賈穗子,曹萬林,袁 泉,梁麗麗
(1.北京工業(yè)大學(xué) 建筑工程學(xué)院,北京 100124;2.北京交通大學(xué) 土木建筑工程學(xué)院,北京 100044;3. 北京筑福建筑事務(wù)有限責(zé)任公司,北京 100043)
?
框支網(wǎng)格式輕質(zhì)墻板損傷性能分析*1
賈穗子1?,曹萬林1,袁泉2,梁麗麗3
(1.北京工業(yè)大學(xué) 建筑工程學(xué)院,北京100124;2.北京交通大學(xué) 土木建筑工程學(xué)院,北京100044;3. 北京筑福建筑事務(wù)有限責(zé)任公司,北京100043)
基于不同構(gòu)造形式框支網(wǎng)格式輕質(zhì)墻板低周反復(fù)荷載試驗(yàn),通過不同損傷性能評(píng)估模型的比較,提出適合該類結(jié)構(gòu)的損傷模型.采用OpenSees準(zhǔn)確模擬結(jié)構(gòu)的力學(xué)性能,得出相應(yīng)力學(xué)參數(shù),驗(yàn)證損傷模型的合理性.給出與框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)各累積損傷階段對(duì)應(yīng)的損傷指數(shù)取值范圍.基于試驗(yàn),分階段對(duì)結(jié)構(gòu)累積損傷性能進(jìn)行描述,并采用ANSYS模擬累積損傷發(fā)展階段,提出框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)后期修復(fù)建議.
損傷模型;框支結(jié)構(gòu);網(wǎng)格式輕質(zhì)墻板;低周反復(fù)加載試驗(yàn);累積損傷
大量試驗(yàn)和歷次震害表明,框支砌體結(jié)構(gòu)進(jìn)入屈服階段,因關(guān)鍵部位受力不合理、剛度分布不靈活,易在上下轉(zhuǎn)換層之間形成薄弱層,且承重墻體在已有大開間住宅中受力不充分,同時(shí),結(jié)構(gòu)采用的是大量的粘土磚砌體,毀壞農(nóng)田,增加資源消耗和環(huán)境成本[1-3].框支剪力墻結(jié)構(gòu)的設(shè)置沿豎向上剛下柔,底部易在地震作用下產(chǎn)生變形集中和能量聚集,此外,在中小城鎮(zhèn)以及經(jīng)濟(jì)不發(fā)達(dá)地區(qū),其高昂的建造成本限制了它的推廣[4-6].綜上所述,對(duì)帶轉(zhuǎn)換層結(jié)構(gòu)地震損傷性能清晰、準(zhǔn)確、量化的把握是保證該類結(jié)構(gòu)抗震可靠性的關(guān)鍵[7-8].
本文將網(wǎng)格式輕質(zhì)墻板引入底部大空間結(jié)構(gòu)中,形成新型結(jié)構(gòu)體系——框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu).目前,課題組對(duì)網(wǎng)格式輕質(zhì)墻板單元損傷性能提出了一些研究,將基于性能的設(shè)計(jì)思想引入到網(wǎng)格式輕質(zhì)墻板單元中,提出單元結(jié)構(gòu)損傷性能指標(biāo)的量化參數(shù),給出單元結(jié)構(gòu)地震損傷可靠度近似分析方法[9-10].分析了網(wǎng)格式輕質(zhì)墻板分災(zāi)元件的損傷過程和耗能分擔(dān)率,為研究其對(duì)結(jié)構(gòu)整體抗倒塌能力的影響提供參考[11].前期研究已對(duì)墻板單元及主要構(gòu)件損傷狀態(tài)做了分析,但框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)的研究仍處于空白,本文將該結(jié)構(gòu)在低周反復(fù)加載過程中累積損傷過程進(jìn)行分析,確定適用于該類結(jié)構(gòu)的損傷模型,得出損傷評(píng)價(jià)規(guī)律,為框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)抗震設(shè)計(jì)和評(píng)估提供參考.
