蘇煒華 劉 峰 黃 瓏 蘇亞春 黃 寧 凌 輝 吳期濱 張 華 闕友雄
福建農(nóng)林大學(xué)農(nóng)業(yè)部福建甘蔗生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室 / 國(guó)家甘蔗產(chǎn)業(yè)技術(shù)研發(fā)中心, 福建福州 350002
甘蔗Ca2+/H+反向運(yùn)轉(zhuǎn)體基因的克隆與表達(dá)分析
蘇煒華**劉峰**黃瓏蘇亞春黃寧凌輝吳期濱張華闕友雄*
福建農(nóng)林大學(xué)農(nóng)業(yè)部福建甘蔗生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室 / 國(guó)家甘蔗產(chǎn)業(yè)技術(shù)研發(fā)中心, 福建福州 350002
CAX (Ca2+/H+antiporter)是植物細(xì)胞膜Ca2+主動(dòng)運(yùn)輸體系的一個(gè)大類(lèi)。本研究以高粱的CAX1基因(GenBank 登錄號(hào)為XM_002441593)為探針, 利用電子克隆并結(jié)合RT-PCR技術(shù), 獲得甘蔗CAX1基因的1條cDNA序列, 命名為ScCAX1 (GenBank登錄號(hào)為KT799799)。生物信息學(xué)分析顯示, ScCAX1基因全長(zhǎng)784 bp, 包含1個(gè)645 bp的開(kāi)放閱讀框, 編碼1個(gè)214個(gè)氨基酸的蛋白質(zhì)。ScCAX1蛋白被定位于葉綠體類(lèi)囊體膜, 為穩(wěn)定的疏水性蛋白, 不存在信號(hào)肽。蛋白二級(jí)結(jié)構(gòu)元件多為α-螺旋, 具有1個(gè)Na_Ca_ex superfamily。實(shí)時(shí)熒光定量PCR分析表明, 甘蔗ScCAX1基因的表達(dá)具有組織特異性, 在各組織中均表達(dá), 但在莖中表達(dá)量最低, 葉中的表達(dá)量最高。在PEG、NaCl、SA、ABA和MeJA脅迫過(guò)程中, ScCAX1基因的表達(dá)均受到調(diào)控。其中ABA、SA和PEG脅迫下表達(dá)量上調(diào), 均在脅迫24 h達(dá)到最大值。SA脅迫24 h的表達(dá)量為對(duì)照的5.47倍, 而ABA脅迫24 h的表達(dá)量為對(duì)照的3.5倍。NaCl脅迫6 h的表達(dá)量達(dá)最大值,為對(duì)照的2.14倍。推測(cè)ScCAX1基因能夠響應(yīng)逆境脅迫, 其表達(dá)可能與甘蔗的抗鹽、抗?jié)B透脅迫性狀有關(guān)。
甘蔗; CAX1基因; 電子克?。?生物信息學(xué); 實(shí)時(shí)熒光定量PCR
Ca2+作為植物體必需的營(yíng)養(yǎng)元素, 參與植物各階段的生長(zhǎng)發(fā)育過(guò)程[1]。Ca2+亦是植物體中重要的信使, 它在響應(yīng)植物自身的發(fā)育信息和外部刺激中發(fā)揮著重要作用[2-4]。在響應(yīng)逆境脅迫方面, Ca2+通過(guò)維持質(zhì)膜結(jié)構(gòu)和功能的穩(wěn)定,提高植物的抗逆境能力[5]。當(dāng)植物受到干旱、低溫和鹽脅迫等外部刺激時(shí), 細(xì)胞中Ca2+濃度會(huì)經(jīng)歷短時(shí)間的快速上升和長(zhǎng)時(shí)間慢速上升2個(gè)階段[6-8], Ca2+濃度的升高作為信號(hào)物質(zhì)誘導(dǎo)響應(yīng)基因的表達(dá)[7]。在植物體內(nèi)眾多的Ca2+轉(zhuǎn)移系統(tǒng)中, Ca2+/H+反向轉(zhuǎn)運(yùn)體屬于Ca2+外向轉(zhuǎn)運(yùn)器的一類(lèi), 它能夠調(diào)節(jié)細(xì)胞中的Ca2+濃度、調(diào)控植物營(yíng)養(yǎng)和參與信號(hào)傳遞[4,9]。
CAXs家族作為CaCA (Ca2+/cation antiporter, Ca2+/陽(yáng)離子逆向轉(zhuǎn)運(yùn)體)交換體超家族的一部分, 其主要功能是將陽(yáng)離子轉(zhuǎn)運(yùn)出胞外以維持胞內(nèi)合理的離子濃度, 不僅具有高效率、高通量和低親和性的特征, 而且對(duì)很多金屬離子具有較高的轉(zhuǎn)運(yùn)能力, 但主要以Ca2+為主[10-13]。植物中關(guān)于Ca2+/H+反向轉(zhuǎn)運(yùn)體的研究, 始于擬南芥(Arabidopsis thaliana)中克隆得到CAX1 (calcium exchanger 1)及其表達(dá)分析[14]。目前, 在擬南芥中已有CAX1、CAX2、CAX3和CAX4[11,15-16]被成功克隆, 預(yù)計(jì)還有8個(gè)Ca2+/H+反向轉(zhuǎn)運(yùn)體基因[17]。另外CAX1基因已在水稻(Oryza sativa)[18]、綠豆(Vigna radiate)[19]、棉花(Gossypium spp.)[20]等多個(gè)物種中被克隆和分析。CAX1基因在植物的生長(zhǎng)發(fā)育及適應(yīng)環(huán)境變化方面具有重要的作用。在調(diào)控植物營(yíng)養(yǎng)和生長(zhǎng)方面, 有報(bào)道稱, 與對(duì)照組相比, 擬南芥突變體CAX1不僅抽薹時(shí)間推遲而且莖的分枝數(shù)、總長(zhǎng)度、側(cè)根數(shù)目及長(zhǎng)度均有不同程度減少[21]。