張遠(yuǎn)清,李曉波
(中國(guó)科學(xué)院 長(zhǎng)春光學(xué)精密機(jī)械與物理研究所,長(zhǎng)春 130033)
?
集成仿真在空間望遠(yuǎn)鏡設(shè)計(jì)和優(yōu)化中的應(yīng)用
張遠(yuǎn)清,李曉波
(中國(guó)科學(xué)院 長(zhǎng)春光學(xué)精密機(jī)械與物理研究所,長(zhǎng)春 130033)
針對(duì)空間望遠(yuǎn)鏡設(shè)計(jì)過(guò)程中涉及學(xué)科多、系統(tǒng)復(fù)雜、真實(shí)環(huán)境驗(yàn)證難度大等特點(diǎn),集成仿真在空間望遠(yuǎn)鏡設(shè)計(jì)和優(yōu)化過(guò)程中具有巨大應(yīng)用價(jià)值。本文給出了集成仿真在NGST、NEXUS和JWST等空間望遠(yuǎn)鏡設(shè)計(jì)過(guò)程中的應(yīng)用實(shí)例,介紹了集成仿真所包括的擾動(dòng)源、結(jié)構(gòu)、光學(xué)、控制和模型集成等方面的具體內(nèi)容,并給出了集成仿真在性能分析、靈敏度分析、同效性分析、多目標(biāo)優(yōu)化和干擾來(lái)源定位與緩解等方面的應(yīng)用。集成仿真技術(shù)及其應(yīng)用案例,對(duì)我國(guó)在研大型空間望遠(yuǎn)鏡的設(shè)計(jì)有指導(dǎo)和借鑒意義。
空間望遠(yuǎn)鏡;集成仿真;性能分析;設(shè)計(jì)優(yōu)化
大型空間望遠(yuǎn)鏡作為一個(gè)復(fù)雜的系統(tǒng)工程,其設(shè)計(jì)過(guò)程涉及光機(jī)控等多學(xué)科領(lǐng)域。傳統(tǒng)望遠(yuǎn)鏡設(shè)計(jì),一般采用光機(jī)控各子系統(tǒng)設(shè)計(jì)人員獨(dú)立負(fù)責(zé)各自領(lǐng)域,并交流協(xié)調(diào)的設(shè)計(jì)理念。這種設(shè)計(jì)理念對(duì)于早期系統(tǒng)構(gòu)成簡(jiǎn)單、指標(biāo)要求低的望遠(yuǎn)鏡較為適用。隨著望遠(yuǎn)鏡日趨大型化、科學(xué)任務(wù)日益多樣化以及精度指標(biāo)要求的不斷提高,空間望遠(yuǎn)鏡系統(tǒng)日益復(fù)雜,傳統(tǒng)的子系統(tǒng)獨(dú)立設(shè)計(jì)并交流協(xié)調(diào)的設(shè)計(jì)方法很難滿足系統(tǒng)指標(biāo)要求。因此,在SIM[1—2],NGST[1—3],TPF[4—5],NEXUS[1,6—7],JWST[8,11—15]等大型空間望遠(yuǎn)鏡和EURO50[16—17],TMT[18—21]等大型地面望遠(yuǎn)鏡設(shè)計(jì)過(guò)程中,設(shè)計(jì)人員開(kāi)始利用多學(xué)科集成建模與系統(tǒng)仿真技術(shù),從系統(tǒng)工程角度考慮子系統(tǒng)之間的相互影響,通過(guò)整體模擬分析得到初始設(shè)計(jì)下的整機(jī)性能[22],給出各子系統(tǒng)參數(shù)對(duì)整機(jī)性能的影響,并據(jù)此對(duì)整機(jī)參數(shù)進(jìn)行優(yōu)化設(shè)計(jì)。另一方面,空間望遠(yuǎn)鏡因其工作環(huán)境的特殊性,涉及空間熱環(huán)境、望遠(yuǎn)鏡熱控系統(tǒng)、衛(wèi)星姿態(tài)控制、精密穩(wěn)像等復(fù)雜環(huán)境[23—30],很難在地面上對(duì)其實(shí)際使用環(huán)境(尤其是失重條件)進(jìn)行貼近真實(shí)的模擬。因此,集成仿真在大型空間望遠(yuǎn)鏡設(shè)計(jì)過(guò)程中有著重要的應(yīng)用價(jià)值。
文中將對(duì)集成仿真在NGST等空間望遠(yuǎn)鏡設(shè)計(jì)中的應(yīng)用進(jìn)行回顧,介紹集成仿真工作包含的主要內(nèi)容,及其在太空望遠(yuǎn)鏡設(shè)計(jì)過(guò)程中所涉及的靈敏度分析等方面的用途。
集成仿真在NGST,NEXUS和JWST等大型空間望遠(yuǎn)鏡的開(kāi)發(fā)論證過(guò)程中起著重要作用。
1.1NGST望遠(yuǎn)鏡
作為NASA起源計(jì)劃的一部分,NGST(the Next Generation Space Telescope)的構(gòu)想在1996年被提出。NGST望遠(yuǎn)鏡主鏡有效口徑為7.2 m,質(zhì)量為2567 kg,結(jié)構(gòu)形式如圖1所示。
圖1 NGST望遠(yuǎn)鏡Fig.1 The Next Generation Space Telescope
NGST的分析中建立了考慮多重?cái)_動(dòng)源、結(jié)構(gòu)、光學(xué)和控制系統(tǒng)的集成模型,如圖2所示,用來(lái)分析望遠(yuǎn)鏡波前誤差WFE和視軸抖動(dòng)LOS的動(dòng)態(tài)性能。利用有限元軟件MSC/NASTRAN進(jìn)行結(jié)構(gòu)分析并提取結(jié)果中的特征頻率和特征向量,導(dǎo)入MATLAB組成結(jié)構(gòu)子系統(tǒng)的狀態(tài)空間模型。MACOS用于光學(xué)靈敏度矩陣建模[31]。在MATLAB中對(duì)其他子系統(tǒng)進(jìn)行建模,并完成各學(xué)科模型集成和系統(tǒng)仿真。
