常洋,王彤,王海燕,儲(chǔ)昭升,杭前宇,劉凱,侯澤英
1.長(zhǎng)安大學(xué)環(huán)境科學(xué)與工程學(xué)院,陜西 西安 710000 2.環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國(guó)家重點(diǎn)實(shí)驗(yàn)室,中國(guó)環(huán)境科學(xué)研究院,北京 100012 3.中國(guó)環(huán)境科學(xué)研究院水污染控制技術(shù)研究中心,北京 100012 4.中國(guó)環(huán)境科學(xué)研究院湖泊生態(tài)環(huán)境創(chuàng)新基地,北京 100012 5.河南理工大學(xué)材料科學(xué)與工程學(xué)院,河南 焦作 454150
?
蘆葦碳源-表面流人工濕地對(duì)農(nóng)田退水脫氮的長(zhǎng)期效能研究
常洋1,2,王彤1,王海燕2,3*,儲(chǔ)昭升2,4,杭前宇2,3,劉凱2,5,侯澤英2,4
1.長(zhǎng)安大學(xué)環(huán)境科學(xué)與工程學(xué)院,陜西 西安710000 2.環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國(guó)家重點(diǎn)實(shí)驗(yàn)室,中國(guó)環(huán)境科學(xué)研究院,北京100012 3.中國(guó)環(huán)境科學(xué)研究院水污染控制技術(shù)研究中心,北京100012 4.中國(guó)環(huán)境科學(xué)研究院湖泊生態(tài)環(huán)境創(chuàng)新基地,北京100012 5.河南理工大學(xué)材料科學(xué)與工程學(xué)院,河南 焦作454150
蘆葦;植物碳源;表面流人工濕地;農(nóng)田退水;脫氮
洱海位于云南省大理州,是云南省第二大高原淡水湖泊,隨著大理旅游經(jīng)濟(jì)等的發(fā)展,洱海水質(zhì)呈下降趨勢(shì),21世紀(jì)更是由貧中營(yíng)養(yǎng)級(jí)下降為中營(yíng)養(yǎng)級(jí)水質(zhì)。農(nóng)田退水目前是洱海主要外來(lái)氮素污染源之一,亟需進(jìn)一步加強(qiáng)對(duì)農(nóng)田退水的脫氮處理。
1.1試驗(yàn)裝置及污泥接種
PSFW由不銹鋼板制成,長(zhǎng)120 cm、寬40 cm、高80 cm。PSFW內(nèi)填料從下至上分別為10 cm厚土壤層、30 cm厚反硝化層(由1~2 cm自然曬干的蘆葦莖葉碎段和土壤混勻)和1 cm厚石英砂覆蓋,蘆葦莖葉碎段投加量為19.2 kgm2。PSFW0為空白對(duì)照濕地,不添加蘆葦莖葉碎段,填料從下往上分別為40 cm厚土壤層和1 cm厚石英砂。濕地內(nèi)種植蘆葦和香蒲(1∶1),種植密度均為18株m2;濕地水深25 cm,進(jìn)水由蠕動(dòng)泵(河北蘭格蠕動(dòng)泵廠BT300-2J)經(jīng)穿孔管連續(xù)布水,濕地末端均勻設(shè)置3個(gè)出水口溢流排水(圖1)。PSFW0和PSFW的有效體積分別為139和140 L。
PSFW和PSFW0置于洱海大理才村實(shí)驗(yàn)基地溫室內(nèi),溫度為18~30 ℃(夜間最低18 ℃,白天最高30 ℃),濕地自2014年11月18日啟動(dòng),共運(yùn)行334 d。為加速濕地啟動(dòng),將回流污泥(取自大理州周城污水處理廠)加水稀釋后接種,接種污泥濃度為150 mgL。
圖1 PSFW工藝流程Fig.1 The PSFW process flow diagram
1.2試驗(yàn)設(shè)計(jì)及進(jìn)水水質(zhì)
1.3主要儀器與分析方法
表1 試驗(yàn)運(yùn)行條件及進(jìn)水水質(zhì)
表2 檢測(cè)方法及主要儀器
蘆葦中的纖維素或半纖維素可作為反硝化碳源進(jìn)行反硝化脫氮反應(yīng)[13]:
圖2 PSFW和PSFW0的去除效能Fig.2 The -N removal efficiency of PSFW and PSFW0