另有研究發(fā)現(xiàn), N端缺失的CAX1(sCAX1)被導(dǎo)入煙草和番茄后,植株體中Ca2+含量升高, 植株發(fā)育受到阻礙, 離子敏感度增加, 在對(duì)煙草施加外源Ca2+時(shí), 煙草恢復(fù)正常生長(zhǎng)[22]; 但是,轉(zhuǎn)基因番茄中幼嫩果實(shí)出現(xiàn)臍腐病, 同時(shí)果實(shí)保鮮期延長(zhǎng)[23]。以上說(shuō)明CAX1可能將植物胞質(zhì)內(nèi)的Ca2+轉(zhuǎn)運(yùn)至液泡使得胞質(zhì)Ca2+濃度下降, 導(dǎo)致植物營(yíng)養(yǎng)失衡, 番茄的臍腐病也印證了該觀點(diǎn)[22-23]。Ca2+在植物響應(yīng)逆境信號(hào)過(guò)程中起著信使的作用。Park等[23-24]將擬南芥中的CAX1導(dǎo)入胡蘿卜和番茄中表達(dá), 發(fā)現(xiàn)植株對(duì)Ca2+積累能力增強(qiáng)。將大豆的GmCAX1基因和萊茵衣藻的CrCAX1基因轉(zhuǎn)入擬南芥后, 由于GmCAX1和CrCAX1本身具有Na+/H+的活性, 且位于液泡膜上, 故可以將擬南芥胞質(zhì)內(nèi)多余的Na+轉(zhuǎn)運(yùn)到液泡[25-26], 進(jìn)而增強(qiáng)轉(zhuǎn)基因植株對(duì)鹽脅迫的抗性。在應(yīng)答冷脅迫方面, 將擬南芥的CAX1基因轉(zhuǎn)入煙草時(shí),發(fā)現(xiàn)煙草內(nèi)[Ca2+]cyt(胞質(zhì)Ca2+濃度)的減少導(dǎo)致信號(hào)傳導(dǎo)受阻, 增強(qiáng)了植株對(duì)冷脅迫的敏感性[20,27]。但是, 目前尚未見(jiàn)關(guān)于甘蔗CAX1基因克隆和表達(dá)分析的報(bào)道。
目前, 我國(guó)甘蔗主產(chǎn)區(qū)主要為桂、滇、粵、瓊的紅壤旱地, 那里風(fēng)、寒、旱等極端氣候頻發(fā), 對(duì)我國(guó)甘蔗生產(chǎn)發(fā)展造成較大危害[28]。為了更好應(yīng)對(duì)不良環(huán)境的影響, 利用分子生物技術(shù)培育具有優(yōu)良抗性甘蔗品種是有效的解決方法之一, 挖掘鑒定優(yōu)良的基因資源是其中一項(xiàng)重要任務(wù)。本研究立足于前人對(duì)其他物種CAX1基因的研究進(jìn)展, 通過(guò)電子克隆、RT-PCR及實(shí)時(shí)熒光定量PCR等技術(shù)對(duì)甘蔗CAX1基因進(jìn)行克隆與表達(dá)分析, 以期進(jìn)一步深入理解CAX1基因在甘蔗中的表達(dá)功能和作用機(jī)制并為甘蔗育種提供抗逆性基因資源。
表1 實(shí)時(shí)熒光定量材料處理Table 1 Material processing for Real-time PCR
1.1植物材料及試劑
福建農(nóng)林大學(xué)農(nóng)業(yè)部福建甘蔗生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室提供甘蔗材料, 品種為崖城05-179。試劑主要有PrimeScript RT-PCR Kit反轉(zhuǎn)錄試劑盒(TaKaRa, 中國(guó)大連)、TRIzol Reagent (Invitrogen, Carlsbad, CA, USA)、Gel Extracti on Kit (Tiangen Biotech Co., 中國(guó)北京)、SYBRGreen PCR Master Mix Kit (Roche, USA)。
1.2材料處理
參考黃瓏等[29]的操作步驟。在保證樣本均一性情況下, 從田間采樣, 將蔗株砍成單芽莖段, 于高溫高壓滅菌營(yíng)養(yǎng)土中催芽(16 h/8 h, 光/暗, 28℃), 種植。待蔗苗長(zhǎng)出4~6葉時(shí), 取長(zhǎng)勢(shì)一致的蔗苗進(jìn)行組培, 將組培甘蔗幼苗移出并在溫室內(nèi)開(kāi)放水培一周。設(shè)置對(duì)照組和試驗(yàn)組, 生物學(xué)重復(fù)為3次。以0 h未處理的蔗苗作為對(duì)照(表1)。以上所有甘蔗材料取樣后被立即投入液氮并保存于–80℃冰箱至RNA提取。
1.3 電子克隆
以高粱CAX1基因核酸序列(GenBank登錄號(hào)為XM_002441593)為探針, 利用Blast工具在甘蔗EST數(shù)據(jù)庫(kù)中檢索, 篩選出與探針序列同源性較高的甘蔗EST序列(表2), 使用在線工具CAP3 (http://pbil.univ-lyon1.fr/ cap3.php)對(duì)序列聚類(lèi)、拼接、延伸, 得到新的重疊群, 持續(xù)比對(duì)檢索直至無(wú)新的EST可供拼接為止, 從而獲得cDNA序列。使用ORF Finder在線軟件(http://www.ncbi.nlm. nih.gov/gorf/orfig.cgi)查找序列的開(kāi)放閱讀框, 并對(duì)其分析和翻譯。
表2 電子克隆中用到的甘蔗EST序列Table 2 Sugarcane ESTs used in silicon cloning
1.4甘蔗ScCAX1基因的RT-PCR及測(cè)序