圖2 NGST集成仿真閉環(huán)模塊Fig.2 Closed loop block diagram of NGST integrated model
性能評(píng)估采用了時(shí)域分析、頻域分析及Lyapunov分析。分析過(guò)程中涉及模型規(guī)模較大帶來(lái)的條件數(shù)問(wèn)題,以及光學(xué)靈敏度矩陣的奇異值分解等。通過(guò)研究設(shè)計(jì)參數(shù)對(duì)指標(biāo)影響的靈敏度,提出了增加次鏡支架剛度、隔離飛輪擾動(dòng)和增加主動(dòng)阻尼等改善性能的建議[3]。
1.2NEXUS望遠(yuǎn)鏡
NEXUS望遠(yuǎn)鏡是NGST的原理驗(yàn)證樣機(jī),其建模理念和NGST是一致的,但在具體的集成仿真實(shí)現(xiàn)上有所區(qū)別。NEXUS望遠(yuǎn)鏡主鏡有效口徑為2.8 m,質(zhì)量為752.8kg,結(jié)構(gòu)形式如圖3所示。
圖3 NEXUS望遠(yuǎn)鏡Fig.3 NEXUS space telescope
NEXUS集成仿真分析流程圖如圖4所示。通過(guò)自編程的IMOS求解結(jié)構(gòu)的特征值和振型向量。另外,還可通過(guò)DYNAMOD模塊對(duì)系統(tǒng)或子系統(tǒng)進(jìn)行物理實(shí)驗(yàn)得到實(shí)測(cè)結(jié)構(gòu)傳遞函數(shù),擬合得到MIMO測(cè)量模型。通過(guò)MACOS軟件追跡大量軸上和軸外光線,得到線性靈敏度矩陣,從而得到波前誤差、光程差及波前傾斜等光學(xué)性能。擾動(dòng)模型可以通過(guò)白噪聲函數(shù)等數(shù)學(xué)模型建立,也可通過(guò)試驗(yàn)數(shù)據(jù)進(jìn)行輸入。通過(guò)ControlForge完成控制模型的分析和完善。
圖4 NEXUS的集成仿真分析Fig.4 Framework block diagram of NEXUS integrated model
通過(guò)對(duì)NEXUS的集成仿真,進(jìn)行了擾動(dòng)分析、靈敏度分析、同效性分析、多目標(biāo)優(yōu)化及誤差分配。設(shè)計(jì)人員利用分析結(jié)果,掌握了模型關(guān)鍵參數(shù),對(duì)設(shè)計(jì)進(jìn)行優(yōu)化并使LOS等光學(xué)誤差指標(biāo)顯著降低。初始設(shè)計(jì)與優(yōu)化設(shè)計(jì)的參數(shù)與結(jié)果對(duì)比如圖5所示[6—7]。
圖5 初始參數(shù)與優(yōu)化后參數(shù)的結(jié)果對(duì)比Fig.5 Results comparison of initial and optimized parameters
1.3JWST望遠(yuǎn)鏡
JWST(James Webb Space Telescope)是計(jì)劃于2018年發(fā)射的紅外望遠(yuǎn)鏡,擁有由18個(gè)子鏡組成的6.5 m口徑主鏡,結(jié)構(gòu)如圖6所示。
圖6 JWST望遠(yuǎn)鏡Fig.6 James Webb Space Telescope
JWST的集成仿真模型為線性的光機(jī)控模型,如圖7所示。最大的抖動(dòng)源自衛(wèi)星平臺(tái)反作用輪的振動(dòng)諧波激起的衛(wèi)星平臺(tái)與望遠(yuǎn)鏡的振動(dòng)。光機(jī)結(jié)構(gòu)的振動(dòng)響應(yīng)引起的像移和動(dòng)態(tài)波像差會(huì)導(dǎo)致相質(zhì)下降。光學(xué)抖動(dòng)結(jié)果用于預(yù)測(cè)成像性能,改善結(jié)構(gòu)設(shè)計(jì)、評(píng)估擾動(dòng)源的影響[32]。
圖7 JWST集成建模Fig.7 Integrated modeling for JWST
2.1擾動(dòng)源模型
Eyerman和Shea[33]對(duì)航天器擾動(dòng)源進(jìn)行了全面分析。反作用輪引入的擾動(dòng)通常被認(rèn)為是最主要的擾動(dòng)源[27,34—35]。其他的擾動(dòng)源包括斯特林制冷機(jī)、姿控傳感器噪聲、導(dǎo)星噪聲等[6]。擾動(dòng)模型可以通過(guò)白噪聲函數(shù)等數(shù)學(xué)模型建立,也可通過(guò)試驗(yàn)數(shù)據(jù)進(jìn)行輸入。對(duì)于后續(xù)的Lyapunov分析和靈敏度分析,需要將擾動(dòng)信息轉(zhuǎn)換為狀態(tài)空間形式。
圖8 反作用飛輪及其金字塔形布置Fig.8 Reaction wheels and RWA pyramidal arrangement
Davis,Melody,Bialke以及Masterson[34]等人對(duì)反作用輪擾動(dòng)模型的建立進(jìn)行了深入研究。圖8給出了NGST反作用飛輪及其布置方案。反作用輪擾動(dòng)是由轉(zhuǎn)速諧波帶來(lái)的一系列正弦形式的力和力矩。諧波的比例由軸承幾何及滾動(dòng)體數(shù)量所決定。各諧波(軸向力、徑向力、徑向力矩)的幅值與轉(zhuǎn)速的平方成比例關(guān)系。對(duì)于反作用飛輪,Masterson[34]首先建立一個(gè)白噪聲驅(qū)動(dòng)的線性濾波器模型,然后通過(guò)MATLAB優(yōu)化工具箱對(duì)其傳遞函數(shù)進(jìn)行擬合,使得擬合傳遞函數(shù)的PSD與實(shí)際PSD最為接近。
