国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于UPLC-Q-TOF-MS技術(shù)分析石吊蘭全草化學(xué)成分△

2016-09-25 07:04胡峻齊夢(mèng)蝶張權(quán)秦振嫻康利平南鐵貴楊健袁媛詹志來(lái)劉勇
中國(guó)現(xiàn)代中藥 2016年5期
關(guān)鍵詞:離子流同分異構(gòu)負(fù)離子

胡峻,齊夢(mèng)蝶 ,張權(quán),秦振嫻,康利平,南鐵貴,楊健,袁媛,詹志來(lái)*,劉勇*

(1.北京中醫(yī)藥大學(xué),北京 100102;2.中國(guó)中醫(yī)科學(xué)院 中藥資源中心 道地藥材國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,北京 100700)

·基礎(chǔ)研究·

基于UPLC-Q-TOF-MS技術(shù)分析石吊蘭全草化學(xué)成分△

胡峻1,齊夢(mèng)蝶1,張權(quán)1,秦振嫻1,康利平2,南鐵貴2,楊健2,袁媛2,詹志來(lái)2*,劉勇1*

(1.北京中醫(yī)藥大學(xué),北京 100102;
2.中國(guó)中醫(yī)科學(xué)院 中藥資源中心 道地藥材國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,北京 100700)

目的:建立石吊蘭全草化學(xué)成分的一種超高效液相色譜-四極桿飛行時(shí)間串聯(lián)質(zhì)譜聯(lián)用技術(shù)分析方法。方法:80%甲醇-水溶液超聲提取石吊蘭,經(jīng)Waters ACQUITY UPLC-BEH-C18S色譜柱(100 mm×2.1 mm,1.7 μm),以0.1%甲酸水-乙腈為流動(dòng)相梯度洗脫,檢測(cè)波長(zhǎng)為210~400 nm,ESI負(fù)離子模式檢測(cè),根據(jù)精確分子量及碎片信息,結(jié)合數(shù)據(jù)庫(kù)匹配進(jìn)行結(jié)構(gòu)鑒定。結(jié)果:從石吊蘭全草中共鑒定出48個(gè)成分,其中42個(gè)苯乙醇苷類化合物、3個(gè)黃酮類化合物、3個(gè)其他類型化合物,有14個(gè)化合物為苦苣苔科中首次發(fā)現(xiàn)。結(jié)論:本研究首次對(duì)石吊蘭化學(xué)成分進(jìn)行整體研究,為該植物的深入研究奠定基礎(chǔ)。

液質(zhì)聯(lián)用;石吊蘭;化學(xué)成分

石吊蘭LysinotuspauciflorusMaxim.為苦苣苔科吊石苣苔屬石吊蘭的全草,別名黑烏骨、石豇豆、石澤蘭等,產(chǎn)于四川西部,生于山谷林中石上,海拔700~1 400 m,全株有祛風(fēng)止咳、消食健脾等功效[1]。石吊蘭民間多常用,主要用來(lái)治療風(fēng)濕骨痛、咳喘痰多及跌打損傷等癥。石吊蘭主要成分為黃酮和苯乙醇苷類成分[2-3]。目前對(duì)于石吊蘭的化學(xué)成分研究較少,尤其是整體的化學(xué)成分研究還未見(jiàn)報(bào)道。超高效液相色譜串聯(lián)四極桿飛行時(shí)間質(zhì)譜(UPLC-Q-TOF-MS)具有分離速度快、靈敏度高、可提供精確相對(duì)分子量等優(yōu)點(diǎn),可以在缺乏對(duì)照品的情況下對(duì)化學(xué)成分進(jìn)行解析。本研究采用UPLC-Q-TOF-MS聯(lián)用技術(shù)對(duì)石吊蘭中的化學(xué)成分進(jìn)行鑒別分析,為該植物的進(jìn)一步研究提供參考。