通過(guò)TRIzol法提取NaCl處理的甘蔗YC05-179蔗苗的總RNA, 然后使用Prime-Script RT Reagent Kit反轉(zhuǎn)錄試劑盒合成cDNA作為PCR模板。應(yīng)用Primer 5.0軟件對(duì)ScCAX1拼接序列進(jìn)行特異性引物設(shè)計(jì), 即CAX1-1F和CAX-1R (表3), PCR擴(kuò)增體系總體積25 μL, 含10×Ex Taq buffer 2.5 μL、10 mmol L–1dNTPs 2 μL、20 μmol L–1上下游引物各1.0 μL、Ex Taq酶0.125 μL、cDNA模板1.0 μL、ddH2O 17.375 μL。PCR程序?yàn)?5℃預(yù)變性4 min; 95℃變性30 s, 55℃退火30 s, 72℃延伸2 min, 35個(gè)循環(huán); 72℃延伸10 min。先將擴(kuò)增產(chǎn)物純化回收, 隨后將回收產(chǎn)物連接到pMD-19T載體并轉(zhuǎn)化到大腸桿菌DH5α感受態(tài)細(xì)胞中,于含有氨芐青霉素的LB平板上進(jìn)行陽(yáng)性克隆篩選并挑取單菌落鑒定, 而后送往上海生工生物工程技術(shù)服務(wù)有限公司測(cè)序, 通過(guò)DNAMAN軟件比對(duì)測(cè)序結(jié)果與電子克隆序列。
1.5甘蔗ScCAX1基因序列的生物信息學(xué)分析
參考黃瓏等[29], 應(yīng)用在線工具ExPASyProtparam tool預(yù)測(cè)ScCAX1基因編碼的蛋白一級(jí)結(jié)構(gòu)、親疏水性; 對(duì)其二級(jí)結(jié)構(gòu)、亞細(xì)胞定位及功能預(yù)測(cè)和信號(hào)肽的預(yù)測(cè)則分別采用SOPMA[30]、SignalP 4.0 Server軟件和Psort; 用SWISSMODEL在線預(yù)測(cè)工具預(yù)測(cè)分析蛋白三級(jí)結(jié)構(gòu); 通過(guò)NCBI中的CDD (Conserved Domain Database)數(shù)據(jù)庫(kù)預(yù)測(cè)蛋白保守結(jié)構(gòu)域; 用Blastp在線工具查找甘蔗ScCAX1同源氨基酸序列, 并使用DNAMAN7.0多重比對(duì)同源氨基酸序列, 使用MEGA5.1軟件NJ (Neighbor-Joining)法(BootStrap 1000)構(gòu)建系統(tǒng)進(jìn)化樹(shù)。
1.6甘蔗ScCAX1基因表達(dá)的實(shí)時(shí)熒光定量PCR分析
采用TRIzol法提取樣品RNA, 包含SA、MeJA、ABA、PEG和NaCl脅迫處理材料及崖城05-179的組織特異性材料即根、莖、葉、皮、莖尖和芽組織材料。參照Prime-Script RT Reagent Kit操作說(shuō)明書(shū), 將RNA反轉(zhuǎn)錄合成cDNA得到模板?;赟cCAX1基因序列進(jìn)行定量引物設(shè)計(jì), 即qCAX1-2F和qCAX1-2R (表3), 內(nèi)參基因?yàn)镃UL和CAC,內(nèi)參基因的定量引物見(jiàn)表3[31]。PCR體系(20 μL)含SYBRGreen Primix Ex Taq (2×) 10 μL、10 μmol L–1上下游引物各0.8 μL、cDNA 2.0 μL、ddH2O 6.4 μL。實(shí)時(shí)熒光定量PCR擴(kuò)增程序?yàn)?0℃ 2 min; 95℃ 10 min; 95℃ 15 s、60℃ 1 min, 45個(gè)循環(huán); 增加熔解曲線; 反應(yīng)時(shí)設(shè)置3次技術(shù)重復(fù)。組織特異性表達(dá)分析中, 未使用參照樣品, 僅將ScCAX1基因在莖中的表達(dá)量定義為1, 其他組織中該基因的表達(dá)量與之相比。在ABI PRISM7500 Real-time PCR System軟件上對(duì)定量數(shù)據(jù)初步分析后, 導(dǎo)致Microsoft Excel工作表, 采用2–ΔΔCt算法[32]分析實(shí)時(shí)熒光定量PCR試驗(yàn)結(jié)果, 計(jì)算3次重復(fù)數(shù)據(jù)的標(biāo)準(zhǔn)誤后繪圖。
表3 ScCAX1基因克隆與表達(dá)所用引物Table 3 Primers used in ScCAX1 gene cloning and expression analysis
2.1甘蔗ScCAX1基因序列的獲得
應(yīng)用電子克隆技術(shù)獲得甘蔗Ca2+/H+反向運(yùn)轉(zhuǎn)體基因CAX1的cDNA全長(zhǎng)序列, 并根據(jù)該序列設(shè)計(jì)1對(duì)特異性引物, 經(jīng)過(guò)RT-PCR擴(kuò)增獲得約784 bp的單一條帶(圖1),經(jīng)過(guò)膠回收、連接轉(zhuǎn)化、菌液PCR鑒定和測(cè)序。序列比對(duì)表明, RT-PCR擴(kuò)增產(chǎn)物序列與電子克隆得到的序列同源性高達(dá)99.87%, 驗(yàn)證了電子克隆的正確性。將該基因命名為ScCAX1, 其GenBank登錄號(hào)為KT799799。該基因的核酸序列及其推導(dǎo)的氨基酸序列如圖2。
圖1 甘蔗ScCAX1基因的RT-PCR擴(kuò)增Fig. 1 RT-PCR amplification of ScCAX1 gene in sugarcaneM: marker 2000 bp; 1: RT-PCR產(chǎn)物。M: DNA marker 2000 bp; 1: RT-PCR products.