根據(jù)試驗(yàn)數(shù)據(jù),斯特林制冷機(jī)的擾動(dòng),可以建立近似模型,如圖9所示,將其諧波近似為二階微小阻尼系統(tǒng)極點(diǎn),并轉(zhuǎn)換為狀態(tài)空間形式[3]。
圖9 試驗(yàn)PSD和二階近似模型PSD對(duì)比Fig.9 Comparison of experimental PSD and second order approximation
Weck采用連續(xù)的低通濾波器模型代替工作在離散時(shí)間系統(tǒng)的精密導(dǎo)星傳感器FGS,獲得其傳遞函數(shù)。然后用該傳遞函數(shù)將白噪聲轉(zhuǎn)換為FGS噪聲,并給出其狀態(tài)空間表達(dá)形式。
2.2結(jié)構(gòu)模型
結(jié)構(gòu)模型通常采用離散化的有限元模型進(jìn)行分析。結(jié)構(gòu)的剛度矩陣和質(zhì)量矩陣可由初始設(shè)計(jì)下的結(jié)構(gòu)模型得到。結(jié)構(gòu)模型可用二階線性微分方程來(lái)表示,并用其來(lái)對(duì)結(jié)構(gòu)模型進(jìn)行結(jié)構(gòu)動(dòng)力學(xué)分析,求解動(dòng)力學(xué)方程,得到結(jié)構(gòu)的頻率信息對(duì)角陣Ω和質(zhì)量歸一化后的陣型矩陣Ψ[36—42]。
式中:q為模態(tài)坐標(biāo)系,Z為模態(tài)阻尼,f為模態(tài)力矩陣。
為進(jìn)行結(jié)構(gòu)與控制的集成分析,通常需要將復(fù)雜結(jié)構(gòu)模型以狀態(tài)空間形式進(jìn)行表示:
按照所選取的狀態(tài)向量的定義不同,結(jié)構(gòu)模型的狀態(tài)空間形式也有所不同。常用的是:
空間望遠(yuǎn)鏡工作在太空失重?zé)o約束環(huán)境,因此對(duì)于整機(jī)性能沒(méi)有影響的剛體位移模態(tài),需要去掉或采取措施加以穩(wěn)定。
2.3光學(xué)模型
Weck[3]給出了NGST的兩種光學(xué)模型:簡(jiǎn)化光線追跡模型和全光學(xué)線性靈敏度矩陣。簡(jiǎn)化光線追跡模型僅追蹤系統(tǒng)的少數(shù)關(guān)鍵節(jié)點(diǎn),并基于幾何光學(xué)計(jì)算光程差的波前誤差,采用主次鏡間的角位移計(jì)算波前傾斜。全光學(xué)線性靈敏度矩陣通過(guò)引入特定自由度上的單位擾動(dòng),計(jì)算波前和中心點(diǎn)。
Howard[43—46]和Knight[47]歸納了JWST團(tuán)隊(duì)為集成建模而建立線性光學(xué)模型并計(jì)算線性靈敏度矩陣的過(guò)程。絕對(duì)靈敏度矩陣L采用相對(duì)于正常系統(tǒng)的絕對(duì)靈敏度,即參考面采用的是未對(duì)光程差數(shù)據(jù)擬合的原始表面。敏感度矩陣W采用從波前數(shù)據(jù)中去除了偏心和傾斜,用以評(píng)估相對(duì)波前誤差。這也是目前常用光學(xué)設(shè)計(jì)軟件標(biāo)準(zhǔn)光程差數(shù)據(jù)。敏感度矩陣C通過(guò)x和y的點(diǎn)中心數(shù)據(jù)來(lái)評(píng)估圖像的位移量。計(jì)算得到的靈敏度矩陣可通過(guò)OPD圖(或點(diǎn)中心圖)和受擾動(dòng)后系統(tǒng)的光線追跡數(shù)據(jù)分析兩種方式進(jìn)行驗(yàn)證。經(jīng)驗(yàn)證,部件擾動(dòng)達(dá)到1 μm量級(jí)時(shí),通過(guò)線性光學(xué)模型與光線追跡模型得到的波前結(jié)果誤差在1%以內(nèi)。線性光學(xué)模型可用來(lái)處理高頻視軸運(yùn)動(dòng)及半穩(wěn)態(tài)的熱變形過(guò)程。JWST線性光學(xué)模型可以描述為追跡光線光程差關(guān)于光學(xué)元件剛體運(yùn)動(dòng)六自由度的一階泰勒展開(kāi),僅考慮了光學(xué)元件的剛體位移,而未引入其柔性變形。光學(xué)面的柔性變形可以通過(guò)Zernike多項(xiàng)式等方式實(shí)現(xiàn)建模。
2.4控制模型
控制模型主要包括衛(wèi)星平臺(tái)姿態(tài)控制(Attitude Control System,ACS)和快擺鏡精密穩(wěn)像控制(Fine Guidance System,F(xiàn)GS)兩方面內(nèi)容,如圖10所示。姿態(tài)控制系統(tǒng)通過(guò)接收星敏感器和陀螺儀的信息來(lái)穩(wěn)定平臺(tái)的剛體模態(tài)。穩(wěn)像控制系統(tǒng)在平臺(tái)粗級(jí)控制的基礎(chǔ)上,通過(guò)精密導(dǎo)星系統(tǒng)完成光學(xué)指標(biāo)控制。控制系統(tǒng)需要根據(jù)結(jié)構(gòu)、光學(xué)等子系統(tǒng)的開(kāi)環(huán)傳遞函數(shù)完成初步設(shè)計(jì),然后根據(jù)系統(tǒng)擾動(dòng)和光學(xué)反饋改進(jìn)設(shè)計(jì)方案[3,19]。
圖10 NEXUS集成仿真框圖Fig.10 Block diagram of NEXUS integrated model
2.5集成建模
集成建模考慮了各子系統(tǒng)建模以及各子系統(tǒng)之間的相互作用[39,48—49]。通過(guò)MATLAB軟件控制、優(yōu)化、信號(hào)處理以及其他工具箱,對(duì)各模塊進(jìn)行集成。NEXUS集成仿真如圖11所示。