1.1網(wǎng)格式輕質(zhì)墻板
網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)采用層層嵌套的構(gòu)造形式,由預(yù)制網(wǎng)格式輕質(zhì)墻板、現(xiàn)澆外框和樓板組合而成[12-13].網(wǎng)格式輕質(zhì)墻板是由密布的鋼筋混凝土肋梁、肋柱形成隱形密框,內(nèi)嵌輕質(zhì)填充砌塊預(yù)制而成的一種全新網(wǎng)格式復(fù)合墻板.混凝土邊框柱、連接柱及暗梁組成的外框架連接、約束網(wǎng)格式輕質(zhì)墻板,形成結(jié)構(gòu)的主要承力構(gòu)件——網(wǎng)格式輕質(zhì)墻體(圖1).
目前,網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)逐步被應(yīng)用于社會(huì)生產(chǎn)實(shí)踐中,在河北、陜西、河南等省建成近百萬平米的住宅示范點(diǎn)(見圖2), 取得了良好的經(jīng)濟(jì)和社會(huì)效益[14-15].
(a) 網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)
(b) 網(wǎng)格式輕質(zhì)墻體圖1 網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)構(gòu)造圖Fig.1 The sketch map of Grid light-weight slab structure
圖2 網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)住宅示范工程照片F(xiàn)ig.2 The residential demonstration project of grid light-weight slab structure
1.2框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)
本文將網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)與底部大空間結(jié)構(gòu)結(jié)合,形成框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu),基于1/2比例結(jié)構(gòu)(圖3和表1)低周反復(fù)加載試驗(yàn)結(jié)果[16-18],建立損傷性能評(píng)估模型,并采用非線性有限元程序OpenSees,模擬不同參數(shù)結(jié)構(gòu)模型的受力過程,求出各特征點(diǎn)值,驗(yàn)證損傷模型的合理性.
本文采用修正的Park-Ang雙參數(shù)損傷模型,對(duì)框支網(wǎng)格式輕質(zhì)墻體在耗能減震過程中的損傷性能進(jìn)行分析和評(píng)估.Park-Ang雙參數(shù)損傷模型修正過程如下:
1)在維持Park-Ang模型的基本形式-最大變形與累積滯回耗能線性疊加的前提下[18],對(duì)其能量項(xiàng)進(jìn)行改進(jìn),將分母中的屈服強(qiáng)度和極限位移的乘積改為單調(diào)荷載作用下的塑性耗能能力[19],見式(1):
Ep=Qy(δu-δy).
(1)
MX-1 不等跨不開洞框支網(wǎng)格式輕質(zhì)墻板
MX-2 不等跨開洞框支網(wǎng)格式輕質(zhì)墻板圖3 框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)圖Fig.3 The structural map of FSGL slab
改進(jìn)的Park-Ang模型表示為:
(2)
式中:Ep為單調(diào)荷載作用下結(jié)構(gòu)塑性耗能能力;δm為地震作用下結(jié)構(gòu)最大變形;δu為單調(diào)加載下結(jié)構(gòu)極限變形;∫dE為地震作用下結(jié)構(gòu)最大累積滯回耗能;Qy為結(jié)構(gòu)屈服強(qiáng)度;β為累積耗能項(xiàng)權(quán)重系數(shù).
2)課題組在Park-Ang模型的基礎(chǔ)上提出了單片網(wǎng)格式輕質(zhì)墻板單元的損傷模型[20],如式(3)所示:
(3)
本文在公式(2)和(3)兩種損傷模型的基礎(chǔ)上引入一個(gè)位移因子α,建立框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)的損傷模型,見式(4):
(4)
規(guī)定當(dāng)試件達(dá)到最大變形時(shí)對(duì)應(yīng)的損傷指數(shù)Di為0.9,基于墻體實(shí)測(cè)值,確定δm,δu,δy,Qy,dE的值,結(jié)合式(4),求得組合系數(shù)α,β平均值為0.073,0.019,式(4)可寫為:
(5)
基于試驗(yàn)數(shù)據(jù),通過與以下兩種損傷計(jì)算模型在受力過程中的損傷指數(shù)對(duì)比,確定適合于框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)的損傷性能評(píng)估模型.