1 儀器與材料

1.1 儀器

ACQUITYI-Class 超高效液相色譜儀-Waters Xevo-G2-S Q-TOF MS 質(zhì)譜系統(tǒng)(美國(guó)Waters公司)、Waters ACQUITY UPLC-BEH-C18S色譜柱(100 mm×2.1 mm,1.7 μm,美國(guó)Waters公司)、BSA224S型萬(wàn)分之一分析天平(德國(guó)Sartorius公司)、Centrifuge 5415D型離心機(jī)(德國(guó)Eppendorf公司)、SB-800-DTD型超聲清洗機(jī),超聲功率500 W(寧波新芝生物科技股份有限公司)、Pacific T-Ⅱ型超純水儀(美國(guó)Thermo公司)。水為超純水,甲醇、乙腈為色譜純(美國(guó)Fishier Scientific公司),其余試劑均為分析純,0.22 μm疏水PTFE微孔濾頭(Millipor公司,美國(guó))。

1.2 材料

對(duì)照品有Acteoside、Calceolarioside B、Forsythoside B、Plantamajoside(成都曼斯特生物科技有限公司,純度≥98%)。

石吊蘭采集于湖南安化,經(jīng)中國(guó)科學(xué)院植物研究所李振宇研究員鑒定為吊石苣苔屬石吊蘭LysionotuspauciflorusMaxim.,樣品存放于中國(guó)中醫(yī)科學(xué)院中藥資源中心。

2 方法

2.1 供試品和對(duì)照品溶液的制備

2.1.1 供試品溶液制備 取石吊蘭藥材,粉碎,過(guò)40目篩,精密稱取藥材粉末2.0 g置具塞三角瓶中,加入80%甲醇水溶液15 mL,超聲(功率500 W)提取1 h,放至室溫,補(bǔ)重。樣品用12 000 r·min-1離心10 min,取上清液,過(guò)0.22 μm微孔濾膜,供分析用。

2.1.2 對(duì)照品溶液制備 精密稱取各種對(duì)照品適量,置10 mL容量瓶中,加適量甲醇超聲使其溶解,再加甲醇至刻度,搖勻,0.22 μm疏水PTFE微孔濾頭過(guò)濾,備用。

2.2 液相和質(zhì)譜條件

2.2.1 液相色譜條件 色譜柱為Waters ACQUITY UPLC-BEH-C18(100 mm×2.1 mm,1.7 μm);流動(dòng)相為0.1%甲酸水(A)-乙腈(B),梯度洗脫(0~5 min,5%~10%B;5.5~15 min,40%~65%B;18~23 min,70%~100%B;23~26 min,100%B;26~26.1 min,100%~5%B;26.1~28.5 min,5%B);流速為0.5 mL·min-1;柱溫為0 ℃;進(jìn)樣量為1 μL。檢測(cè)波長(zhǎng)為190~400 nm。

2.2.2 質(zhì)譜條件 Waters Xevo-G2-S Q-TOF MS 質(zhì)譜系統(tǒng),采用電噴霧離子源(ESI),負(fù)離子模式掃描,毛細(xì)管電壓為2000 V,錐孔電壓為 40 V,除溶劑氣體為氮?dú)猓?00 L·h-1,除溶劑溫度為450 ℃,離子源溫度為 100 ℃,掃描范圍為m/z50~1500 Da,掃描時(shí)間為0.2 s,碰撞氣體為氬氣。低能量掃描時(shí)碰撞能量為6 eV,高能量掃描時(shí)碰撞能量為25~45 eV。準(zhǔn)確質(zhì)量數(shù)用leucine enkephalin作校正液。MassLynx 4.1液質(zhì)系統(tǒng)控制軟件(Waters公司)。

3 結(jié)果與分析

3.1 UPLC-Q-TOF-MS全掃描的基峰離子流色譜結(jié)果

為了更全面地檢測(cè)石吊蘭藥材中所含的化合物信息,對(duì)提取溶劑、色譜條件、質(zhì)譜條件等進(jìn)行了優(yōu)化,選擇最優(yōu)的條件對(duì)石吊蘭及對(duì)照品進(jìn)行LC-MS分析。其中負(fù)離子模式下顯示出更為豐富的信息,總離子流圖見(jiàn)圖1。

