粒在呼吸系統(tǒng)中沉降的位置主要基于顆粒的空氣動(dòng)力學(xué)直徑,這一參數(shù)主要由顆粒的幾何學(xué)直徑、密度及形狀決定[7]。圖2直觀地闡釋了顆粒的空氣動(dòng)力學(xué)直徑對(duì)其在呼吸道中沉降位置的影響。根據(jù)圖中的曲線可以看出,通過(guò)制備不同空氣動(dòng)力學(xué)直徑的顆??梢杂行У乜刂扑鼈?cè)诤粑赖某两滴恢?,從而達(dá)到理想的治療效果。例如,如果藥物顆粒需要被遞送的肺泡區(qū)域(alveolar region),1~5 μm,特別是3 μm的顆粒是較為理想的。另一方面,如果藥物的靶點(diǎn)在呼吸道(airways)中,空氣動(dòng)力學(xué)直徑為5~10 μm的顆粒最為理想。
在設(shè)計(jì)吸入藥物時(shí),除了顆粒的沉降位置,顆粒的清除機(jī)制也應(yīng)充分考慮。沉降在呼吸系統(tǒng)中的顆粒被清除的機(jī)制主要取決于其幾何學(xué)直徑、沉降位置和在呼吸系統(tǒng)液體中的溶解度[4]。無(wú)論是吸收還是非吸收的清除方式,不溶的吸入顆粒首先接觸的是呼吸道中的黏液層或是肺泡中的內(nèi)襯液層。盡管巨噬細(xì)胞也少量分布于呼吸道中[6,9],但在此區(qū)域中的不溶顆粒的主要清除方式是黏液纖毛清除[10]。這種清除方式可以保證大多數(shù)不溶顆粒在24~48 h內(nèi)被清除[11-12]。然而一些納米顆粒在沉降到呼吸道遠(yuǎn)端后,可能會(huì)通過(guò)那里較薄的黏液層從而避免被黏膜纖毛清除[9]。沉降到肺泡區(qū)域的不溶顆粒,其主要的清除方式是巨噬細(xì)胞的吞噬[13]。而巨噬細(xì)胞的攝取取決于顆粒大小。一般來(lái)說(shuō),1~3 μm的顆粒是最易被巨噬細(xì)胞識(shí)別和吞噬的[14-15]。那些更小的納米顆??赡苤饕c非吞噬的上皮細(xì)胞相作用[16],或穿過(guò)較薄的上皮細(xì)胞進(jìn)入血液。之前有研究表明幾何學(xué)直徑為10~20 μm的多孔顆??梢猿两翟谏罘螀^(qū)域并能有效地避免巨噬細(xì)胞的吞噬[17-18]。對(duì)于那些在一個(gè)軸線上大于20 μm的顆粒,如納米纖維,太長(zhǎng)而不能被巨噬細(xì)胞(細(xì)胞直徑大多為15~20 μm)攝取。上述的這些不能被清除的顆??赡軙?huì)在肺中滯留數(shù)月或數(shù)年,甚至?xí)鹨恍┓翘禺愋缘姆尾垦装Y反應(yīng)[19-20]??偟膩?lái)看,基于不用的治療目的,在設(shè)計(jì)吸入藥物時(shí)均應(yīng)考慮顆粒的沉降位置和清除方式。
2 肺結(jié)核
2.1 肺結(jié)核的流行病學(xué)
肺結(jié)核是由結(jié)核分枝桿菌引起的一種慢性傳染性細(xì)菌疾病。根據(jù)聯(lián)合國(guó)衛(wèi)生組織在2013發(fā)布的全球結(jié)核病報(bào)告,2012年新增結(jié)核病人約860萬(wàn),其中約130萬(wàn)死亡病例[21]。近些年,人類免疫缺陷病毒(human immunodeficiency virus, HIV)的傳播促使了結(jié)核病的發(fā)展。2012年130萬(wàn)結(jié)核病死亡病例中就有30萬(wàn)是由艾滋病引發(fā)的[21]。除此之外,多重耐藥菌株(multi-drug resistant strain, MDR strain),即至少對(duì)利福平和異煙肼兩種一線抗結(jié)核藥物耐藥的菌株[22],和最近出現(xiàn)的廣泛耐藥菌株(extensively drug resistant strain, XDR strain), 即在多重耐藥菌株的基礎(chǔ)上對(duì)奎諾酮類抗生素和至少一種可注射的二線抗結(jié)核病藥物耐藥的新型菌株[23],使得肺結(jié)核的治療變得更為復(fù)雜和困難。