濕地進(jìn)水NO-3-NHRT∕d進(jìn)水濃度∕(mg∕L)NH+4-NNO-2-N出水濃度∕(mg∕L)NH+4-NNO-2-NPSFW0高濃度中濃度低濃度20.4±0.20.01±0.010.1±0.10.06±0.0230.5±0.20.01±0.010.2±0.10.86±0.3940.4±0.20.01±0.010.1±0.10.04±0.0230.4±0.20.01±0.010.3±0.20.03±0.0220.7±0.30.01±0.010.3±0.20.01±0.0110.6±0.20.01±0.010.1±0.10.04±0.0130.8±0.50.01±0.010.5±0.30.01±0.01PSFW高濃度中濃度低濃度20.4±0.20.01±0.010.3±0.10.17±0.0230.5±0.20.01±0.011.0±0.31.99±0.4740.4±0.20.01±0.010.8±0.30.69±0.3130.4±0.20.01±0.010.2±0.10.01±0.0120.7±0.30.01±0.010.3±0.10.02±0.0110.6±0.20.01±0.010.3±0.20.04±0.0130.8±0.50.01±0.010.7±0.50.01±0.01
2.3TN長(zhǎng)期去除效能
從圖3可以看出,在高濃度進(jìn)水期,第29~40天,當(dāng)進(jìn)水TN濃度為(18.4±1)mgL、HRT為3 d時(shí),PSFW0和PSFW的TN去除率分別為(4.5±2.0)%和(64.3±5.0)%,蘆葦莖葉碎段的加入顯著提升了PSFW對(duì)TN的去除率。第41~80天,當(dāng)進(jìn)水TN濃度為(16.4±0.9)mgL、HRT為4 d時(shí),PSFW0和PSFW對(duì)TN去除率均有所提高,分別為(14.4±3.0)%和(74.1±6.0)%。第81~129天,當(dāng)進(jìn)水TN濃度為(17.2±1)mgL、HRT為2 d時(shí),PSFW0和PSFW的TN去除率分別為(24.0±3.0)%和(53.0±5.0)%。隨著HRT的延長(zhǎng),PSFW的TN去除率有所上升,HRT為4 d時(shí),TN去除率最高。而PSFW0則表現(xiàn)出隨著運(yùn)行時(shí)間的延長(zhǎng),其對(duì)TN的去除率逐漸增加的趨勢(shì)。
圖3 PSFW和PSFW0對(duì)TN的去除率Fig.3 The TN removal efficiency of PSFW and PSFW0
第130~149天,當(dāng)HRT為3 d、進(jìn)水TN濃度為(16.9±1.5)mgL時(shí),PSFW的TN去除率為(71.8±8.0)%,高于第29~40天時(shí)的(64.3±5.0)%。這與前期蘆葦釋放碳源速率較高,釋放的和也相應(yīng)較多有關(guān)[15-16];同時(shí)隨著濕地運(yùn)行逐漸趨于穩(wěn)定,其對(duì)TN的去除率也逐漸提升[14]。第130~149天,濕地運(yùn)行穩(wěn)定、濕地植物生長(zhǎng)釋放的有機(jī)物為反硝化提供一定碳源[14],PSFW0的TN去除率高達(dá)(44.1±5.0)%,遠(yuǎn)高于運(yùn)行初期(第29~40天)的(4.5±2.0)%。
在中濃度進(jìn)水期(第150~270天),第150~185天,當(dāng)進(jìn)水TN濃度為(10.9±0.9)mgL、HRT為3 d時(shí),PSFW和PSFW0的TN去除率分別為(90.2±7.0)%和(86.4±6.0)%。第186~207天,當(dāng)進(jìn)水TN濃度為(10.8±0.4)mgL、HRT為2 d時(shí),PSFW和PSFW0的TN去除率分別為(87.0±7.0)%和(90.0±1.0)%。第208~270天,當(dāng)進(jìn)水TN濃度為(10.6±0.2)mgL,HRT為1 d時(shí),PSFW和PSFW0出水TN去除率分別為(42.4±7.0)%和(76.9±6.0)%。在HRT為2和3 d條件下,2個(gè)濕地對(duì)TN去除相差不大。在HRT為1 d時(shí),PSFW對(duì)TN的去除率〔(46.6±15.0)%〕要低于PSFW0〔(76.8±9.0)%〕,這與的去除規(guī)律相一致。