2.2甘蔗ScCAX1基因的生物信息學(xué)分析
2.2.1甘蔗ScCAX1基因編碼氨基酸的一級(jí)和二級(jí)結(jié)構(gòu)預(yù)測(cè) 甘蔗ScCAX1基因編碼的蛋白一級(jí)結(jié)構(gòu)預(yù)測(cè)顯示, 該蛋白分子式為C1085H1689N259O301S9, 分子量為23.4 kD, 編碼了214個(gè)氨基酸。其中等電點(diǎn)(pI)為4.71, 不穩(wěn)定系數(shù)為23.70, 數(shù)值小于40表明該蛋白穩(wěn)定, 推測(cè)為穩(wěn)定的酸性蛋白質(zhì)。二級(jí)結(jié)構(gòu)預(yù)測(cè)顯示, 甘蔗ScCAX1蛋白α-螺旋所占的比例最高, 為47.20%, 延伸鏈所占比例最低, 為24.77%, 無(wú)規(guī)則卷曲結(jié)構(gòu)占22.90% (表4)。
2.2.2甘蔗ScCAX1蛋白信號(hào)肽、疏水性/親水性的預(yù)測(cè)和分析 甘蔗ScCAX1蛋白氨基酸殘基的加權(quán)平均值較小,為0.314 (<0.5), 推測(cè)該蛋白不存在信號(hào)肽。即甘蔗ScCAX1蛋白為非分泌蛋白, 在細(xì)胞質(zhì)中合成后不能被轉(zhuǎn)運(yùn)。
從圖3可以看出, 第185位具有最高分值, 為3.533,疏水性最強(qiáng); 第195位具有最低分值, 為–2.733, 親水性最強(qiáng), 絕大部分氨基酸都表現(xiàn)疏水性, 推測(cè)甘蔗ScCAX1蛋白是一種疏水蛋白。
2.2.3甘蔗ScCAX1蛋白三級(jí)結(jié)構(gòu)預(yù)測(cè) 用SWISSMODEL工具, 以SMTL id: 4k1c.1 Chain id: A為模板對(duì)ScCAX1、水稻、粟和玉米的蛋白三級(jí)結(jié)構(gòu)進(jìn)行預(yù)測(cè), 序列同源性分別為39%、39%、39%和40%。如圖4所示, 甘蔗ScCAX1蛋白的三級(jí)空間結(jié)構(gòu)與水稻、粟和玉米蛋白的三級(jí)結(jié)構(gòu)均以α-螺旋為主。
圖2 同源克隆獲得的甘蔗ScCAX1基因的cDNA序列及其推導(dǎo)的氨基酸序列(*終止密碼子)Fig. 2 Nucleotide sequence and deduced amino acid sequence of sugarcane ScCAX1 gene obtained by homology cloning (* stop codon)黑色框部分為特異性引物在基因序列中的位置。The sequence fragment complementary to primer is highlighted in black box.
表4 甘蔗ScCAX1蛋白二級(jí)結(jié)構(gòu)預(yù)測(cè)分析Table 4 Secondary structure prediction of sugarcane ScCAX1 protein
圖3 甘蔗ScCAX1蛋白氨基酸疏水性/親水性預(yù)測(cè)Fig. 3 Predicted hydrophobicity/hydrophilicity of the amino acid sequence of sugarcane ScCAX1 protein
2.2.4甘蔗ScCAX1蛋白的功能和亞細(xì)胞定位預(yù)測(cè)
該蛋白主要作為受體, 可能性為2.81, 其次也可能是轉(zhuǎn)運(yùn)子(2.19)和信號(hào)傳感器(2.03)。甘蔗ScCAX1蛋白可能定位于葉綠體類(lèi)囊體膜(71.2%)上, 其次是細(xì)胞質(zhì)膜(60.0%), 再次是線粒體內(nèi)膜(53.8%)。
2.2.5甘蔗ScCAX1蛋白的保守結(jié)構(gòu)域分析 如圖5所示, 甘蔗ScCAX1蛋白隸屬的家族為Na_Ca_ex superfamily, 具有Na+/Ca2+交換蛋白結(jié)構(gòu)域, 即Na_Ca_ex(sodium/calcium exchanger protein)結(jié)構(gòu)域。
2.2.6甘蔗ScCAX1蛋白的氨基酸序列同源性分析和系統(tǒng)進(jìn)化樹(shù)構(gòu)建 甘蔗ScCAX1蛋白的氨基酸通過(guò)NCBI中的Blastp程序?qū)ζ溥M(jìn)行同源性分析, 可知該蛋白與玉米(Zea mays |ACF84781.1|)、粟(Setaria italica |XP004960984.1|)、小麥(Triticum urartu |EMS64041.1|)、山羊草(Aeqilops tauschii |EMT05522.1|)、二穗短柄草(Brachypodium distachyon |XP003581596.1|)、水稻(O. sativa japonica Group |NP001056506.1|)、油棕(Elaeis quineensis |XP01092 7362.1|)和海棗(Phoenix dactylifera |XP008793971.1|)蛋白的氨基酸序列相似性分別為93%、93%、88%、87%、86%、79%、77%和74%。氨基酸序列多重比對(duì)(圖6)表明, 甘蔗ScCAX1蛋白與玉米和粟的氨基酸相似性最高, 為93%, 而與小麥、山羊草、二穗短柄草等相似性較低。
圖4 甘蔗、玉米、水稻和粟CAX1蛋白三級(jí)結(jié)構(gòu)預(yù)測(cè)Fig. 4 Predicted third structure of CAX1 protein in Saccharum spp. hybrids, Zea mays, Oryza sativa, and Setaria italica
圖5 甘蔗ScCAX1蛋白的保守結(jié)構(gòu)域分析Fig. 5 Conserved domain prediction of sugarcane ScCAX1 protein