表1 主要構(gòu)件截面尺寸配筋圖Tab.1 The main component of section size and reinforcement
2.1基于延性退化損傷模型
采用位移延性定義損傷指標(biāo),認(rèn)為結(jié)構(gòu)的損傷由最大彈塑性變形產(chǎn)生[21],損傷指數(shù)DIy表達(dá)式為:
(6)
式中:δy為結(jié)構(gòu)屈服變形;δm為結(jié)構(gòu)實(shí)際最大彈塑性變形;δu為結(jié)構(gòu)極限變形;μm=δm/δy為最大變形延性系數(shù);μu=δu/δy為極限變形延性系數(shù).
2.2基于剛度退化損傷模型
采用剛度比定義結(jié)構(gòu)的損傷,該損傷模型同時(shí)反映結(jié)構(gòu)首次超越破壞與累積損傷破壞[22],見式(7):
(7)
式中:k0為初始剛度,本文定義為開裂點(diǎn)的剛度;kr為結(jié)構(gòu)變形到最大位移處的卸載剛度.
基于上述3種損傷模型和試驗(yàn)數(shù)據(jù),墻體損傷指數(shù)與位移比δ/δy關(guān)系見圖4.
由圖4可得,修正后Park-Ang雙參數(shù)損傷模型計(jì)算的損傷指數(shù)介于其余兩種損傷模型計(jì)算的損傷指數(shù)之間.可見,該類損傷模型更能反映框支網(wǎng)格式輕質(zhì)結(jié)構(gòu)損傷發(fā)展過程和發(fā)育規(guī)律.圖5為兩榀試件階段損傷指數(shù)對(duì)比圖.
由圖5可得,兩組試件在不同受力階段具有相似的變化規(guī)律.當(dāng)0 δ/δy(a) MX-1 δ/δy(b) MX-2圖4 損傷指數(shù)與δ/δy關(guān)系Fig.4 Relation curves of damage index and δ/δy 采用非線性有限元程序OpenSees,模擬框支網(wǎng)格式輕質(zhì)結(jié)構(gòu)低周反復(fù)加載下的滯回特性,并與試驗(yàn)結(jié)果對(duì)比(圖6).可見滯回曲線吻合良好.其中,OpenSees模擬墻體結(jié)構(gòu)的力學(xué)性能時(shí),混凝土的本構(gòu)模型采用考慮了混凝土抗拉強(qiáng)度和線性拉伸軟化的材料模型Concrete02.鋼筋采用單軸材料Hysteretic Material,該模型可以模擬捏攏效應(yīng),并考慮了卸載剛度退化.梁柱單元選用OpenSees中的桿系模型-非線性纖維梁柱單元.網(wǎng)格式輕質(zhì)墻板按照抗壓剛度和抗彎剛度等效原則簡化為鋼筋混凝土板,采用程序提供的ShellMITC4[23]單元進(jìn)行模擬. δ/δy圖5 框支網(wǎng)格式輕質(zhì)結(jié)構(gòu)損傷指數(shù)對(duì)比圖Fig.5 The comparison chart of damage index of FSGL slab structure 位移/mm (a) nMX-1 位移/mm (b) MX-2圖6 MX-1和MX-2滯回曲線計(jì)算值和試驗(yàn)值對(duì)比圖Fig.6 The comparisons between calculated values and experimental values of hysteretic curves for MX-1 and MX-2 δ/δy圖7 MX-1不同混凝土強(qiáng)度損傷指標(biāo)變化圖Fig.7 The varied damage indexs of different concrete strength for MX-1 由圖7可知,本文基于試驗(yàn)數(shù)據(jù)確定的適于框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)不同累積損傷階段,與通過有限元模擬所得的不同累積損傷階段相吻合,說明本文確定的損傷模型及損傷階段具有合理性. 2.3框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)累積損傷性能階段描述 2.3.1累積損傷初期發(fā)展階段(0 砌塊拼縫處及靠近洞口附近砌塊首先出現(xiàn)斜向受拉裂縫,反向加載裂縫又趨于閉合,繼續(xù)加載砌塊受拉開裂明顯,受壓裂縫逐漸增多,往復(fù)荷載下斜裂縫呈交叉分布.隨后洞口側(cè)構(gòu)造柱、框支柱及框支梁均產(chǎn)生裂縫,并逐漸增多.在該階段荷載位移曲線呈梭形,墻內(nèi)鋼筋應(yīng)變較小,上部砌塊與混凝土肋梁、肋柱處于共同工作狀態(tài). 2.3.2累積損傷迅速發(fā)展階段(0.25≤Di<0.65) 上部墻體裂縫彌散,砌塊與肋格之間相互錯(cuò)動(dòng),砌塊顆粒零星剝脫,此時(shí)由于框格對(duì)砌塊及其裂縫的有效約束,砌塊仍然表現(xiàn)出良好的整體性.大部分肋梁端部的裂縫貫通肋梁截面,框支柱彎曲裂縫增多,柱腳混凝土壓碎,框支梁上裂縫加寬且梁柱節(jié)點(diǎn)處產(chǎn)生裂縫.滯回曲線飽滿,耗散大量能量. 2.3.3累積損傷破壞階段(Di≥0.65) 這一階段損傷過程時(shí)間較長,處于相持階段.隨著位移幅值的增加,結(jié)構(gòu)承載力開始下降,砌塊與框格交界處裂縫加劇,砌塊大面積剝落,上層墻板出現(xiàn)部分孔洞,洞口側(cè)構(gòu)造柱、邊框柱和連接柱彎曲變形,框支梁柱節(jié)點(diǎn)混凝土脫落,框支柱柱腳縱筋壓屈,向外鼓出并伴有巨大響聲,上下層發(fā)生滑移并呈現(xiàn)增大的趨勢(shì).