圖11 NEXUS集成仿真Fig.11 Block diagram of NEXUS integrated model
模型集成過(guò)程需要進(jìn)行一些簡(jiǎn)化和假設(shè)。比如,飛輪組件的力矩取決于太陽(yáng)輻射產(chǎn)生的外部力矩;制冷劑工作時(shí)的擾動(dòng)取決于外部熱環(huán)境和平衡溫度等。這些擾動(dòng)在真實(shí)環(huán)境中與望遠(yuǎn)鏡是相互作用的,但集成分析中,一般根據(jù)其外部環(huán)境作用下的典型輸出,作為擾動(dòng)模型中的輸入。
模型中涉及的一個(gè)關(guān)鍵問(wèn)題是模型平衡與降階。模型降階是在保留大部分原模型動(dòng)力學(xué)特性的前提下,降低狀態(tài)空間模型的階數(shù)。模型平衡與降階的好處在于大大縮減了計(jì)算時(shí)間及所需的計(jì)算資源,同時(shí)也能改善方程的條件數(shù)[1,39,50—51]。模型降階的方法包括平衡截?cái)喾ǎ―T)、最優(yōu)Hankel范數(shù)逼近法、平衡奇異攝動(dòng)法(SPA)和廣義平衡奇異攝動(dòng)法(GSPA),以及基于信息論的一些方法[52—54]。
集成后的模型可用于分析系統(tǒng)在環(huán)境條件下的動(dòng)態(tài)響應(yīng),驗(yàn)證設(shè)計(jì)方案的合理性、指標(biāo)滿足度和系統(tǒng)穩(wěn)定性。此外,集成模型也用于系統(tǒng)設(shè)計(jì)參數(shù)的權(quán)衡,以及在擾動(dòng)輸入特性下進(jìn)行更具針對(duì)行的方案優(yōu)化。
3.1性能分析
模型集成完成后,可通過(guò)時(shí)域分析、頻域分析及Lyapunov分析,分析系統(tǒng)的時(shí)域和頻率響應(yīng)信息[6,27,55—57],得到當(dāng)前設(shè)計(jì)方案下的光學(xué)性能。初始設(shè)計(jì)下的視軸抖動(dòng)LOS如圖12所示。
圖12 初始設(shè)計(jì)下的NEXUS視軸抖動(dòng)Fig.12 LOS of NEXUS in initial design
3.2靈敏度分析
靈敏度可以通過(guò)在初始設(shè)計(jì)點(diǎn)op處的歸一化Jacobian矩陣得到[6,55]。
式中:Jz為光學(xué)性能評(píng)價(jià)指標(biāo);Ru,Kcf均為設(shè)計(jì)參數(shù)(上部飛輪轉(zhuǎn)速、快擺鏡控制增益)。
通過(guò)NEXUS望遠(yuǎn)鏡的靈敏度分析結(jié)果[6](如圖13所示)可以看到,波前誤差對(duì)飛輪轉(zhuǎn)速上限、飛輪組件隔離器剛度及可展開(kāi)梁結(jié)構(gòu)剛度等參數(shù)的變化較為敏感。設(shè)計(jì)人員可以通過(guò)靈敏度評(píng)估該參數(shù)變動(dòng)后對(duì)結(jié)果的影響程度。
圖13 NEXUS靈敏度分析結(jié)果Fig.13 NEXUS sensitivity analysis results
3.3同效性分析
同效性分析,是在維持當(dāng)前性能表現(xiàn)的情況下,選擇設(shè)計(jì)方案中的若干設(shè)計(jì)參數(shù),進(jìn)行權(quán)衡與協(xié)調(diào)。在NEXUS設(shè)計(jì)過(guò)程中,設(shè)計(jì)人員通過(guò)調(diào)整飛輪組件的不平衡量和振動(dòng)隔離裝置的柔性,如圖14所示,既保證了良好的擾動(dòng)量級(jí)控制,又避開(kāi)了望遠(yuǎn)鏡整機(jī)的柔性模態(tài)。
圖14 兩變量同效性Fig.14 Isoperformance contour of 2 parameters
3.4多目標(biāo)優(yōu)化
對(duì)設(shè)計(jì)參數(shù)給出上下限,利用正交試驗(yàn)、拉丁超立方等方法進(jìn)行試驗(yàn)參數(shù)設(shè)置,利用蟻群算法等多目標(biāo)優(yōu)化算法,對(duì)成像性能指標(biāo)、成本、不確定性等指標(biāo)進(jìn)行多目標(biāo)優(yōu)化,找出最優(yōu)的一組或幾組解,從而為對(duì)設(shè)計(jì)人員的方案優(yōu)化給出參考。NEXUS望遠(yuǎn)鏡分別按照性能均值最優(yōu)A、最小快擺鏡控制增益B和最小性能不確定度C得到的最佳方案如圖15所示。
圖15 三種設(shè)計(jì)方案對(duì)比Fig.15 Comparison of three design schemes
3.5干擾定位與緩解
通過(guò)對(duì)靈敏度數(shù)據(jù)進(jìn)行分析,找到相關(guān)性較大的設(shè)計(jì)參數(shù),并對(duì)其進(jìn)行針對(duì)性改進(jìn),可以提高望遠(yuǎn)鏡的性能表現(xiàn)。通過(guò)對(duì)NGST的分析表明,飛輪的動(dòng)態(tài)不平衡量對(duì)性能有較大影響。設(shè)計(jì)人員給出了通過(guò)平衡試驗(yàn)來(lái)調(diào)整飛輪不平衡量,或者換用磁軸承飛輪等方法來(lái)改善結(jié)果。另外,JPL開(kāi)發(fā)出了如圖16所示的六軸主動(dòng)隔振器來(lái)緩解飛輪擾動(dòng)對(duì)望遠(yuǎn)鏡的影響[3]。