進(jìn)化樹(shù)(圖7)表明, 同屬的棕櫚科、油棕和海棗位于同一個(gè)分支; 而甘蔗ScCAX1、粟、玉米、小麥、山羊草和二穗短柄草同屬于禾本科植物, 則為另一分支, 其中甘蔗ScCAX1和粟米親緣關(guān)系最近。
2.3甘蔗ScCAX1基因的組織特異性表達(dá)分析
由圖8可知, 甘蔗ScCAX1基因的表達(dá)具有組織特異性。該基因在莖中表達(dá)量最低, 而在葉中表達(dá)量最高, 為莖中的6.46倍, 此外芽中的表達(dá)量為莖中的3.5倍。
2.4甘蔗ScCAX1基因在不同外源脅迫下的表達(dá)特性分析
根據(jù)圖9, 在MeJA脅迫下ScCAX1基因的表達(dá)呈“先抑后揚(yáng)”的表達(dá)模式, MeJA脅迫12 h后該基因的表達(dá)受到抑制, 表達(dá)量下降為最低值, 為對(duì)照的0.81倍, 而在脅迫24 h后表達(dá)量上調(diào), 約為對(duì)照的1.24倍。NaCl脅迫下ScCAX1基因的表達(dá)則呈“揚(yáng)—抑—揚(yáng)”的表達(dá)模式, 在6 h表達(dá)量上調(diào), 為對(duì)照的2.14倍; 但在24 h表達(dá)量最低,僅為對(duì)照的0.77, 而后在48 h表達(dá)量又有所上調(diào)。圖9顯示, 在ABA、SA和PEG脅迫下, ScCAX1基因的表達(dá)量均不同程度上調(diào)。在ABA脅迫下, 與6 h相比, ScCAX1基因的表達(dá)量在12 h有所下調(diào), 但在24 h達(dá)到最高, 為對(duì)照的3.5倍。而SA脅迫下, 該基因表達(dá)量呈隨脅迫時(shí)間增加而增加的趨勢(shì), 在脅迫24 h后表達(dá)量最高, 為對(duì)照的5.47倍。在PEG脅迫誘導(dǎo)下, 該基因的表達(dá)量在24 h最高, 為對(duì)照的1.97倍, 但在6 h、12 h無(wú)明顯變化。
圖6 甘蔗ScCAX1蛋白與其他植物種蛋白的氨基酸序列比對(duì)Fig. 6 Homology analysis of sequences from sugarcane ScCAX1 and those of other species
圖7 不同物種CAX1蛋白的系統(tǒng)進(jìn)化樹(shù)Fig. 7 Phylogenetic tree of CAX1 protein sequences from different species
圖8 甘蔗ScCAX1基因在不同組織中的表達(dá)Fig. 8 Relative expression of ScCAX1 gene in different tissues of sugarcane誤差線為每組處理的標(biāo)準(zhǔn)誤差(n = 3)。Error bars represent the standard error of each treating group (n = 3).
鈣元素在植物體中具有重要的作用, 在細(xì)胞中發(fā)揮著第二信使的作用, 它不僅與植物的生長(zhǎng)發(fā)育和光合產(chǎn)物運(yùn)輸?shù)扔嘘P(guān), 還參與各種脅迫性防御反應(yīng)[33-36]。在植物中, Ca2+的轉(zhuǎn)運(yùn)很大程度上需依賴Ca2+/H+反向轉(zhuǎn)運(yùn)體, 但Ca2+/H+反向轉(zhuǎn)運(yùn)體基因在空間、功能等方面各不相同[33]。
本研究克隆獲得ScCAX1基因, 基因序列是可靠的。該基因編碼的蛋白為穩(wěn)定酸性蛋白, 二級(jí)結(jié)構(gòu)中α-螺旋所占比例最大, 該結(jié)果與郭園園等[37]關(guān)于煙草中CAX2基因的研究相一致。前人研究結(jié)果表明, 當(dāng)氨基酸殘基的加權(quán)平均值小于0.5時(shí), 該蛋白不存在信號(hào)肽[38]。本研究中ScCAX1蛋白氨基酸殘基的加權(quán)平均值為0.314 (<0.5),故推測(cè)該蛋白不存在信號(hào)肽。因?yàn)镾cCAX1蛋白的GRAVY值為0.727, 當(dāng)?shù)鞍诪槭杷鞍讜r(shí), GRAVT數(shù)值大于零, 可以判斷整條多肽鏈?zhǔn)杷暂^強(qiáng)[39]。在保守結(jié)構(gòu)域上, ScCAX1具有Na+/Ca2+交換蛋白結(jié)構(gòu)域(Na_Ca_ex),推測(cè)該蛋白屬于整合膜蛋白, 可依據(jù)細(xì)胞質(zhì)中Na+濃度,調(diào)控Ca2+在細(xì)胞中的運(yùn)動(dòng), 進(jìn)而控制細(xì)胞內(nèi)Ca2+濃度[40]。亞細(xì)胞定位預(yù)測(cè)結(jié)果顯示, 該蛋白可能定位于葉綠體類(lèi)囊膜、細(xì)胞質(zhì)膜或者線粒體膜。根據(jù)前人研究發(fā)現(xiàn), CAXs蛋白可能定位于液泡膜、質(zhì)膜、葉綠體類(lèi)囊膜和線粒體膜[41-42],如大豆GmCAX1[25]定位于質(zhì)膜, 而鹽地堿芽Put-CAX1則定位于液泡膜[43], 故對(duì)甘蔗中ScCAX1蛋白的亞細(xì)胞定位結(jié)果還需進(jìn)一步實(shí)驗(yàn)驗(yàn)證。
圖9 甘蔗 ScCAX1 基因在不同外源脅迫下的表達(dá)Fig. 9 ScCAX1 gene expression in sugarcane under different exogenous stresses誤差線為每組處理的標(biāo)準(zhǔn)誤差(n = 3)。Error bars represent the standard error of each treating group (n = 3).
