李紅英, 佘連兵,廖家鋒
(1.遵義師范學(xué)院數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,貴州遵義 563002;2.六盤水師范學(xué)院數(shù)學(xué)系,貴州六盤水 553004)
?
一類奇異p-Laplace方程正解的存在性
李紅英1, 佘連兵2,廖家鋒1
(1.遵義師范學(xué)院數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,貴州遵義563002;2.六盤水師范學(xué)院數(shù)學(xué)系,貴州六盤水553004)
研究一類奇異p-Laplace方程,利用極小化方法獲得該問(wèn)題的一個(gè)正解, 從而充實(shí)了奇異橢圓問(wèn)題解的理論.
奇異p-Laplace方程;橢圓問(wèn)題;極小化方法;正解
考慮奇異p-Laplace方程
(1)
奇異橢圓方程起源于各種應(yīng)用學(xué)科,例如核物理、氣體動(dòng)力學(xué)、流體力學(xué)、邊層理論以及非線性光學(xué)等.由于應(yīng)用學(xué)科的需要,20世紀(jì)70年代后期,奇異橢圓方程開始引起人們的關(guān)注.當(dāng)p=2,1 證明我們分三步來(lái)完成定理1的證明. (2) (3) 因此,依據(jù)范數(shù)的弱下半連續(xù)性以及(2)式和(3)式可得 根據(jù)下確界的定義可得m≤I(u*),從而m=I(u*). (4) 因此,u*滿足-Δpu*≥0.結(jié)合u*≥0且u*不恒等于零以及強(qiáng)極大值原理[12]可得在Ω中u*(x)>0. 下面證明u*是問(wèn)題(1)的解.根據(jù)(4)式,兩邊同時(shí)除以t可得 根據(jù)控制收斂定理可得 (6) 對(duì)一切的x∈Ω,我們定義 (7) (8) (9) 即u*是問(wèn)題(1)的一個(gè)正解. [1]CRANDALLMGC,RABINOWITZPH,TARTARL.OnaDirichletproblemwithasingularnonlinearity[J].Comm Partial Differential Equations,1977,2(2):193. [2]PINOMA.Aglobalestimateforthegradientinasingularellipticboundaryvalueproblem[J].Proc Roy Soc Edinburg SectA,1992,122(3-4):341. [3]孫義靜,吳紹平.一類奇異橢圓方程的正解[J].高校應(yīng)用數(shù)學(xué)學(xué)報(bào):A輯,2000,15(3):281. [4]SUNYi-jing,WUShao-ping,LONGYi-ming.Combinedeffectsofsingularandsuperlinearnonlinearitiesinsomesingularboundaryvalueproblems[J].J Differential Equations,2001,176(2):511. [5]SUNYi-jing,WUShao-ping.Anexactestimateresultforaclassofsingularequationswithcriticalexponents[J].J Funct Anal,2011,260(5):1257. [6]廖家鋒,張鵬.一類奇異次線性橢圓方程基態(tài)解的存在性[J].四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,38(6):867. [7]LVHai-shen,XIEYi.Existenceandmultiplicityofpositivesolutionsforsingularp-Laplacianequations[J].Z Anal Anwend,2007,26(1):25. [8]HAIDD.Onaclassofsingularp-Laplacianboundaryvalueproblems[J].J Math Anal Appl,2011,383(2):619. [9]ZHANGXue-mei,FENGMei-qing.Existenceofapositivesolutionforone-dimensionalsingularp-Laplacianproblemsanditsparameterdependence[J].J Math Anal Appl,2014,431(2):566. [10]RASOULISH,FIROUZJAHIZ.Onaclassofsingularp-Laplaciansemipositoneproblemswithsign-changingweight[J].J Appl Anal Comput,2014,4(4):383. [11]RUDINW.Real and Complex Analysis[M].NewYork:McGraw-Hill.1966. [12]VAZQUEZJL.Astrongmaximumprincipleforsomequasilinearellipticboundaryvalueequations[J].Appl Math Optim,1984,12:191. (責(zé)任編輯馬宇鴻) Existence of positive solutions for a class of singularp-Laplacian equations LI Hong-ying1,SHE Lian-bing2,LIAO Jia-feng1 (1.School of Mathematics and Computational Science,Zunyi Normal College,Zunyi 563002,Guizhou,China;2.Department of Mathematics,Liupanshui Normal College,Liupanshui 553004,Guizhou,China) A class of singularp-Laplacian equations is considered.By applying a minimax method,the existence of positive solutions for this problem is obtained,which enrished the theory of solutions for singular elliptic problems. singularp-Laplacian equation;elliptic problem;minimax method;positive solution 10.16783/j.cnki.nwnuz.2016.04.001 2015-08-04;修改稿收到日期:2015-11-30 貴州省自然科學(xué)基金資助項(xiàng)目(LH[2015]7049) 李紅英(1984—),女,四川南充人,講師,碩士.主要研究方向?yàn)榉蔷€性分析. E-mail:honghongying2005@163.com O 177.1 A 1001-988Ⅹ(2016)04-0001-042 主要結(jié)果