3.2 石吊蘭UPLC-Q-TOF-MS分析及鑒定

將數(shù)據(jù)導(dǎo)入Masslynx 4.1軟件中,根據(jù)負(fù)離子模式一級(jí)質(zhì)譜的分子離子峰得到化合物的相對(duì)分子質(zhì)量,計(jì)算元素組成;再根據(jù)二級(jí)質(zhì)譜信息,結(jié)合對(duì)照品的色譜保留時(shí)間、軟件自帶的數(shù)據(jù)庫(kù)以及Chemspider(http://www.chemspider.com/)及Scifinder(https://scifinder.cas.org/)得到候選化合物。結(jié)合DAD特征光譜及文獻(xiàn)[4-35],從石吊蘭總離子流圖中選擇相應(yīng)較明顯的峰進(jìn)行鑒定,共鑒定了48個(gè)化合物,其中有42個(gè)為苯乙醇苷類化合物、3個(gè)為黃酮類化合物、3個(gè)為其他類型化合物,有14個(gè)化合物為苦苣苔科中首次發(fā)現(xiàn),見(jiàn)表1。

注:A.全部總離子流;B.9~14 min總離子流。圖1 負(fù)離子模式下UPLC-Q-TOF-MS分析石吊蘭總離子流圖

表1 UPLC-Q-TOF-MS鑒定分析石吊蘭全草中化學(xué)成分(負(fù)離子模式)

表1(續(xù))

表1(續(xù))

注:*為經(jīng)對(duì)照品對(duì)照確定的成分,#為首次在苦苣苔科中發(fā)現(xiàn)的成分。

從表1的結(jié)果可以觀察到,石吊蘭中含有較多的同分異構(gòu)體。本文采用化合物的ClogP參數(shù)對(duì)其同分異構(gòu)體進(jìn)行區(qū)分,舉例如下。

化合物11、12和16:準(zhǔn)分子離子峰均為m/z771.23[M-H]-,推測(cè)三者為同分異構(gòu)體,二級(jí)質(zhì)譜為m/z609.18[M-H-C6H10O5]-,447.15[M-H-C6H10O5-C9H8O3]-,315.11[M-H-C6H10O5-C9H8O3-C5H8O4]-,m/z179.03、161.02為咖啡酰基的碎片離子。根據(jù)文獻(xiàn)[7-9]推測(cè)三者為2-(3,4-dihydroxyphenyl)ethyl-3-O-β-D-glucopyranosyl-6-O-(2,3,4,5-tetrahydroxycyclopentyl)-4-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoate]-β-D-glucopyranoside、rashomoside A或2-(3,4-dihydroxyphenyl)ethyl-O-D-apio-β-D-furanosyl-(1→3)-O-[β-D-glucopyranosyl-(1→6)]-4-[(2E)-3-(3,4-dihydroxyphenyl)-2-propen-oate]-β-D-glucopyranoside,計(jì)算3個(gè)化合物Clogp分別為-3.4、-3.1,-1.8,結(jié)合出峰順序推測(cè)化合物11為2-(3,4-dihydroxyphenyl)ethyl-3-O-β-D-glucopyranosyl-6-O-(2,3,4,5-tetrahydroxycyclopen-tyl)-4-[(2E)-3-(3,4-dihydroxyphenyl)-2-propeno-ate]-β-D-glucopyranoside,12為rashomoside A,16為2-(3,4-dihydroxyphenyl)ethyl-O-D-apio-β-D-furanosyl-(1→3)-O-[β-D-glucopyranosyl-(1→6)]-4-[(2E)-3-(3,4-dihydroxyphenyl)-2-prope-noate]-β-D-glucopyranoside。

化合物17、19和22:準(zhǔn)分子離子峰均為m/z609.18[M-H]-,推測(cè)三者都為同分異構(gòu)體,二級(jí)質(zhì)譜m/z447.15[M-H-C9H8O3]-,315.11[M-H-C9H8O3-C5H8O4]-,m/z179.03、161.02為咖啡酰基的碎片離子。根據(jù)文獻(xiàn)[13-15]推測(cè)化合物三者為2-(3,4-dihydroxyphenyl)ethyl-2-O-D-apio-β-D-furan-osyl-4-[(2E)-3-(3,4-dihydroxyphenyl)-2-propeno-ate]-β-D-glucopyranoside、calceolarioside C或calceo-ralarioside E,計(jì)算3個(gè)化合物Clogp分別為-2.0、-1.5、-0.2,結(jié)合出峰順序推測(cè)化合物17為2-(3,4-dihydroxyphenyl)ethyl-2-O-D-apio-β-D-furanosyl-4-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoate]-β-D-glucopyranoside,19為calceolario-side C,22為calceoralarioside E。