圖16 六軸主動(dòng)隔振器Fig.16 Six axis active vibration isolator
通過(guò)NGST等空間望遠(yuǎn)鏡的設(shè)計(jì)實(shí)例可以看出,集成建模與系統(tǒng)仿真在空間望遠(yuǎn)鏡設(shè)計(jì)過(guò)程中有巨大的應(yīng)用前景。目前,擾動(dòng)源、結(jié)構(gòu)模型、光學(xué)模型和控制模型等單學(xué)科研究均有了很多成果。利用這些成果并進(jìn)行模型集成,可以對(duì)空間望遠(yuǎn)鏡進(jìn)行系統(tǒng)級(jí)仿真分析,得到其時(shí)域和頻域的分析結(jié)果,并開(kāi)展靈敏度分析、多目標(biāo)優(yōu)化等數(shù)據(jù)挖掘來(lái)指導(dǎo)設(shè)計(jì)的優(yōu)化過(guò)程。集成仿真技術(shù)及其應(yīng)用案例對(duì)今后我國(guó)大型空間望遠(yuǎn)鏡設(shè)計(jì)有著重要指導(dǎo)和借鑒意義。
[1]UEBELHARTSA.Conditioning,Reduction,and Disturbance Analysis of Large Order Integrated Models forSpace-basedTelescopes[D].Cambridge:Massachusetts Institute of Technology,2001.
[2]MILLER D W,DE WECK O L,UEBELHART S A,et al. Integrated Dynamics and Controls Modeling for the SpaceInterferometryMission(SIM)[C]//Aerospace Conference,2001,IEEE Proceedings.IEEE,2001.
[3]WECKOL.IntegratedModelingandDynamics Simulation for the Next Generation Space Telescope[D]. Cambridge:Massachusetts Institute of Technology,1999.
[4]LEVINE M B,MOORE G,BASINGER S A,et al. Integrated Modeling Approach for the Terrestrial Planet Finder(TPF)Mission[C]//SPIEAstronomical Telescopes+Instrumentation.International Society for Optics and Photonics,2004:181—192.
[5]KISSIL A,KWACK E,HO T,et al.Integrated Modeling Applied to the Terrestrial Planet Finder Mission[J].Proc SPIE,Optical Modeling and Performance Predictions II,2005,5867:586710.
[6]MILLER D W,DE WECK O L,MOSIER G E. Framework for Multidisciplinary Integrated Modeling and AnalysisofSpaceTelescopes[C]//Workshopon Integrated Modeling of Telescopes.International Society for Optics and Photonics,2002:1—18.
[7] WECKOL,MILLERDW,MOSIERGE. Multidisciplinary Analysis of the NEXUS Precursor Space Telescope[C]//Astronomical Telescopesand Instrumentation.International Society for Optics and Photonics,2002:294—304.
[8]MOSIER G E,HOWARD J M,JOHNSTON J D,et al. The Role of Integrated Modeling in the Design and Verification of the James Webb Space Telescope[C]// Optical Science and Technology,the SPIE 49th Annual Meeting.International Society for Optics and Photonics,2004:96—107.
[9]FITZMAURICE M W,HA K Q,LE C,et al.End-to-End PerformanceModelingoftheJamesWebbSpace Telescope(JWST)Observatory[C]//Optics&Photonics 2005.International Society for Optics and Photonics,2005:58670W-58670W-14.
[10] ATKINSON C,TEXTER S,HELLEKSON R,et al. Status of the JWST Optical Telescope Element[C]//SPIE Astronomical Telescopes+Instrumentation.International Society for Optics and Photonics,2006:62650T-62650T-10.