上層墻板層層嵌套,多道防線的構(gòu)造特點(diǎn),使得結(jié)構(gòu)在大量砌塊剝落之后,外框架、肋格仍能共同承擔(dān)外荷載,抗倒塌能力強(qiáng).此階段滯回曲線雖然捏縮現(xiàn)象明顯,但是包絡(luò)面積較大,結(jié)構(gòu)表現(xiàn)出良好的耗能性能. 圖8為框支網(wǎng)格形式輕質(zhì)墻板結(jié)構(gòu)階段累積損傷形貌. (a)累積損傷初期發(fā)展階段 (b)累積損傷迅速發(fā)展階段 (c) 累積損傷破壞階段圖8 框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)階段累積損傷Fig.8 Cumulative damage at different stages of FSGL slab structure 基于框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)階段累積損傷的劃分,采用ANSYS單調(diào)加載與位移控制的方法,模擬結(jié)構(gòu)在受荷過程中墻體裂縫的擴(kuò)展行為,進(jìn)而揭示結(jié)構(gòu)損傷內(nèi)在原因(圖9).在建模過程中,建立二維平面單元,利用軟件中SHELL43單元模擬混凝土及填充砌塊,LINK8模擬鋼筋.混凝土強(qiáng)度由試驗(yàn)值選取,彈性模量為3.0×104MPa,泊松比為0.2,混凝土本構(gòu)關(guān)系由三維模型簡化為一維模型.鋼筋應(yīng)力-應(yīng)變關(guān)系采用理想彈塑性模型,不考慮鋼筋的屈服硬化,彈性模量為2.1×105MPa,屈服強(qiáng)度由試驗(yàn)值選取,泊松比為0.3. 由圖8和圖9可得,在累積損傷初期發(fā)展階段,由于上部網(wǎng)格式輕質(zhì)墻體中肋梁、肋柱的阻滯作用,被肋格節(jié)點(diǎn)裂縫吸收的能量,大部分在砌塊內(nèi)部耗散掉,形成砌塊裂縫,下層框支梁柱節(jié)點(diǎn)及框支柱柱腳產(chǎn)生微裂縫.在累積損傷迅速發(fā)展階段,由于連續(xù)加載所聚集的能量大于阻滯作用能量,主裂縫以貫穿肋梁、肋柱,加寬框支梁柱節(jié)點(diǎn)裂縫和增加框支柱柱腳裂縫的擴(kuò)展方式耗散能量.在累積損傷破壞階段,受損更加嚴(yán)重,砌塊大面積產(chǎn)生裂縫并剝落,并延伸至外框架,框支柱裂縫呈彌散狀態(tài).此外,洞口側(cè)墻肢砌塊裂縫分布較集中,這是由于部分墻肢跨度較小,抗剪承載力降低,剪切斜裂縫易出現(xiàn). (a) MX-1累積損傷發(fā)展3階段 (b) MX-2累積損傷發(fā)展3階段圖9 累積損傷發(fā)展階段模擬Fig.9 Simulation for cumulative damage at different stages 1)當(dāng)Di<0.25時(shí),即結(jié)構(gòu)屈服之前,框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)基本無需處理或修復(fù)裂縫對(duì)外觀的影響即可正常使用; 2)當(dāng)0.25≤Di<0.65時(shí),此階段結(jié)構(gòu)屈服,裂縫明顯變寬,砌塊產(chǎn)生剝落,框支梁柱的裂縫和變形增大,框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)必須進(jìn)行一定的修復(fù)才能繼續(xù)使用,可采用換填砌塊并對(duì)裂縫明顯的梁柱按照鋼筋混凝土結(jié)構(gòu)的加固方法進(jìn)行加固; 3)當(dāng)Di≥0.65時(shí),此時(shí)的結(jié)構(gòu)已經(jīng)嚴(yán)重破壞,砌塊大面積剝落,層間產(chǎn)生滑移,雖未出現(xiàn)倒塌,但是不可繼續(xù)使用,對(duì)其進(jìn)行修復(fù)即便技術(shù)上可行,但不經(jīng)濟(jì),所以,這一階段的結(jié)構(gòu)建議不可修復(fù). 本文通過對(duì)框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)損傷特性研究,得到以下結(jié)論: 1)基于不同損傷模型計(jì)算結(jié)構(gòu)在受力過程中的損傷指數(shù)變化曲線,通過對(duì)比分析,得出選用修正的Park-Ang雙參數(shù)損傷模型作為損傷性能評(píng)估模型更能反應(yīng)框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)損傷發(fā)展過程和發(fā)育規(guī)律. 2)給出與框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)各累積損傷階段對(duì)應(yīng)的損傷指數(shù)取值范圍.并基于試驗(yàn),對(duì)各累積損傷階段進(jìn)行詳細(xì)描述,提出框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)后期修復(fù)建議.為該結(jié)構(gòu)的抗震設(shè)計(jì)提供參考. [1]黃靚,易宏偉,王輝,等. 帶節(jié)能砌體填充墻的RC框架抗震試驗(yàn)研究[J].湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2014,41(1):15-20. HUANG Liang, YI Hong-wei, WANG Hui,etal. Experimental research on seismic of RC frames with energy conservation masonry infill walls[J]. Journal of Hunan University: Natural Sciences, 2014, 41(1):15-20. (In Chinese) [2]BURTON H, DEIERLEIN G. Simulation of seismic collapse in nonductile reinforced concrete frame buildings with masonry infills [J]. Journal of Structural Engineering, 2014, 140 (8): A4014016-1-10. [3]MOHAMMADI M, NIKFAR F. Strength and stiffness of masonry-infilled frames with central openings based on experimental results [J]. Journal of Structural Engineering, 2013, 139 (6):974-984. [4]孫建,邱洪興,陸波. 新型全裝配式剪力墻結(jié)構(gòu)水平縫節(jié)點(diǎn)的機(jī)理分析[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2014,41(11):15-23. SUN Jian, QIU Hong-xin, LU Bo. Mechnaism analysis on horizontal joints in an innovative precast shear wall system[J]. Journal of Hunan University: Natural Sciences, 2014, 41(11):15-23. (In Chinese) [5]李碧雄,謝和平,鄧建輝,等. 汶川地震中房屋建筑震害特征及抗震設(shè)計(jì)思考[J]. 防災(zāi)減災(zāi)工程學(xué)報(bào),2009,29(2):224-230+236. LI Bi-xiong, XIE He-ping, DENG Jian-hui,etal.Characteristic analysis of performance and damage of buildings in Wenchuan earthquake and considerations in aseismic design of buildings[J]. Journal of disaster prevention and mitigation of engineering, 2009, 29(2): 224-230+236. (In Chinese) [6]AHMAD R. Lateral stiffness of concrete shear walls for tall buildings [J]. Structural Journal, 2011, 108 (6): 755-765. [7]ABBAS M. Damage-based design earthquake loads for single-degree-of-freedom inelastic structure [J]. Journal of Structural Engineering, 2011, 137 (3): 456-467. [8]BAI J M, MARY-BETH D H, GARDONI P. Probabilistic assessment of structural damage due to earthquake for buildings in mid-America [J]. Journal of Structural Engineering, 2009, 135 (10):1155-1163. [9]劉佩,姚謙峰. 密肋復(fù)合墻體的基于累積損傷的動(dòng)力可靠度[J]. 振動(dòng)與沖擊,2008,27 (3):42-46+178. LIU Pei, YAO Qian-feng. Dynamic reliability analysis of multi-ribbed composite wall based on damage accumulation [J]. Journal of Vibration and Shock, 2008, 27 (3): 42-46+178. (In Chinese) [10]LIU P, YAO Q F. Dynamic reliability of structures: the example of multi-ribbed composite walls [J]. Structural Engineering and Mechanics, 2010, 36 (4): 463-479. [11]熊耀清,姚謙峰,夏雷. 密肋復(fù)合墻框格單元的損傷和耗能分析[J]. 