2.2 肺結(jié)核的發(fā)病機(jī)制
結(jié)核分枝桿菌能夠感染人體的很多器官,包括骨,腦膜,泌尿系統(tǒng)及皮膚。但據(jù)估計(jì)超過(guò)80%的結(jié)核分枝桿菌的感染發(fā)生在肺部[24],而且肺部的頂端是易感染部位。因此,肺結(jié)核的發(fā)病機(jī)制將在下面的內(nèi)容中被重點(diǎn)討論。
結(jié)核分枝桿菌在肺中的生命周期如圖3所示。細(xì)菌的感染始于帶有細(xì)菌的并且具有合適的空氣動(dòng)力學(xué)直徑的液滴在肺部的沉降[26]。據(jù)估計(jì)最小的感染數(shù)量?jī)H為1個(gè)結(jié)核分枝桿菌[25]。入侵的細(xì)菌進(jìn)入肺泡部位后將會(huì)被肺泡巨噬細(xì)胞識(shí)別和吞噬。除了巨噬細(xì)胞,在感染的初始階段體內(nèi)專職的抗原呈遞細(xì)胞(antigen presenting cells, APCs),如樹(shù)突狀細(xì)胞,也會(huì)與侵入的結(jié)核分枝桿菌相作用[27]。由于結(jié)核分枝桿菌的特殊性,被巨噬細(xì)胞吞噬的細(xì)菌不僅能有效地避免被溶酶體分解而且可以在巨噬細(xì)胞內(nèi)復(fù)制新個(gè)體[28-29]。被感染的巨噬細(xì)胞會(huì)向上皮組織擴(kuò)散,從而引起來(lái)自血管內(nèi)單核細(xì)胞數(shù)量的增加。這些單核細(xì)胞與被感染的巨噬細(xì)胞一起形成了早期的感染灶(granuloma),這也是肺結(jié)核最明顯的病理學(xué)特質(zhì)。盡管對(duì)這一結(jié)構(gòu)的認(rèn)識(shí)尚不夠明確,但有理由相信這是一種不同的免疫細(xì)胞(特別是T細(xì)胞和巨噬細(xì)胞)圍繞被感染的巨噬細(xì)胞的特殊結(jié)構(gòu)[30]。細(xì)菌在巨噬細(xì)胞內(nèi)快速?gòu)?fù)制之后,感染灶將會(huì)被新形成的纖維結(jié)構(gòu)包裹。與此同時(shí),通過(guò)感染灶的血管數(shù)量驟減,使得結(jié)構(gòu)內(nèi)出現(xiàn)低氧狀態(tài)從而抑制細(xì)菌的復(fù)制。隨著空穴在感染灶內(nèi)的增加,灶內(nèi)開(kāi)始逐漸塌陷壞死,結(jié)核分枝桿菌重新被釋放到呼吸體統(tǒng)中,從而開(kāi)始新的周期。
2.3 肺結(jié)核的現(xiàn)行治療方式及限制
肺結(jié)核的治療目標(biāo)包括防止復(fù)發(fā)的治愈、傳染源的控制及耐藥性的預(yù)防[23,31]。為實(shí)現(xiàn)這些目標(biāo),長(zhǎng)時(shí)間地服用多種抗結(jié)核藥物時(shí)必須的??诜股厥侵委熀涂刂品谓Y(jié)核的標(biāo)準(zhǔn)方式。目前一線抗結(jié)核病藥物包括利福平(rifampicin, RIF)、異煙肼(isoniazid, INH)、吡嗪酰胺(pyrazinamide, PZA)和乙胺丁醇(ethambutol, EMB)。世界衛(wèi)生組織(WHO)推薦的結(jié)核病治療方式要求多重藥物療法[32],包括①在初始期的兩個(gè)月每日服用RIF,INH,PZA和EMB;②在之后的四個(gè)月每日或每周三次服用RIF和INH;③對(duì)于多重耐藥肺結(jié)核的治療,WHO建議長(zhǎng)達(dá)20個(gè)月服用多種一線及二線抗結(jié)核病藥物[22]。如此長(zhǎng)的治療周期和復(fù)雜的療法將會(huì)帶來(lái)不可預(yù)知的不良反應(yīng)及不理想的病人順應(yīng)性[33]。因此,對(duì)現(xiàn)行肺結(jié)核療法的改進(jìn)應(yīng)聚焦到如何縮短治療周期和降低藥物不良反應(yīng)上。