實(shí)時(shí)熒光定量PCR分析結(jié)果顯示, ScCAX1基因表達(dá)具有組織特異性, 在葉中的表達(dá)量最高, 莖中的表達(dá)量最低。而鹽地堿蓬SsCAX1主要在莖和葉片中表達(dá), 根部表達(dá)量非常低, 幾乎檢測(cè)不到[44]。因此, 不同植物中CAX1的組織特異表達(dá)模式是不同的, 這與前人的研究結(jié)果一致[45]。在非生物脅迫反應(yīng)方面, 在SA、ABA、PEG脅迫下, 相對(duì)于對(duì)照, ScCAX1基因表達(dá)量均有不同程度上調(diào),而MeJA脅迫下, 該基因的表達(dá)模式為“先抑后揚(yáng)”。有報(bào)道顯示, Ca2+參與激活SA介導(dǎo)的防衛(wèi)反應(yīng)基因的表達(dá)[46-47], 推測(cè)隨著SA脅迫時(shí)間的延長(zhǎng), Ca2+轉(zhuǎn)運(yùn)活躍從而導(dǎo)致ScCAX1基因表達(dá)量上升, 這解釋了為什么本研究中ScCAX1基因表達(dá)量在SA脅迫下隨時(shí)間的增加而增長(zhǎng)。ABA在植物應(yīng)答非生物脅迫中發(fā)揮重要的信號(hào)轉(zhuǎn)導(dǎo)作用[47], PEG是理想的干旱脅迫模擬試劑[48]。干旱條件也能激發(fā)細(xì)胞內(nèi)多條信號(hào)轉(zhuǎn)導(dǎo)途徑[49], 而Ca2+具有信使的作用, 在響應(yīng)外界刺激等方面發(fā)揮著重要作用[2-4], 這也再次佐證了甘蔗ScCAX1基因與Ca2+的轉(zhuǎn)運(yùn)有著較為密切的聯(lián)系。本研究中, 在ABA和PEG脅迫后的各時(shí)間點(diǎn), ScCAX1基因表達(dá)量均高于對(duì)照, 推測(cè)可能是ABA、PEG逆境脅迫引起信號(hào)傳導(dǎo), 激發(fā)Ca2+信號(hào), 導(dǎo)致與Ca2+轉(zhuǎn)運(yùn)密切相關(guān)的ScCAX1基因表達(dá)量上升。對(duì)于NaCl脅迫下的“先揚(yáng)后抑再揚(yáng)”的表達(dá)模式, 可能的原因是脅迫6 h后傳遞了脅迫信號(hào), 誘導(dǎo)ScCAX1基因表達(dá)量升高。同時(shí), 這可能正是因?yàn)橥庠贷}誘導(dǎo)導(dǎo)致植物體內(nèi)出現(xiàn)離子平衡失調(diào)、膜脂過(guò)氧化和代謝紊亂等問(wèn)題[50], 使得脅迫12 h的表達(dá)量驟降, 而脅迫24 h表達(dá)量開(kāi)始升高恢復(fù)正常。綜上所述, 該基因的表達(dá)受到外源干旱、鹽脅迫等逆境條件的調(diào)控, 推測(cè)該基因在甘蔗抗逆境方面發(fā)揮一定的作用。
References
[1] 潘瑞熾, 董愚得. 植物生理學(xué)(第5版). 北京: 高等教育出版社, 1995. pp 33–34 Pan R C, Dong Y D. Plant Physiology (5th edn). Beijing: Higher Education Press, 1995. pp 33–34
[2] Sanders D, Pelloux J, Brownlee C, Harper J F. Calcium at the crossroads of signaling. Plant Cell, 2002, 14(suppl): S401–S417
[3] Curran A C, Hwang I, Corbin J, Martinez S, Rayle D, Sze H,Harper J F. Autoinhibition of a calmodulin-dependent calcium pump involves a structure in the stalk that connects the transmembrane domain to the ATPase catalytic domain. J Biol Chem,2000, 275: 30301–30308
[4] 祁碧菽, 李春光, 陳葉苗, 陸平利, 郝福順, 沈國(guó)明, 陳珈, 王學(xué)臣. 水稻Ca2+/H+反向轉(zhuǎn)運(yùn)體OsCAX3的功能分析和亞細(xì)胞定位研究. 生物化學(xué)與生物物理進(jìn)展, 2005, 32: 876–882 Qi B S, Li C G, Chen Y M, Lu P L, Hao F S, Shen G M, Chen J,Wang X C. Functional analysis of rice Ca2+/H+antiporter OsCAX3 in yeast and its subcellular localization in plant. Prog Biochem Biophys, 2005, 32: 876–882 (in Chinese with English abstract)
[5] 朱曉軍, 楊勁松, 梁永超, 婁運(yùn)生, 楊曉英. 鹽脅迫下鈣對(duì)水稻幼苗光合作用及相關(guān)生理特性的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2004,37: 1497–1503 Zhu X J, Yang J S, Liang Y C, Lou Y S, Yang X Y. Effects of exogenous calcium on photosynthesis and its related physiological characteristics of rice seedlings under salt stress. Sci Agric Sin,2004, 37: 1497–1503 (in Chinese with English abstract)
[6] McCormack E, Tsai Y C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Plant Sci, 2005, 10: 383–389
[7] Mahajan S, Tuteja N. Calcium signaling network in plants: an overview. Plant Signal Behav, 2007, 2: 79–85
[8] Chinnusamy V, Zhu J K. Plant salt tolerance. Top Curr Genet, 4: 241–270
[9] White P J, Broadley M R. Calcium in plants. Ann Bot, 2003, 92: 487–511
[10] 陳志遠(yuǎn). 擬南芥AtCCX1基因的克隆、表達(dá)和功能鑒定. 西北農(nóng)林科技大學(xué)博士學(xué)位論文, 陜西西安, 2011 Chen Z Y. Clone, Expression and Characterization of Arabidopsis AtCCX1. PhD Dissertation of North West Agriculture and Forestry University, Xi’an, China, 2011 (in Chinese with English abstract)
[11] Hirschi K D, Zhen R G, Cunningham K W, Rea P A, Fink G R. CAX1, an H+/Ca2+antiporter from Arabidopsis. Proc Natl Acad Sci USA, 1996, 93: 8782–8786
[12] Hirschi K D, Korenkov V D, Wilganowski N L, Wagner G J. Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol, 2000,124: 125–133
[13] Kamiya T, Akahori T M. Expression profile of the genes for rice cation/H+exchanger family and functional analysis in yeast. Plant Cell Physiol, 2005, 46: 1735–1740
[14] 劉趙越, 童偉, 張英華, 方榮俊, 趙衛(wèi)國(guó), 李龍. 桑樹(shù)Ca2+/H+反向轉(zhuǎn)運(yùn)體基因MCAX1的克隆及序列與表達(dá)分析. 蠶業(yè)科學(xué),2012, 38: 192–198 Liu Z Y, Tong W, Zhang Y H, Fang R J, Zhao W G, Li L. Molecular cloning, sequence and expression analyses of Ca2+/H+antiporter gene in mulberry (Morus L.). Acta Sericol Sin, 2012,38: 192–198 (in Chinese with English abstract)
[15] Pittman J K, Hirschi K D. Regulation of CAX1, an Arabidopsis Ca2+/H+antiporter. Identification of an N-terminal autoinhibitory domain. Plant Physiol, 2001, 127: 1020–1029
[16] Cheng N H, Pittman J K, Shigaki T, Hirschi K D. Characterization of CAX4, an Arabidopsis H+/cation antiporter. Plant Physiol,2002, 128: 1245–1254
[17] Maser P, Thomine S, Schroeder J I, Ward J M, Hirschi K, Sze H,Talke I N, Amtmann A, Maathuis F J M, Sanders D, Harper J F,Tchieu J, Gribskov M, Persans M W, Salt D E, Kim S A, Guerinot M L. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol, 2001, 126: 1646–1667