[11] KNIGHT J S,LIGHTSEY P,BARTO A.Predicted JWST Imaging Performance[C]//Proc of SPIE Vol.2012,8442:84422G-1.
[12] WHITMAN T L,DZIAK K J,WELLS C,et al. Measuring Segmented PrimaryMirror WFEin the PresenceofVibrationandThermalDriftonthe Light-weightedJWST[C]//SPIEAstronomical Telescopes+Instrumentation.International Society for Optics and Photonics,2012:84423J-84423J-7.
[13]MATTHEWS G,SCORSE T,KENNARD S,et al.JWST TelescopeIntegrationandTestStatus[C]//SPIE Astronomical Telescopes+Instrumentation.International SocietyforOpticsandPhotonics,2014:914305-914305-11.
[14] CLAMPINM.RecentProgresswiththeJWST Observatory[C]//SPIEAstronomicalTelescopes+ Instrumentation.International Society for Optics and Photonics,2014:914302-914302-5.
[15]MATTHEWS G W,KENNARD S H,BROCCOLO R T,et al.JWST Pathfinder Telescope Integration[C]//SPIE Optical Engineering+Applications.International Society for Optics and Photonics,2015:957504-957504-16.
[16]ANDERSEN T E,BROWNE M T,ENMARK A,et al. IntegratedModelingoftheEuro50[C]//Second Backaskog Workshop on Extremely Large Telescopes. International Society for Optics and Photonics,2004:366 —378.
[17]BROWNE M,ENMARK A,ANDERSEN T,et al. OptimisedExternalComputationfortheEuro50 MATLABBasedIntegratedModel[C]//SPIE Astronomical Telescopes+Instrumentation.International SocietyforOpticsandPhotonics,2006:627103-627103-12.
[18] DUNN J,ROBERTS S C,KERLEY D,et al.TMT/VLOT Integrated Modeling[C]//Photonics North.International Society for Optics and Photonics,2004:323—332.
[19] DENG Y,LI H,YANG F,et al.Integrated Modeling and DynamicsSimulationfortheTMT-M3Control System[C]//7th International Symposium on Advanced OpticalManufacturingandTestingTechnologies (AOMATT 2014).International Society for Optics and Photonics,2014:92800J-92800J-7.
[20] SMITH M J,STEINBRING E,HERRIOT G,et al. Integrating MATLAB and IDL:Adding Adaptive Optics totheTMT/VLOTIntegratedModel[C]//SPIE Astronomical Telescopes+Instrumentation.International Society for Optics and Photonics,2004:301—310.
[21]ANGELI G Z,VOGIATZIS K,MACMYNOWSKI D,et al.Integrated Modeling and Systems Engineering for the Thirty Meter Telescope[C]//IntegratedModeling of Complex Optomechanical Systems.International Society for Optics and Photonics,2011:833605-833605-10.
[22] 段鵬飛,李東,雷文平.空間相機(jī)協(xié)同設(shè)計(jì)和集成分析技術(shù)研究[J].航天器工程,2014(2):52—57.
DUAN Peng-fei,LI Dong,LEI Wen-ping.Collaborative Design and Integrated Analysis of Space Camera[J]. Spacecraft Engineering,2014(2):52—57.
[23] 單寶忠,陳恩濤,盧鍔,等.空間光儀光機(jī)熱集成分析方法[J].光學(xué)精密工程,2001(4):377—381.
SHAN Bao-zhong,CHEN En-tao,LU E,et al.Thermal/ Structural/Optical Integrated Analysis of Space Camera[J]. Optics and Precision Engineering,2001(4):377—381.
[24] 龐世偉,楊雷,曲廣吉.高精度航天器微振動(dòng)建模與評(píng)估技術(shù)最近進(jìn)展[J].強(qiáng)度與環(huán)境,2007(6):1—9.
PANGShi-wei,YANGLei,QUGuang-ji.New Development of Micro-vibration Integrated Modeling and AssessmentTechnologyforHighPerformance Spacecraft[J].Structure&EnvironmentEngineering,2007(6):1—9.
[25] 王棟,金光.空間相機(jī)光機(jī)系統(tǒng)集成仿真設(shè)計(jì)方法研究[C]//中國(guó)空間科學(xué)學(xué)會(huì)第七次學(xué)術(shù)年會(huì)會(huì)議手冊(cè)及文集.中國(guó)空間科學(xué)學(xué)會(huì),2009.
WANGDong,JINGuang.ResearchofIntegrated Simulation Design Method for Space Camera Optics and StructureSystem[C]//7thAnnualConference Proceedings and Meeting Manual of Chinese Space Science Institute.Chinese Space Science Institute,2009.
[26] 劉巨,薛軍,任建岳.空間相機(jī)光機(jī)熱集成設(shè)計(jì)分析及關(guān)鍵技術(shù)研究綜述[J].宇航學(xué)報(bào),2009(2):422—427.
LIU Ju,XUE Jun,REN Jian-Yue.Review of Research on Integration Design of Structural,Termal and Optical Analysis with Key Techniqueof Space Camera[J]. Journal ofAstronautics,2009(2):422—427.
[27] 馬超.高精度空間飛行器動(dòng)力學(xué)集成建模方法研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2011.
MA Chao.The Methodology of Dynamics Integrated Modeling for High Precision Spacecraft[D].Harbin: Harbin Institute of Technology,2011.
[28] 童靖宇,向樹(shù)紅.臨近空間環(huán)境及環(huán)境試驗(yàn)[J].裝備環(huán)境工程,2012,9(3):1—4.