化合物20:準(zhǔn)分子離子峰為m/z639.19[M-H]-,二級(jí)質(zhì)譜m/z477.16[M-H-C9H8O3]-,315.11[M-H-C9H8O3-C6H10O5]-,m/z179.03、161.02為咖啡?;乃槠x子,根據(jù)對(duì)照品比對(duì),化合物20為plantamajoside,其可能的裂解規(guī)律見(jiàn)圖2。

圖2 Plantamajoside可能的裂解途徑(負(fù)離子模式)

4 討論

本研究首次運(yùn)用超高效液相色譜串聯(lián)四極桿飛行時(shí)間質(zhì)譜技術(shù)對(duì)石吊蘭中化學(xué)成分進(jìn)行分析,根據(jù)質(zhì)譜及精確分子量,參考石吊蘭化學(xué)成分的研究及天然產(chǎn)物數(shù)據(jù)庫(kù)搜索等方法,共鑒定了48個(gè)成分。石吊蘭中含有較多同分異構(gòu)體,本文采用化合物的Clogp參數(shù)對(duì)其同分異構(gòu)體進(jìn)行了有效的區(qū)分。

本研究表明石吊蘭中含有豐富的苯乙醇苷類成分,而苯乙醇苷類成分是一類具有良好醫(yī)療價(jià)值的化合物,具有抗氧化、抗炎、抗病毒、抗菌、抗腫瘤、免疫調(diào)節(jié)等作用[36-38],尤其以抗氧化活性最為顯著。對(duì)石吊蘭化學(xué)成分的研究及藥理和構(gòu)效關(guān)系研究將對(duì)石吊蘭植物資源開(kāi)發(fā)利用具有實(shí)際意義。

[1] 中國(guó)藥材公司.中國(guó)中藥資源志要[M].北京:科學(xué)出版社,1994:1177.

[2] LIU Y,WAGNER H,BAUER R.Nevadensinglycosidesfrom Lysionotus pauciflorus[J].Phytochemistry,1996,42(4):1203-1205.

[3] Liu Y,Wagner H,Bauer R.Phenylpropanoids and flavonoid glycosides fromLysionotuspauciflorus[J].Phytochemistry,1998,48(2):339.

[4] Liu P,Deng R X,Duan H Q,et al.Phenylethanoid glycosides from the roots ofPhlomisumbrosa[J].J Asian Nat Prod Res,2009,11(1):69-74.

[5] Juliao,Lisieux de S,Piccinelli,et al.Phenylethanoid glycosides fromLantanafucatawith in vitro anti-inflammatory activity[J].J of Nat Prod,2009,72(8):1424-1428.

[6] Liu Y,Seligmann O,Wagner H,et al.Paucifloside,a new phenylpropanoid glycoside fromLysionotuspauciflorus[J].Nat Prod Lett,1995,7(1):23-28.

[7] Zubair,Muhammad,Nybom H,et al.Detection of genetic and phytochemical differences between and within populations ofPlantagomajorL.(plantain)[J].Scientia Horticulturae(Amsterdam,Netherlands),2012,136:9-16.

[8] Zhou Z L,Zhang H L.Phenolic and iridoid glycosides from the rhizomes ofCyperusrotundusL.[J].Med Chem Res,2013,22(10):4830-4835.

[9] Li C T,Liu Y Q,Abdulla,et al.Determination of phenylethanoid glycosides inLagotisbrevitubaMaxim.by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry[J].Anal Lett,2014,47(11):1862-1873.

[10] Kiem P V,Quang T H,Huong T T,et al.Chemical constituents ofAcanthusilicifoliusL.and effect on osteoblastic MC3T3E1 cells[J].Arch Pharm Res,2008,31(7):823-829.

[11] Yang J H,Kondratyuk T P,Jermihov K C,et al.Bioactive compounds from the fernLepisoruscontortus[J].J Nat Prod,2011,74(2):129-136.

[12] Mathuram V,Patra A,Kundu A B.A phenyl propanoid glycoside fromNyctanthesarbortristis[J].J Ind Chem Soci,1997,74(8):653-655.