在低濃度進(jìn)水期(第271~334天),進(jìn)水TN濃度為(7.2±0.8)mgL、HRT為3 d,PSFW0對(duì)TN的去除率〔(87.8±3.0)%〕稍高于PSFW〔(82.5±7.0)%〕。
2.4氮污染去除過(guò)程中的CODMn變化
在高濃度進(jìn)水期(第29~149天),進(jìn)水CODMn為(3.8±0.7)mgL、HRT為2、3、4 d時(shí),PSFW出水CODMn分別為(8.5±1.0)、(8.6±1.0)和(9.5±2.0)mgL,PSFW0出水CODMn分別為(5.6±1.0)、(4.7±2.0)和(7.7±1.0) mgL,PSFW出水CODMn顯著高于PSFW0(圖4),這是因?yàn)镻SFW蘆葦莖葉碎段釋放的碳源量稍高于PSFW反硝化所需的碳源量。PSFW0出水CODCr較高可能與濕地運(yùn)行初期土壤層中有機(jī)質(zhì)的釋放及接種污泥部分微生物死亡有關(guān)。PSFW出水CODMn高于PSFW0,表明PSFW內(nèi)蘆葦秸稈腐解較快,為反硝化提供了充足的碳源,這也解釋了PSFW比PSFW0脫氮效能好的原因,表明CODMn的去除與濕地對(duì)和TN的去除效能有較高的關(guān)聯(lián)性。
圖4 進(jìn)出水CODMn變化Fig.4 The CODMn change of influent and effluent
從圖4可以看出,在中濃度進(jìn)水期(第150~269天),當(dāng)進(jìn)水CODMn為(4.4±1.0)mgL,HRT分別按3、2和1 d運(yùn)行時(shí),PSFW出水CODMn分別為(4.6±1.0)、(1.9±0.5)和(3.4±1.0)mgL,PSWF0出水CODMn分別為(4.3±0.7)、(1.7±0.8)和(3.6±0.7)mgL。
在低濃度進(jìn)水期(第270~334天),當(dāng)進(jìn)水CODMn為(4.7±1.0)mgL時(shí),PSFW和PSFW0出水CODMn分別為(4.5±0.8)和(3.8±1.0)mgL。
在第29~149天,PSFW出水CODMn顯著高于PSFW0,表明該階段內(nèi)PSFW碳源更為充足,這也就可以從CN方面解釋PSFW脫氮效能較高的原因。在濕地運(yùn)行149 d后,PSFW和PSFW0出水CODMn相差不大,導(dǎo)致了在第150~207天,PSFW和PSFW0對(duì)氮的去除率相差不大。而在濕地運(yùn)行208 d后,雖然PSFW和PSFW0出水CODMn相差不大,但出現(xiàn)了PSFW0對(duì)氮的去除率優(yōu)于PSFW的現(xiàn)象。推測(cè)其可能是由于PSFW內(nèi)香蒲自然生長(zhǎng)為優(yōu)勢(shì)植物,其收割期早于PSFW0生長(zhǎng)的優(yōu)勢(shì)植株(蘆葦)造成的。
2.5氮污染去除過(guò)程中的磷變化
PSFW的蘆葦莖葉碎段腐解時(shí)也會(huì)釋放一定的磷,因此研究氮污染去除過(guò)程中的磷變化,對(duì)避免磷過(guò)度積累有重要意義。在高濃度進(jìn)水期(第29~149天),進(jìn)水TP濃度為(1.12±0.06)mgL、HRT分別按3、4和2 d運(yùn)行時(shí),PSFW和PSFW0出水TP濃度與進(jìn)水相比均略有降低,二者TP去除率分別為(26.8±7.0)%、(56.0±6.0)%、(38.0±7.0)%和(17.3±7.0)%、(21.0±3.0)%、(33.0±2.0)%(圖5),表明PSFW內(nèi)蘆葦莖葉碎段釋放碳源時(shí)會(huì)有一定的磷釋放,但由于濕地自身具有除磷能力,出水中的磷仍得到了較好的去除,不同HRT下對(duì)TP去除率表現(xiàn)為4 d>3 d>2 d,與表面流人工濕地較高HRT(3 d)下的TP去除率高于較低HRT(1.5 d)下的去除率相一致[7]。第29~149天,PSFW對(duì)TP去除率要優(yōu)于PSFW0,這是因?yàn)橥都犹J葦莖葉碎段可能對(duì)磷的去除有一定的促進(jìn)作用。研究表明,濕地底層積累、腐敗的植物殘?bào)w具有吸附結(jié)合與促進(jìn)共沉淀含磷化合物的作用[21-22];也有研究表明,提高COD有利于磷的去除[23]。PSFW在該階段對(duì)磷的去除顯著高于PSFW0,這主要是由于蘆葦莖葉碎段在該階段腐解的量較后期多,有機(jī)質(zhì)釋放多,對(duì)TP的吸附去除作用強(qiáng)。PSFW和PSFW0運(yùn)行半年后,其對(duì)TP的去除率分別提高了37.1%和35.8%。