TONGJing-yu,XIANGShu-hong.NearSpace Environment and Environmental Tests[J].Equipment Environmental Engineering,2012,9(3):1—4.
[29] 朱建斌,向樹(shù)紅,賈萍,等.航天器動(dòng)力學(xué)試驗(yàn)評(píng)價(jià)技術(shù)[J].裝備環(huán)境工程,2012,9(3):5—10.
ZHU Jian-bin,XIANG Shu-hong,JIA Ping,et al. SummarizationofSpacecraftDynamicsTestand Evaluation Technologies[J].Equipment Environmental Engineering,2012,9(3):5—10.
[30] ZHANG B,WANG X,HU Y.Integrated Modeling and Optical Jitter Analysis of a High Resolution Space Camera[C]//6th International Symposium on Advanced OpticalManufacturingandTesting Technologies(AOMATT 2012).International Society for Optics and Photonics,2012:841508-841508-7.
[31] MILMAN M,LEVINE M.Integrated Modeling Tools for Precision Multidisciplinary Systems[C]//SMACS(Space MicrodynamicsandControl)Conference.Toulouse,F(xiàn)rance.1997.
[32]MUHEIM D M,MENZEL M T,MOSIER G,et al.An Update on the Role of Systems Modeling in the Design and Verification of the James Webb Space Telescope[C]// SPIEAstronomicalTelescopes+Instrumentation. International Society for Optics and Photonics,2010:773814-773814-13.
[33] EYERMAN C E.A Systems Engineering Approach to DisturbanceMinimizationforSpacecraftUtilizing ControlledStructuresTechnology[D].Cambridge:Massachusetts Institute of Technology,1990.
[34] MASTERSON R A.Development and Validation of Empirical and Analytical Reaction Wheel Disturbance Models[D].Cambridge:MassachusettsInstituteof Technology,1999.
[35] 楊新峰,白照廣,楊棟,等.動(dòng)量輪誘導(dǎo)的衛(wèi)星地面微振動(dòng)特性研究以及在軌仿真分析[J].裝備環(huán)境工程,2015,12(3):15—21.
YANG Xin-feng,BAI Zhao-guang,YANG dong,et al. Study on Micro-vibration of Satellite Induced by MomentumWheelsandOn-orbitSimulation Analysis[J].Equipment Environmental Engineering,2015,12(3):15—21.
[36] MUELLER M,WILHELM R,BAIER H,et al.Integrated Modeling for the VLTI[C]//Astronomical Telescopes and Instrumentation.International Society for Optics and Photonics,2003:881—892.
[37] GAWRONSKI W.Advanced Structural Dynamics and Active Control of Structures[M].New York:Springer Science&Business Media,2004.
[38] ANGELI G Z,SEGURSON A,UPTON R,et al. IntegratedModelingToolsforLargeGround-based Optical Telescopes[C]//Optical Science and Technology,SPIE's 48th Annual Meeting.International Society forOptics and Photonics,2004:49—63.
[39] LIEBER M D.Space-based Optical System Performance Evaluation with Integrated Modeling Tools[C]//Defense andSecurity.InternationalSocietyforOpticsand Photonics,2004:85—96.
[40]HEIMSTEN R,ANDERSEN T,OWNER-PETERSEN M,et al.Integrated Modeling of a Laboratory Setup for a Large Deformable Mirror[C]//Integrated Modeling of Complex Optomechanical Systems.International Society for Optics and Photonics,2011:83360N-83360N-9.
[41] 杜運(yùn)東,史寶軍,楊廷毅,等.基于狀態(tài)空間法的結(jié)構(gòu)動(dòng)力學(xué)建模與簡(jiǎn)化算法[J].山東建筑大學(xué)學(xué)報(bào),2009(4):288—292.
DU Yun-dong,SHI Bao-jun,YANG Ting-yi,et al. Structure Dynamic Modeling and Its Reduced Algorithm Based on State Space Method[J].Journal of Shandong Jianzhu University,2009(4):288—292.
[42] 韓旭,焦海麗.大口徑紅外變焦投影系統(tǒng)環(huán)境適應(yīng)性研究[J].長(zhǎng)春理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2015(6):16—20.
HAN Xu,JIAO Hai-li.Research on Environmental Adaptability of Large Diameter Infrared Zoom Projection System[J].Journal of Changchun University of Science and Technology(Natural Science Edition),2015(6):16—20.
[43] HOWARD J M.Optical Modeling Activities for the James Webb Space Telescope(JWST)Project:I The LinearopticalModel[C]//OpticalScienceand Technology,SPIE's 48th Annual Meeting.International Society for Optics and Photonics,2004:82—88.
[44] HOWARD J M.Optical Modeling Activities for NASA's James Webb Space Telescope(JWST):III.Wavefront AberrationsDuetoAlignmentandFigure Compensation[C]//Optical Engineering+Applications. International Society for Optics and Photonics,2007:667503-667503-11.
[45] HOWARD J M.Optical Modeling Activities for NASA's James Webb Space Telescope(JWST):IV.Overview and IntroductionofMATLABBasedToolkitsUsedto Interface with OpticalDesign Software[C]//Optical Engineering+Applications.InternationalSocietyfor Optics and Photonics,2007:666804-666804-10.
[46] HOWARD J M.Optical Integrated Modeling Activities fortheJamesWebbSpaceTelescope(JWST)[C]// IntegratedModelingofComplexOptomechanical Systems.International Society for Optics and Photonics,2011:83360E-83360E-8.