[18] Kamiya T, Akahori T, Ashikari M, Maeshima M. Expression of the vacuolar Ca2+/H+exchanger, OsCAX1a, in rice: cell and age specificity of expression, and enhancement by Ca2+. Plant Cell Physiol, 2006, 47: 96–106
[19] Ueoka-Nakanishi H, Nakanishi Y, Tanaka Y, Maeshima M. Properties and molecular cloning of Ca2+/H+antiporter in the vacuolar membrane of mung bean. Eur J Biochem, 1999, 262: 417–425
[20] 許蓮. 棉花Ca2+轉(zhuǎn)運(yùn)相關(guān)基因的克隆與功能鑒定. 華中農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 湖北武漢, 2011 Xu L. Isolation and Characterization of Ca2+Transport Related Genes in Cotton. MS Thesis of Huazhong Agricultural University,Wuhan, China, 2011 (in Chinese with English abstract)
[21] Cheng N H, Hirschi K D. Cloning and characterization of CXIP1,a novel PICOT domain-containing Arabidopsis protein that associates with CAX1. J Biol Chem, 2003, 278: 6503–6509
[22] Hirschi K D. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell,1999, 11: 2113–2122
[23] Park S, Cheng N H, Pittman J K, Yoo K S, Park J, Smith R H,Hirschi K D. Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+transporters. Plant Physiol, 2005, 139: 1194–1206
[24] Park S, Kim C K, Pike L M, Smith R H, Hirschi K D. Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+transporters. Mol Breed, 2004, 14: 275–282
[25] Luo G Z, Wang H W, Huang J, Tiara A G, Wang Y J, Zhang J S,Chen S Y. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol, 2005, 59: 809–820
[26] Pittman J K, Edmond C, Sunderland P A, Bray C M. A cation-regulated and proton gradient-dependent cation transporter from Chlamydomonas reinhardtii has a role in calcium and sodium homeostasis. J Biol Chem, 2009, 284: 525–533
[27] Catala R, Santos E, Alonso J M, Ecker J R, Martinez-Zapater J M,Salinas J. Mutations in the Ca2+/H+transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell, 2003, 15: 2940–2951
[28] 馬改艷, 徐學(xué)榮. 對(duì)當(dāng)前我國(guó)甘蔗產(chǎn)業(yè)發(fā)展形勢(shì)的分析與思考. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013, 7(6): 29–35 Ma G Y, Xu X R. Analysis and deliberation on the current development situation of China’s sugar industry. J Yunnan Agric Univ,2013, 7(6): 29–35 (in Chinese with English abstract)
[29] 黃瓏, 蘇煒華, 張玉葉, 黃寧, 凌輝, 肖新?lián)Q, 闕友雄, 陳如凱.甘蔗CIPK基因的同源克隆與表達(dá). 作物學(xué)報(bào), 2015, 41: 499–506 Huang L, Su W H, Zhang Y Y, Huang N, Ling H, Xiao X H, Que Y X, Chen R K. Cloning and expression analysis of CIPK gene in sugarcane. Acta Agron Sin, 2015, 41: 499–506 (in Chinese with English abstract)
[30] Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comp Appl Biosci, 1995, 11: 681–684
[31] Guo J L, Ling H, Wu Q B, Xu L P, Xue Y X. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014, 4: 7042–7042
[32] Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2–??CTmethod. Methods, 2001, 25: 402–408
[33] 周絢. 蘋(píng)果Ca2+/H+反向轉(zhuǎn)運(yùn)體活性及其基因表達(dá)特性研究.南京農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 江蘇南京, 2009 Zhou X. Study on Ca2+/H+antiporter activity and its gene expression of apple. MS Thesis of Nanjing Agricultural University,Nanjing, China, 2009 (in Chinese with English abstract)
[34] Reddy A S N. Calcium: silver bullet in signaling. Plant Sci, 2001,160: 381–404
[35] Miedema H, Bothwell J H, Brownlee C, Davies J M. Calcium uptake by plant cells-channels and pumps acting in concert. Trends Plant Sci, 2001, 6: 514–519
[36] 劉新, 孟繁霞, 張蜀秋, 婁成后. Ca2+參與水楊酸誘導(dǎo)蠶豆氣孔運(yùn)動(dòng)時(shí)的信號(hào)轉(zhuǎn)導(dǎo). 植物生理與分子生物學(xué)學(xué)報(bào), 2003, 29: 59–64 Liu X, Meng F X, Zhang S Q, Lou C H. Ca2+is involved in the signal transduction during stomatal movement in Vicia faba L. induced by salicylic acid. J Plant Physiol Mol Biol, 2003, 29: 59–64 (in Chinese with English abstract)
[37] 郭園園, 陳江華, 周慧娜, 商慧文, 翟妞, 張艷玲. 不同鎘積累基因型煙草CAX2基因克隆及序列分析. 南方農(nóng)業(yè)學(xué)報(bào),2015, 46: 181–187 Guo Y Y, Chen J H, Zhou H N, Shang H W, Zhai N, Zhang Y L. Cloning and sequence analysis of CAX2 from two Nicotiana genotypes with different Cd accumulating pattern. J Southern Agric, 2015, 46: 181–187 (in Chinese with English abstract)
[38] Nielsen H, Engelbrecht J, Brunak S, Heijine G V. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage site. Protein Eng, 1997, 10: 1–6
[39] Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. J Mol Biol, 1982, 157: 105–132
[40] Nicoll D A, Longoni S, Philipson K D. Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+exchanger. Science, 1990, 250: 562–565
[41] Blackford S, Rea P A, Sanders D. Voltage sensitivity of H+/Ca2+antiport in higher plant tonoplast suggests a role in vacuolar calcium accumulation. J Biol Chem, 1990, 265: 9617–9620
[42] Ettinger W F, Clear A M, Fanning K J, Peck M L. Identification of a Ca2+/H+antiport in the plant chloroplast thylakoid membrane. Plant Physiol, 1999, 119: 1379–1385