沈陽建筑大學(xué)學(xué)報(bào),2011,27 (5):859-865. XIONG Yao-qing, YAO Qian-feng, XIA Lei. Study on damage and energy-dissipation of the fundamental element of multi-ribbed composite wall [J].Journal of Shenyang Jianzhu University, 2011, 27 (5): 859-865. (In Chinese) [12]賈穗子, 曹萬林,袁泉. 框支密肋復(fù)合墻體擬靜力試驗(yàn)研究[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2015, 47 (8):120-124. JIA Sui-zi, CAO Wan-lin, YUAN Quan. Pseudo-static experiment of multi-ribbed composite wall supported on frame shear-wall structure[J]. Journal of Harbing Institute of Technology, 2015, 47 (8):120-124. (In Chinese) [13]李強(qiáng)軍. 開洞對(duì)底部框架-密肋復(fù)合墻體抗震性能的影響 [D]. 北京:北京交通大學(xué)建筑工程學(xué)院,2014:35-47. LI Qiang-jun. The influence of openings on the seismic behavior of bottom-frame multi-ribbed composite walls [D]. Beijing: Master Dissertation of Beijing Jiaotong University, Institut of Civil Engineering, 2014:35-47. (In Chinese) [14]賈穗子,袁泉. 密肋復(fù)合墻結(jié)構(gòu)滯回退化參數(shù)及耗能減震性能[J]. 華中科技大學(xué)學(xué)報(bào):自然科學(xué)版,2013,41(7):32-35. JIA Sui-zi, YUAN Quan. Deteriorating hysteretic parameters and energy dissipation performance of multi-ribbed composite wall structures[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition,2013, 41(7): 32-35. (In Chinese) [15]賈穗子,曹萬林,袁泉. 底框-密肋復(fù)合板結(jié)構(gòu)非線性有限元分析[J].四川大學(xué)學(xué)報(bào),2015,47(5):30-37. JIA Sui-zi, CAO Wan-lin, YUAN Quan. Nonlinear finite element analysis on multi-ribbed composite slab structure with framework at the bottom[J]. Journal of Sichuan University, 2015,47(5):30-37. (In Chinese) [16]JIA S Z, CAO W L, ZHANG Y C,etal. Analysis on stiffness ratio at interim layer of frame-supported multi-ribbed lightweight slab [J]. Applied Sciences-basel, 2016, 6(1): 1- 19. [17]JIA S Z, CAO W L, YUAN Q. An experimental study of frame-supported multi-ribbed composite walls [J]. Advances in Structural Engineering, 2015, 18 (4): 497-511. [18]JIA S Z, CAO W L, YUAN Q,etal. Experimental study on frame-supported multi-ribbed composite walls under low-reversed cyclic loading [J]. European Journal of Environmental and Civil Engineering, 2016, 20(3): 314-331. [19]MA G W, HUANG X, LI J C. Simplified damage assessment method for buried structures againse external blast load[J]. Journal of Structural Engineering, 2010, 136 (5): 603-612. [20]袁泉,姚謙峰,賈英杰. 密肋復(fù)合墻板的恢復(fù)力模型與損傷模型研究[J]. 