3 肺部遞送藥物在肺結(jié)核治療中的優(yōu)勢(shì)
與肺部遞送抗結(jié)核藥物相比,口服需要經(jīng)歷胃腸道的降解和首過(guò)效應(yīng)的代謝。盡管在口服和注射抗結(jié)核藥物后,可達(dá)到理想的血藥濃度,但這并不表示可將足夠的藥物量遞送至病灶部位。為了到達(dá)作用靶點(diǎn),抗結(jié)核藥物必須從血管中轉(zhuǎn)移至感染灶。在新生感染灶中血管量豐富,尚可為藥物的遞送提供充足的機(jī)會(huì)。但發(fā)展到后期的感染灶中血管量驟減,藥物必須通過(guò)血液進(jìn)入感染灶,之后擴(kuò)散至空穴中,再穿過(guò)富含脂質(zhì)的結(jié)核分枝桿菌細(xì)胞膜,最終與其作用靶點(diǎn)相結(jié)合(圖4)。在后期的感染灶中存在著大量的停止復(fù)制的細(xì)菌,而匱乏的血流量卻不能將足夠的藥物量遞送至此。因此,選用合適的肺部藥物遞送體統(tǒng)不僅能在減少全身藥物量的前提下實(shí)現(xiàn)較高的局部藥物濃度[35-36],而且可以靶向作用于那些被細(xì)菌感染的巨噬細(xì)胞。
首先,靶向作用于巨噬細(xì)胞的前提是將載有藥物的顆粒遞送至感染部位(肺泡區(qū)域)。根據(jù)以前的結(jié)論,載有藥物的顆粒應(yīng)具有1~5 μm(最優(yōu)為3 μm)的空氣動(dòng)力學(xué)直徑才能保證可有效沉降于肺泡區(qū)域。其次,當(dāng)顆粒沉降至肺泡區(qū)域之后,它們應(yīng)較易被細(xì)菌感染的巨噬細(xì)胞識(shí)別并吞噬。幾何學(xué)直徑1~3 μm的顆粒較易被肺泡內(nèi)的巨噬細(xì)胞吞噬。圖5闡釋了載有利福平的聚乳糖-羥基乙酸共聚物〔Poly(lactic-co-glycolic) acid, PLGA〕顆粒(平均直徑為2 μm)被巨噬細(xì)胞吞噬的效率。數(shù)據(jù)顯示,在相同的藥物濃度下,利用顆粒包裹的藥物遞送系統(tǒng)相比于單純的藥物溶液對(duì)巨噬細(xì)胞具有更高的遞送效率。有趣的是,有研究表明被感染的巨噬細(xì)胞吞噬顆粒的能力較未感染的巨噬細(xì)胞高[38],這為靶向遞送抗結(jié)核藥物提供了更大的可能。
根據(jù)以上兩點(diǎn),為了實(shí)現(xiàn)肺部遞送并靶向作用于巨噬細(xì)胞,載有藥物的最適宜顆粒應(yīng)該具有1~5 μm的空氣動(dòng)力學(xué)直徑和1~3 μm的幾何學(xué)直徑。如果使用的輔料密度低于水的密度(1 g/cm3),如一些脂質(zhì)材料,忽略其形狀等因素的考慮,則顆粒的空氣動(dòng)力學(xué)直徑可能會(huì)略小于其幾何學(xué)直徑,這與我們想要的結(jié)果是不一致的。在此種情況下應(yīng)考慮一些特殊的顆粒制備技術(shù),如噴霧干燥和冷凍干燥技術(shù)。另外,由于顆粒沉降后將會(huì)直接與水環(huán)境相接觸,為確保藥物能被巨噬細(xì)胞細(xì)胞吞噬,水不溶性材料可能更為合適。當(dāng)然,除了顆粒大小和材質(zhì)還有很多方面會(huì)影響巨噬細(xì)胞的選擇性吞噬,文獻(xiàn)在這方面做了很好的總結(jié)[39]。