圖5 進(jìn)出水TP濃度變化Fig.5 The total phosphorus change of influent and effluent
第150~185天,當(dāng)HRT為3 d、進(jìn)水TP濃度為(1.01±0.08)mgL時(shí),PSFW和PSFW0的TP去除率分別為(68.7±11.0)%和(68.0±11.0)%,PSFW稍高于PSFW0。第186~334天,當(dāng)進(jìn)水TP濃度為(1.07±0.02)mgL,HRT分別按2和1 d運(yùn)行時(shí),PSFW的TP去除率〔(74.0±9.0)%和(36.7±10.0)%〕低于PSFW0〔(90.0±6.0)%和(63.4±6.0)%〕。這是因?yàn)镻SFW中自然生長(zhǎng)的優(yōu)勢(shì)植株為香蒲,后期階段未能及時(shí)收割會(huì)釋放一定的磷。此外,PSFW的基質(zhì)吸附交換作用達(dá)到平衡,因此對(duì)磷的去除率下降[24]。陸建蘭[20]曾報(bào)道種植香蒲的濕地對(duì)磷的凈化效果差于種植蘆葦?shù)臐竦兀@也解釋了末期PSFW對(duì)磷的去除差于PSFW0。
[1]李軍,徐影.固體碳源填充床反應(yīng)器反硝化性能的研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(6):1230-1235.
LI J,XU Y.Denitrification performance of a packed bed reactor using solid carbon source[J].Journal of Agro-Environment Science,2012,31(6):1230-1235.
[2]張?zhí)m河,孫立嬌,仇天雷,等.固體碳源填充床反應(yīng)器脫除污水硝態(tài)氮效能的預(yù)測(cè)模型[J].農(nóng)業(yè)工程學(xué)報(bào),2013,29(6):209-213.
ZHANG L H,SUN L J,QIU T L,et al.Prediction model for performance of nitrate removal from contaminated water using reactor packed with solid carbon source[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(6):209-213.
[3]范振興,王建龍.利用聚乳酸作為反硝化固體碳源的研究[J].環(huán)境科學(xué),2010,30(8):2315-2319.
FAN Z X,WANG J L.Denitrification using polylactic acid as solid carbon source[J].Environmental Science,2010,30(8):2315-2319.
[4]OVEZ B.Batch biological denitrification usingArundodonax,Glycyrrhizaglabra, andGracilariaverrucosaas carbon source[J].Process Biochemistry,2006,41(1):1289-1295.
[5]GODINI H,REZAEE A,KHAVANIN A,et al.Heterotrophic biological denitrification using microbial cellulos as carbon source[J].Journal of Polymers & the Environment,2011,19(1):283-287.
[6]紹留,徐祖信,金偉,等.農(nóng)業(yè)廢物反硝化固體碳源的優(yōu)選[J].中國(guó)環(huán)境科學(xué),2011,31(5):748-754.