[13] Lin S,Wang S J,Liu M T,et al.Glycosides from the stem bark ofFraxinussieboldiana[J].J Nat Prod,2007,70(5):817-823.

[14] Stanoeva J P,Stefova M,Stefkov G K,et al.Chemotaxonomic contribution to theSideritisspecies dilemma on the Balkans[J].Biochem Syst Ecol,2015,61:477-487.

[15] Nazemiyeh,H,Shoeb M,Movahhedin N,et al.Phenolic compounds and their glycosides fromStachysschtschegleevii(Lamiaceae)[J].Biochem Syst Ecol,2006,34(9):721-723.

[16] Miyase T,Mimatsu A.Acylated iridoid and phenylethanoid glycosides from the aerial parts ofScrophularianodosa[J].J Nat Prod,1999,62(8):1079-1084.

[17] Taskova R M,Kokubun T,Ryan K G,et al.Phenylethanoid and iridoid glycosides in the New Zealand snow hebes(Veronica,Plantaginaceae)[J].Chem Pharm Bull,2010,58(5):703-711.

[18] Suo M R,Ohta T,Takano F,et al.Bioactive phenylpropanoid glycosides fromTabebuiaavellanedae[J].Molecules,2013,18:7336-7345.

[19] 郗峰,鄧君,王彥涵.藏藥短管兔耳草中1個(gè)新苯乙醇苷類化合物[J].中國(guó)中藥雜志,2009,34(16):2054-2056.

[19] Wang Li N,Guo D X,Wang,S Q,et al.Phenolic glycosides from the Chinese Liverwort Reboulia hemisphaerica[J].Hel Chim Acta,2011,94(6):1146-1152.

[21] Morikawa T,Pan Y,Ninomiya K,et al.Acylated phenylethanoid oligoglycosides with hepatoprotective activity from the desert plantCistanchetubulosa[J].Bioor Med Chem,2010,18(5):1882-1890.

[22] Zhou F Y,She J,Wang Y G.Synthesis of a benzyl-protected analog of arenarioside,a trisaccharide phenylpropanoid glycoside[J].Carbohydr Res,2006,341(15):2469-2477.

[23] Lei L,Jiang Y,Liu X M,et al.New glycosides fromCistanchesalsa[J].Helv Chim Acta,2007,90(1):79-85.

[24] Kernan M R,Amarquaye A,Chen J L,et al.Antiviral phenylpropanoid glycosides from the medicinal plantMarkhamialutea[J].J Nat Prod,1998,61(5):564-570.

[25] Yadava R N,Satnami D K.Chemical constituents fromCassiaoccidentalisLinn[J].Indian J Chem(Sec.B):Org Chem Including Med Chem,2011,50B(8):1112-1118.

[26] Bagrii A K,Kurmaz B V,Litvinenko V I.New bioside of quercetin[J].Khim Prir Soedin,1966,2(2):85-90.

[27] 張忠立 左月明 徐璐,等.三白草黃酮類化學(xué)成分的研究[J].中草藥,2011,42(8):1490-1493.

[28] Porter E A,Kite G C,Veitch N C,et al.Phenylethanoid glycosides in tepals of Magnolia salicifolia and their occurrence in flowers of Magnoliaceae[J].Phytochemistry,2015,117:185-193.

[29] Liu M M,Zhou L,He P L,et al.Discovery of flavonoid derivatives as anti-HCV agents via pharmacophore search combining molecular docking strategy[J].Euro J Med Chem,2012,52:33-43.

[30] Adhikari B,Devkota H P,Joshi K R,et al.Two new diacetylene glycosides:bhutkesoside A and B from the roots ofLigusticopsiswallichiana[J].Nat Prod Res,2015.DOI:10.1080/14786419.2015.1118635.

[31] Tanikawa T,F(xiàn)ridman M,Zhu W J,et al.Using Biological Performance Similarity To Inform Disaccharide Library Design[J].J Am Chem Soc,2009,131(14):5075-5083.

[32] Jin Q L,Jin H G,Shin J E,et al.Phenylethanoid glycosides fromDigitalispurpureaL.[J].Bull Kore Chem Soc,2011,32(5):1721-1724.

[33] Jiang T Fu,Ou Q Y,Shi Y.Separation and determination of phenylpropanoid glycosides fromPedicularisspecies by capillary electrophoresis[J].J Chromatogr A,2003,986(1):163-167.