[43] Liu H, Zhang X X, Takano T, Liu S K. Characterization of a PutCAX1 gene from Puccinellia tenuiflora that confers Ca2+and Ba2+tolerance in yeast. Biochem Biophys Res Commun, 2009,383: 392–396
[44] Xu L, Zahid K R, He L R, Zhang W W, He X, Zhang X L, Yang X Y, Zhu L F. GhCAX3 gene, a novel Ca2+/H+exchanger from cotton, confers regulation of cold response and ABA induced signal transduction. PloS One, 2013, 8: e66303
[45] Cheng N H, Pittman J K, Shigaki T, Lachmansingh J, LeClere S,Lahner B, Salt D E, Hirschi K D. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol, 2005, 138: 2048–2060
[46] Raz V, Fluhr R. Calcium requirement for ethylene-dependent responses. Plant Cell, 1992, 4: 1123–1130
[47] 李國(guó)婧, 周燮. 水楊酸與植物抗非生物脅迫. 植物學(xué)通報(bào),2001, 18: 295–302 Li G J, Zhou X. Salicylic acid and abiotic stress resistance in plants. Chin Bull Bot, 2001, 18: 295–302 (in Chinese with English abstract)
[48] 張占軍. PEG-6000模擬干旱脅迫下秋地黃瓜萌芽期抗旱性評(píng)價(jià). 甘肅農(nóng)業(yè)科技, 2014, (5): 16–18 Zhang Z J. Evaluation of the drought resistance of autumn cucumber in germination stage under PEG-6000 simulated drought stress. Gansu Agric Sci Techn, 2014, (5): 16–18
[49] 張和臣, 尹偉倫, 夏新莉. 非生物逆境脅迫下植物鈣信號(hào)轉(zhuǎn)導(dǎo)的分子機(jī)制. 植物學(xué)通報(bào), 2007, 24: 114–122 Zhang H C, Yin W L, Xia X L. The mechanism of Ca2+signal transduction under abiotic stresses in plants. Chin Bull Bot, 2007,24: 114–122 (in Chinese with English abstract)
[50] 陳沁, 劉友良. 谷胱甘肽對(duì)鹽脅迫大麥葉片活性氧清除系統(tǒng)的保護(hù)作用. 作物學(xué)報(bào), 2000, 26: 365–371 Chen Q, Liu Y L. Effect of glutathion on active oxygen scavenging system in leaves of barley seedlings under salt stress. Acta Agron Sin, 2000, 26: 365–371 (in Chinese with English abstract)
Cloning and Expression Analysis of a Ca2+/H+Antiporter Gene from Sugarcane
SU Wei-Hua**, LIU Feng**, HUANG Long, SU Ya-Chun, HUANG Ning, LING Hui, WU Qi-Bin, ZHANG Hua, and QUE You-Xiong*
Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture, Fujian Agriculture and Forestry University / Sugarcane Research & Development Center, China Agricultural Technology System, Fuzhou 350002, China
CAX (Ca2+/H+antiporter) is a major category of Ca2+active transport systems in plant cell membrane. In the present study, using a CAX1 mRNA sequence from Sorghum bicolor (GenBank accession number: XM_002441593) as the probe, the full-length cDNA sequence of sugarcane CAX1 gene was cloned by in silico cloning combined with RT-PCR amplification, and named as ScCAX1 (GenBank accession number: KT799799). Bioinformatics analysis showed that ScCAX1 has a length of 784 bp and contains a complete open reading frame with a length of 645 bp, which encodes a 214 amino acid residues of sugarcane CAX1 protein. The ScCAX1 protein with stable acidity and hydrophobia was detected to be located in thylakoid membrane of chloroplasts with no signal peptide. It belongs to a conserved Na_Ca_ex. The mainly secondary structure element of ScCAX1 protein is alpha helix. Real time quantitative PCR (RT-qPCR) analysis revealed that the expression of ScCAX1 was tissue-specific,with constituent expression in different tissues of sugarcane. The highest expression was observed in leaf while the lowest in stem. Besides, the expression of ScCAX1 gene could be regulated by treatments of PEG, NaCl, SA, ABA, and MeJA. The expression level of this gene was up-regulated by ABA, SA and PEG, with the highest inducible expression level in treatment of 24 hours. The expression level was 5.47 times higher than that of control under 24 hours stress of SA, and 3.5 times higher than that of control under 24 hours stress of ABA. Under 6 hours stress of NaCl, the gene had the highest inducible expression level, which was 2.14 times higher than that of control. This study suggested that ScCAX1 could response to stresses, and its expression may be associated with salt resistance and osmotic tolerance in sugarcane.
Sugarcane; CAX1 gene; in silico cloning; Bioinformatics; Real-time quantitative PCR
10.3724/SP.J.1006.2016.01074
本研究由國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-20), 國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503119)和福建省高等學(xué)校新世紀(jì)優(yōu)秀人才支持計(jì)劃項(xiàng)目(JA14095)資助。
This study was supported by the China Agriculture Research System (CARS-20), the Special Fund for Agro-Scientific Research in the Public Interest (201503119), and the Program for New Century Excellent Talents in Fujian Province University (JA14095).
(Corresponding author): 闕友雄, E-mail: queyouxiong@126.com**同等貢獻(xiàn)(Contributed equally to this work)
聯(lián)系方式: 蘇煒華, E-mail: 410946470@qq.com; 劉峰, E-mail: 760733016@qq.com
Received(): 2015-12-07; Accepted(接受日期): 2016-03-14; Published online(網(wǎng)絡(luò)出版日期): 2016-03-22.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20160322.1601.004.html