SHAO L,XU Z X,JIN W,et al.Optimization of solid carbon source for denitrification of agriculture wastes[J].China Environmental Science,2011,31(5):748-754.
[7]李志元,張永祥,李維垚,等.表流人工濕地對(duì)微污染水脫氮除磷效果中試研究[C]中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集,北京:中國(guó)環(huán)境科學(xué)學(xué)會(huì),2012:1666-1669.
[8]ZHAO Y X,ZHANG B G,FENG C P,et al.Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment[J].Bioresource Technology,2011,107(1):159-165.
[9]陳川.自養(yǎng)菌-異養(yǎng)菌系統(tǒng)反硝化脫硫工藝的運(yùn)行與調(diào)控策略[D].哈爾濱:哈爾濱工業(yè)大學(xué),2011.
[10]王建.表面流人工濕地污水處理技術(shù)應(yīng)用探討[J].安徽建筑工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版),2010,18(4):51-55.
WANG J.Discussion of application on surface flow constructed wetlands for sewage treatment[J].Journal of Anhui Institute of Architecture & Industry(Natural Science),2010,18(4):51-55.
[11]魏星,朱偉,趙聯(lián)芳,等.植物秸稈作補(bǔ)充碳源對(duì)人工濕地脫氮效果的影響[J].湖泊科學(xué),2010,22(6):916-922.
WEI X,ZHU W,ZHAO L F,et al.Effect of the carbon source of plant straw supplement in constructed artificial wetland on nitrogen removal[J].Journal of Lake Sciences,2010,22(6):916-922.
[12]國(guó)家環(huán)境保護(hù)總局.水和廢水監(jiān)測(cè)分析方法[M].4版.北京:中國(guó)環(huán)境科學(xué)出版社,2002.
[14]譚洪新,周琪,楊殿海,等.寬葉香蒲表面流人工濕地脫氮除磷效果研究[J].環(huán)境污染與防治,2009,31(5):11-15.
TANG H X,ZHOU Q,YANG D H,et al.Removal of nitrogen and phosphorus by free water surface constructed wetland planted withTyphalaifolia[J].Environmental Pollution & Control,2009,31(5):11-15.
[15]葉碧碧,曹德菊,儲(chǔ)昭升,等.洱海湖濱帶挺水植物殘?bào)w腐解特征及其環(huán)境效應(yīng)初探[J].環(huán)境科學(xué)研究,2011,24(12):1364-1369.
YE B B,CAO D J,CHU Z S,et al.Decomposition characteristics of emergent aquatic plant residues from the lakeshore of Erhai Lake and their environmental effects[J].Research of Environmental Sciences,2011,24(12):1364-1369.
[16]唐金艷,曹培培,徐馳,等.水生植物腐爛分解對(duì)水質(zhì)的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2013,24(1):83-89.
TANG J Y,CAO P P,XU C,et al.Effects of aquatic plants during their decay and decomposition on water quality[J].Chinese Journal of Applied Ecology,2013,24(1):83-89.
[17]楊柯.人工濕地植物的篩選及試驗(yàn)研究[D].南寧:廣西大學(xué),2007.
[18]王海明.表面流人工濕地處理北方污染河水的長(zhǎng)期凈化效果及相關(guān)機(jī)理研究[D].濟(jì)南:山東大學(xué),2011.
[19]石雷,楊璇.人工濕地植物量及其對(duì)凈化效果影響的研究[J].生態(tài)環(huán)境學(xué)報(bào),2010,19(1):28-33.
SHI L, YANG X.Phytomass and its impact on the pollutant removal ability of constructed wetland[J].Ecology and Environmental Sciences,2010,19(1):28-33.
[20]陸建蘭.蘆葦與香蒲對(duì)富營(yíng)養(yǎng)化水體中氮磷去除效果的比較[J].廣東農(nóng)業(yè)科學(xué),2010,4(9):409-411.
LU J L.Removal effect comparison of reed and cattail on nitrogen and phosphorus in eutrophic water[J].Guangdong Agricultural Sciences,2010,4(9):409-411.
[21]張軍,周琪,何蓉.表面流濕地中氮磷去除機(jī)理[J].生態(tài)環(huán)境,2004,13(1):98-101.