4 用于治療肺結(jié)核的吸入藥物顆粒
近年來(lái),通過(guò)肺部遞送的方式來(lái)治療肺結(jié)核引起了廣泛的關(guān)注,特別是以干粉吸入劑的形式進(jìn)行遞送。用于肺部遞送的粉末顆粒應(yīng)具有良好的粉末學(xué)性質(zhì)(如良好的粉末流動(dòng)性),合適的空氣動(dòng)力學(xué)直徑,并且能被肺部巨噬細(xì)胞選擇性攝取。表1中列出了近4年來(lái)一些通過(guò)肺部遞送方式來(lái)治療肺結(jié)核的文獻(xiàn)信息。
5 展望
基于對(duì)呼吸系統(tǒng)生理學(xué)和肺結(jié)核病理學(xué)的認(rèn)識(shí),肺部遞送抗結(jié)核藥物為肺結(jié)核的治療提供了新的途徑。就制劑方面而言,為實(shí)現(xiàn)安全高效的治療目的,選擇合適的遞送系統(tǒng)顯得尤為重要。近幾年來(lái),對(duì)于遞送顆粒的制備及輔料的選擇,學(xué)術(shù)界已經(jīng)進(jìn)行了深入地研究,但劑型的臨床前研究仍顯不足。在未來(lái)的研究中,基于肺部遞送抗結(jié)核藥物的可行性、制劑技術(shù)及臨床前研究的工作應(yīng)給予更多的關(guān)注。
參考文獻(xiàn)
[1] Patton JS. Mechanisms of macromolecule absorption by the lungs[J]. Adv Drug Deliver Rev, 1996, 19(1): 3-36.
[2] Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs[J]. Nat Rev Drug Discov, 2007, 6(1): 67-74.
[3] Courrier HM, Butz N, Vandamme TF. Pulmonary drug delivery systems: recent developments and prospects[J]. Crit Rev Ther Drug Carrier Syst, 2002, 19(4-5): 425-498.
[4] Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles(SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art[J]. Eur J Pharm Biopharm, 2014, 86(1): 7-22.
[5] Stone KC, Mercer RR, Gehr P, et al. Allometric relationships of cell numbers ?and size in the mammalian lung[J]. Am J Resp Cell Mol, 1992, 6(2): 235-243.
[6] Bur M, Henning A, Hein S, et al. Inhalative nanomedicineopportunities and ?challenges[J]. Inhal Toxicol, 2009, 21(S1): 137-143.
[7] Telko MJ, Hickey AJ. Dry powder inhaler formulation[J]. Resp Care, 2005, 50(9): 1209-1227.
[8] Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation[J]. J Pharma Sci-US, 1986, 75(5): 433-438.