四川建筑科學(xué)研究,2004,30 (4):5-7+19. YUAN Quan, YAO Qian-feng, JIA Ying-jie. Study on hysteretic model and damage model of Multi-rib Wall [J]. Building Science Research of Sichuan, 2004, 30 (4):5-7+19. (In Chinese) [21]MO Y, WANG S J.Seismic behavior of RC columns with various tie configurations[J]. Journal of Structural Engineering, 2000, 126 (10):1122-1130. [22]DIMITRIOS G L, TSUYOSHI H, YUICHI M.etal. Collapse assessment of steel moment frames based on e-defense full-scale shake table collapse tests [J]. Journal of Structural Engineering, 2013, 139 (1):120-132. [23]梁麗麗. 框支密肋復(fù)合板結(jié)構(gòu)受力性能及損傷模型研究 [D]. 北京:北京交通大學(xué)建筑工程學(xué)院,2015:64-72. LIANG Li-li. Research on stress performance and damage model of frame-supported multi-ribbed composite panel structure [D]. Beijing , Beijing Jiaotong University,Institut of Civil Engineering, 2015:64-72. (In Chinese) Damage Performance Analysis on Frame-supported Grid Light-weight Slab JIA Sui-zi1?, CAO Wan-lin1, YUAN Quan2, LIANG Li-li3 (1.College of Architecture and Civil Engineering, Beijing Univ of Technology, Beijing100124,China; 2.School of Civil Engineering,Beijing Jiaotong Univ, Beijing100044,China;3. Beijing Zhufu Building Transactions Limited Liability Company,Beijing100043,China ) This study focused on the behaviour of the frame-supported grid light-weight slabs (FSGL slab) with different forms under low-cycle reversed loadings. Compared with the existing evaluation models showing different damage performances, a damage model was proposed for the FSGL slab system. The mechanical properties of the FSGL slab system were investigated by OpenSees simulation, and the corresponding mechanical parameters were obtained to verify the proposed damage model. Meanwhile, the range of damage index value corresponding to the cumulative damage stage was provided. Furthermore, on the basis of test results, the cumulative damage of FSGL slab system at each stage was described by ANSYS software. Finally, the post-repair recommendations for FSGL slab system were given. damage model; frame-supported structure; grid light-weight slab; low-reversed cyclic loading test; cumulative damage 1674-2974(2016)05-0022-08 2015-07-09 國家自然科學(xué)基金資助項(xiàng)目(51078028),National Natural Science Foundation of China(51078028);國家科技支撐計(jì)劃基金資助項(xiàng)目(2011BAJ08B02) ;北京市博士后工作經(jīng)費(fèi)資助項(xiàng)目(2015ZZ-29) 賈穗子(1984-), 女,河北張家口人,北京工業(yè)大學(xué)博士后 ?通訊聯(lián)系人,E-mail:suizijia@163.com TU352.1 A3 框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)損傷過程模擬
4 基于損傷指標(biāo)的框支網(wǎng)格式輕質(zhì)墻板結(jié)構(gòu)修復(fù)建議
5 結(jié) 論