[22]KIM S Y,GEARY P M.The impact of biomass harvesting on phosphorus uptake by wetland plants[J].Water Science & Technology,2001,44(1112):61-67.
[23]譚洪新,劉艷紅,周琪,等.添加碳源對(duì)潛流+表面流組合濕地脫氮除磷的影響[J].環(huán)境科學(xué),2007,28(6):1209-1215.
TAN H X,LIU Y H,ZHOU Q,et al.Effects of external carbon source on nitrogen and phosphorus removal in subsurface flow and free water surface integrated constructed wetland[J].Environmental Science,2007,28(6):1209-1215.
[24]TANNER C C.Substratum phosphorus accumulation during maturation of gravel-bed constructed wetlands[J].Water Science & Technology,1999,40(3):147-154.?
金曉丹,吳昊,王啟明,等.鈣離子和pH對(duì)長(zhǎng)江河口青草沙水庫(kù)水體磷濃度的影響[J].環(huán)境工程技術(shù)學(xué)報(bào),2016,6(5):462-468.
JIN X D, WU H, WANG Q M, et al.Impact of calcium and pH on content of phosphorus in water of Qingcaosha reservoir of Yangtze Estuary[J].Journal of Environmental Engineering Technology,2016,6(5):462-468.
The Long-term Nitrogen Removal Efficiency from Agricultural Runoff inPhragmitesAustralisPacked Surface Flow Constructed Wetland
CHANG Yang1,2, WANG Tong1, WANG Haiyan2,3, CHU Zhaosheng2,4, HANG Qianyu2,3, LIU Kai2,5, HOU Zeying2,4
1.School of Environmental Science and Engineering, Chang’an University, Xi’an 710000, China 2.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 3.Research Center for Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 4.Research Center of Lake Eco-environments, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 5.School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454150, China
The low CN ratio and high nitrate proportion characteristics of agricultural runoff make its nitrate removal difficult. To resolve such problem, the economically and easily obtainedPhragmitesaustralisstems and leaves were applied and packed in the surface layer of the surface flow constructed wetland (PSFW) as external carbon sources to study the long-term nitrogen removal from agricultural runoff. Compared with control PSFW0, obviously higher nitrate removal efficiency was observed inPhragmitesaustralispacked PSFW during 29-149 d operation. When the influentand TN were (16.4±1.0) mgL and (17.7±2.0) mgL and the HRTs were 2 d, 3 d and 4 d, the highest nitrogen removal efficiency was achieved under 4 d HRT condition, and the-N and TN removal efficiency in PSFW were (87.4±6.0)% and (74.1%±6.0)%. Those removal in PSFW0were (14.4±4.0)% and (14.4±3.0)%, respectively. Slightly higher denitrification efficiency was obtained in PSFW than that in PSFW0during 150-269 d operation. When the influent-N and TN were (10.4±1.0) mgL and (10.8±1.0) mgL and the HRTs were 3 d, 2 d and 1 d, the highest nitrogen removal efficiency was achieved under 3 d HRT condition, and the-N and TN removal efficiency in PSFW were (91.9±7.0)% and (90.2±7.0)%. Those removal were (91.3±5.0)% and (86.4±6.0)% in PSFW0accordingly. Slightly lower denitrification efficiency was obtained in PSFW than that in PSFW0during 270-334 d operation. When the influent-N and TN were (5.7±0.4) mgL and (7.2±0.8) mgL and the HRT was 3 d, the-N and TN removal efficiency in PSFW were (88.6±10.0)% and (82.5±7.0)%. Those removal were (94.0±6.0)% and (87.8±3.0)% in PSFW0accordingly.
Phragmitesaustralis; plant carbon source; surface flow constructed wetland; agricultural runoff; nitrogen removal
2016-03-10
國(guó)家水體污染控制與治理科技重大專項(xiàng)(2012ZX07105-002)
常洋(1990—),男,碩士研究生,461140419@qq.com
*責(zé)任作者:王海燕(1976—),女,研究員,博士,主要從事水污染控制原理與技術(shù)研究,wanghy@craes.org.cn
X703.1
1674-991X(2016)05-0453-09
10.3969j.issn.1674-991X.2016.05.067