[47] KNIGHT J S,LIGHTSEY P,BARTO A,et al.Image quality verification analysis of the JWST[C]//SPIE AstronomicalTelescopes+Instrumentation.International Society for Optics and Photonics,2010:77381Z-77381Z-8.
[48] 葛東明,鄒元杰.高分辨率衛(wèi)星結(jié)構(gòu)-控制-光學(xué)一體化建模與微振動(dòng)響應(yīng)分析[J].航天器環(huán)境工程,2013(6):586—590.
GE Dong-ming,ZOU Yuan-jie.Structure-Control-Optics Integrated Modeling and Micro-vibration Analysis for High Resolution Satellite[J].Spacecraft Environment Engineering,2013(6):586—590.
[49] 葛東明,鄒元杰,張志娟,等.基于全柔性衛(wèi)星模型的控制閉環(huán)微振動(dòng)建模與仿真[J].航天器工程,2012(5):58—63.
GE Dong-ming,ZOU Yuan-jie,ZHANG Zhi-juan,et al. ControlClosed-loopMicro-vibrationModelingand SimulationBasedonFlexibleSatelliteModel[J]. Spacecraft Engineering,2012(5):58—63.
[50] MUELLER M,BAIER H.SMI:A Structural Dynamics ToolboxforIntegratedModeling[C]//Workshopon Integrated Modeling of Telescopes.International Society for Optics and Photonics,2002:41—50.
[51] 楊德華,徐靈哲.系統(tǒng)仿真在天文望遠(yuǎn)鏡設(shè)計(jì)中的應(yīng)用綜述[J].系統(tǒng)仿真學(xué)報(bào),2009(10):2801—2805.
YANG De-hua,XU Ling-zhe.Application Review of SystemSimulationTechniqueinAstronomical Telescope Design[J].Journal of System Simulation,2009(10):2801—2805.
[52] 劉天雄,華宏星,石銀明.結(jié)構(gòu)動(dòng)力模型一體化降階技術(shù)[J].強(qiáng)度與環(huán)境,2003(1):31—36.
LIU Tian-xiong,HUA Hong-xing,SHI Yin-ming. StudyonUnitedModelReductionMethodfor DynamicModel[J].Structure&Environment Engineering,2003(1):31—36.
[53] 姜立強(qiáng),郭錚,何鳴.一種近似廣義奇異攝動(dòng)模型降階算法[J].彈箭與制導(dǎo)學(xué)報(bào),2008(1):96—98.
JIANG Li-qiang,GUO Zheng,HE Ming.A QuasigeneralizedSingularPerturbationModelReduction Method[J].Journal of Projectiles,Rockets,Missiles and Guidance,2008(1):96—98.
[54] 王景,李愛(ài)軍,亢銳.彈性飛機(jī)模型降階軟件設(shè)計(jì)[J].測(cè)控技術(shù),2012(8):91—95.
WANG Jing,LI Ai-jun,KANG Rui.Design of the Model Reduction Software for Flexible Aircraft[J].Measurement and Control Technology,2012(8):91—95.
[55] GUTIERREZ H L.Integrated Modeling and Analysis Methodology for Precision Pointing Applications[C]// WorkshoponIntegratedModelingofTelescopes. International Society for Optics and Photonics,2002:214 —223.
[56] DE WECK O L,MILLER D W,MALLORY G J,et al. Integrated Modeling and Dynamics Simulation for the NextGenerationSpaceTelescope(NGST)[C]// AstronomicalTelescopesandInstrumentation. International Society for Optics and Photonics,2000:920 —934.
[57] 鄒元杰,王澤宇,張志娟,等.航天器微振動(dòng)穩(wěn)態(tài)時(shí)域響應(yīng)分析方法[J].航天器工程,2012(6):37—42.
ZOU Yuan-jie,WANG Ze-yu,ZHANG Zhi-juan,et al. Analysis Method of Steady Time-domain Reponse for Spacecraft Micro-vibration[J].Spacecraft Engineering,2012(6):37—42.
Application of Integrated Simulation in Design and Optimization of Space Telescope
ZHANG Yuan-qing,LI Xiao-bo
(Changchun Institute of Optics,F(xiàn)ine Mechanics and Physics,ChineseAcademy of Science,Changchun 130033,China)
Considering the characteristics of the space telescope design such as multidisciplinarity,complexity and difficulty of physical test,integrated simulation can play an important role in the design and optimization process of a space telescope. Application of integrated simulation in the design process of space telescopes such as NGST,NEXUS and JWST was presented in this paper.Integrated simulation included disturbance,structure,optics,control and model integration.Integrated simulation could be used for performance analysis,sensitivity analysis,isoperformance analysis,multiobjective optimization,disturbance location and reduction.Integrated simulation and its applications provide guidance and reference for the design of large space telescopes in China.
space telescope;integrated simulation;performance analysis;design and optimization
2016-05-14;Revised:2016-05-20
10.7643/issn.1672-9242.2016.04.016
TH751
A
1672-9242(2016)04-0092-10
2016-05-14;
2016-05-20
國(guó)家自然科學(xué)基金青年科學(xué)基金(61205143)
Fund:Supported by the National Natural Science Foundation of China(61205143)
張遠(yuǎn)清(1988—),男,河北人,碩士,主要從事空間相機(jī)結(jié)構(gòu)設(shè)計(jì)與集成仿真技術(shù)研究。
Biography:ZHANG Yuan-qing(1988—),Male,from Hebei,Master,Research focus:structural design and integrated simulation of space cameras.