[34] Fan L,Liao C H,Li S G,et al.Phenylethanoid and secoiridoid glycosides from the leaves ofLigustrumpurpurascens[J].Phytochem Lett,2015,13:177-181.

[35] Yuan J Q,Qiu L,Zou L H,et al.Two new phenylethanoid glycosides fromCallicarpalongissima[J].Helv Chim Acta,2015,98(4):482-489.

[36] Hu X P,Shao M M,Song X,et al.Anti-influenza virus effects of crude phenylethanoid glycosides isolated fromligustrumpurpuras.censvia inducing endogenous interferon-γ[J].J Ethnopharmacol,2015,179:128-136.

[37] Wang Y J,Zhou S M,Xu G,et al.Interference of phenylethanoid glycosides fromCistanchetubulosawith the MTT assay[J].Molecules,2015,20(5):8060-8071.

[38] Encalada M A,Rehecho S,Ansorena,Di,et al.Antiproliferative effect of phenylethanoid glycosides from Verbena officinalis L.on colon cancer cell lines[J].LWT-Food Sci Technol,2015,63(2):1016-1022.

StudyonChemicalConstituentsinWholeHerbofLysinotuspauciflorusbyUPLC-Q-TOF-MS

HU Jun1,QIMengdie1,ZHANGQuan1,QINZhenxian1,KANGLiping2,NANTiegui2,YANGJian2,YUANYuan2,ZHANZhilai2*,LIUYong1*

(1.BeijingUniversityofChineseMedicine,Beijing100102,China;2.NationalResourceCenterforChineseMateriaMedica,ChinaAcademyofChineseMedicalSciences,StateKeyLaboratoryBreedingBaseofDao-diHerbs,Beijing, 100700,China)

Objective:To analyze the chemical components in the whole herb ofLysinotus.pauciflorusMaxim by Ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS).Methods:Crude drug were extracted with 80% methanol in water. A Waters ACQUITY UPLC-BEH-C18S column (2.1 mm×100 mm, 1.7 μm) was used with a gradient elution of acetonitrile-water containing 0.1% formic acid. The mass spectrometry equipped with ionization source was used and the data was collected under negative ion mode. And the components identification was applied by the precise molecular weight and fragmentation information, combined with a database match.Results:Forty-eight compounds were identified with 42 phenylethanoid glycosides, 3 flavonoids and 3 other compounds, among them, 14 compounds were firstly identified in Gensneriaceae plant.Conclusion:We have quite completely identified the components in the whole herb ofL.pauciflorusfor the first time, which lay the foundation for the further study and utilization of the medicinal resources.

UPLC-Q-TOF-MS;LysinotuspauciflorusMaxim.;chemical constituents

2016-03-17)

中醫(yī)藥行業(yè)科研專項(xiàng)(201407003)

*

劉勇,教授,研究方向:藥用植物親緣學(xué)、中藥質(zhì)量與開(kāi)發(fā),Tel:(010) 84738656,E-mail:yliu0126@aliyun.com;詹志來(lái),助理研究員,研究方向:中藥資源鑒定與評(píng)價(jià),Tel:(010)64014411-2847,E-mail:zzlzhongyi@163.com

10.13313/j.issn.1673-4890.2016.5.002

猜你喜歡
離子流同分異構(gòu)負(fù)離子
大氣科學(xué)視角中的負(fù)離子建筑材料研究
“換、撲、拉、插”——同分異構(gòu)體書(shū)寫(xiě)新招數(shù)
負(fù)離子人造板研究現(xiàn)狀及發(fā)展建議
靜電對(duì)負(fù)離子地板測(cè)試的影響
基于靜態(tài)累積法的極小氣體流量測(cè)量研究
微電極離子流技術(shù)在植物逆境生理研究中的應(yīng)用及展望
三十六計(jì)引領(lǐng) 突破同分異構(gòu)
賓縣萬(wàn)人歡林場(chǎng)空氣負(fù)離子濃度及負(fù)離子物質(zhì)量和價(jià)值量研究
有機(jī)物同分異構(gòu)體的判斷和推導(dǎo)難點(diǎn)突破
“同分異構(gòu)體”知識(shí)解談