[9] M?ller W, H?u?inger K, Winkler-Heil R, et al. Mucociliary and long-term particle clearance in the airways of healthy nonsmoker subjects[J]. J Appl Physiol, 2004, 97(6): 2200-2206.
[10] Lippmann M, Yeates DB, Albert RE. Deposition, retention, and clearance of inhaled particles[J]. Br J Ind Med, 1980, 37(4): 337-362.
[11] Newman SP, Agnew JE, Pavia D, et al. Inhaled aerosols: lung deposition and clinical applications[J]. Clin Phys Physiol Meas, 1982, 3(1): 1-20.
[12] Gonda I. Aerosols for delivery of therapeutic and diagnostic agents to the ?respiratory tract[J]. Crit Rev Ther Drug Carrier Syst, 1989, 6(4): 273-313.
[13] Sibille Y, Reynolds HY. Macrophages and polymorphonuclear neutrophils in lung defense and injury[J]. Am Rev Respir Dis, 1990, 141(2): 471-501.
[14] Chono S, Tanino T, Seki T, et al. Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes[J]. J Drug Target, 2006, 14(8): 557-566.
[15] Lawlor C, OSullivan MP, Sivadas N, et al. The application of high-content analysis in the study of targeted particulate delivery systems for intracellular drug delivery to alveolar macrophages[J]. Mol Pharm, 2011, 8(4): 1100-1112.
[16] Yang W, Peters JI, Williams III RO. Inhaled nanoparticles—a current review[J]. Int J Pharm, 2008, 356(1): 239-247.
[17] Edwards DA, Ben-Jebria A, Langer R. Recent advances in pulmonary drug delivery using large, porous inhaled particles[J]. J Appl Physiol, 1998, 85(2): 379-385.
[18] Edwards DA, Dunbar C. Bioengineering of therapeutic aerosols[J]. Annu Rev Biomed Eng, 2002, 4(1): 93-107.
[19] Borm PJA, Kreyling W. Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery[J]. J Nanosci Nanotechnol, 2004, 4(5): 521-531.
[20] Hoet PHM, Brüske-Hohlfeld I, Salata OV. Nanoparticles–known and unknown health risks[J/OL]. J Nanobiotechnol, 2004, 2-12. DOI: 10.1186/1477-3155-2-12.
[21] World Health Organization. Global tuberculosis report 2013[EB/OL]. [2016-07-08]. http://apps.who.int/iris/bitstre am/10665/91355/1/9789241564656_eng.pdf. ?
[22] Falzon D, Jaramillo E, Schünemann HJ, et al. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update[J]. Eur J Hum Genet, 2011, 38(3): 516-528.
[23] Dube D, Agrawal GP, Vyas SP. Tuberculosis: from molecular pathogenesis to effective drug carrier design[J]. Drug Discov Today, 2012, 17(13-14): 760-773.
[24] Pandey R, Khuller GK. Antitubercular inhaled therapy: opportunities, progress and challenges[J]. J Antimicro Chemoth, 2005, 55(4): 430-435.
[25] Russell DG, Barry CE 3rd, Flynn JL. Tuberculosis: what we dont know can, and does, hurt us[J]. Science, 2010, 328(5980): 852-856.
[26] Kaufmann SHE. How can immunology contribute to the control of tuberculosis?[J]. Nat Rev Immunol, 2001, 1(1): 20-30.
[27] Wolf AJ, Linas B, Trevejo-Nu?ez GJ, et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo[J]. J Immunol, 2007, 179(4): 2509-2519.
[28] Armstrong JA, Hart PDA. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes[J]. J Exp Med, 1971, 134(3): 713-740.
[29] Sinai AP, Joiner KA. Safe haven: the cell biology of nonfusogenic pathogen vacuoles[J]. Annu Rev Microbiol, 1997, 51(1): 415-462.
[30] Gordon S, Keshav S, Stein M. BCG-induced granuloma formation in murine tissues[J]. Immunobiology, 1994, 191(4): 369-377.
[31] Muttil P, Wang C, Hickey AJ. Inhaled drug delivery for tuberculosis therapy[J]. Pharm Res, 2009, 26(11): 2401-2416.
[32] World Health Organization. Fixed-dose combination tablets for the treatment of tuberculosis[EB/OL]. [2016-07-28] http:// apps.who.int/iris/bitstream/10665/65981/1/WHO_CDS_ CPC_TB_99.267.pdf.
[33] Prabakaran D, Singh P, Jaganathan KS, et al. Osmotically regulated asymmetric capsular systems for simultaneous sustained delivery of anti-tubercular drugs[J]. J Controlled Release, 2004, 95(2): 239-248.
[34] Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells[J]. Nat Rev Microbiol, 2014, 12(3): 159-167.
[35] Zhou H, Zhang Y, Biggs DL, et al. Microparticle-based lung delivery of INH decreases INH metabolism and targets alveolar macrophages[J]. J Controlled Release, 2005, 107(2): 288-299.
[36] Du Toit LC, Pillay V, Danckwerts MP. Tuberculosis chemotherapy: current drug delivery approaches[J/OL]. Respir Res, 2006, 7: 118. DOI: 10.1186/1465-9921-7-118.
[37] Misra A, Hickey AJ, Rossi C, et al. Inhaled drug therapy for treatment of tuberculosis[J]. Tuberculosis, 2011, 91(1): 71-81.
[38] Hirota K, Tomoda K, Inagawa H, et al. Stimulation of phagocytic activity of alveolar macrophages toward artificial microspheres by infection with mycobacteria[J]. Pharm Res, 2008, 25(6): 1420-1430.
[39] Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome[J]. Eur J Pharm Biopharm, 2015, 89: 163-174.
[40] Park JH, Jin HE, Kim DD, et al. Chitosan microspheres as an alveolar macrophage delivery system of ofloxacin via pulmonary inhalation[J]. Int J Pharm, 2013, 441(1–2): 562-569.
[41] Maretti E, Rossi T, Bondi M, et al. Inhaled solid lipid microparticles to target alveolar macrophages for tuberculosis[J]. Int J Pharm, 2013, 462(1-2): 74-82.
[42] Garcia Contreras L, Sung J, Ibrahim M, et al. Pharmacokinetics of inhaled rifampicin porous particles for tuberculosis treatment: insight into rifampicin absorption from the lungs of guinea pigs[J]. Mol Pharm, 2015, 12(8): 2642-2650.
[43] Chuan J, Li Y, Yang L, et al. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles[J]. J Nanopart Res, 2013, 15(5): 1-9.
[44] Gaspar DP, Faria V, Gon?alves L, et al. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro, studies[J]. Int J Pharm, 2015, 497(1-2): 199-209.
[45] Eedara BB, Tucker IG, Das SC. Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis[J]. Int J Pharm, 2016, 506(1-2):174-183.
[46] Parumasivam T, Chan JG, Pang A, et al. In vitro evaluation of novel inhalable dry powders consisting of thioridazine and rifapentine for rapid tuberculosis treatment[J]. Eur J Pharm Biopharm, 2016, 107: 205-214.
[47] Goyal AK, Garg T, Rath G, et al. Development and characterization of nanoembedded microparticles for pulmonary delivery of antitubercular drugs against experimental tuberculosis[J]. Mol Pharm, 2015, 12(11): 3839-3850.
[48] Garg T, Goyal AK, Rath G, et al. Spray-dried particles as pulmonary delivery system of anti-tubercular drugs: design, optimization, in vitro and in vivo evaluation[J/OL]. Pharm Dev Technol, 2015, 1-10. DOI: 10.3109/10837450.2015.1081613.
[49] Parumasivam T, Leung SS, Quan DH, et al. Rifapentineloaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization[J]. Eur J Pharm Sci, 2016, 88: 1-11.