王國材,肖小波,陳艷萍,王 晨
(福州大學(xué) 材料科學(xué)與工程學(xué)院,福州 350116)
?
Ce68Al10Cu20Nb2大塊非晶表面鈍化膜的研究
王國材,肖小波,陳艷萍,王晨
(福州大學(xué) 材料科學(xué)與工程學(xué)院,福州 350116)
采用銅模冷鑄法制備了Ce68Al10Cu20Nb2大塊非晶合金,利用動電位極化曲線和電化學(xué)阻抗譜技術(shù)(EIS)研究了合金在1mol/L NaOH溶液中的腐蝕行為,并用掃描電子顯微鏡(SEM)對電化學(xué)鈍化前后試樣的表面形貌進(jìn)行了表征,最后利用X射線光電子能譜(XPS)分析了電化學(xué)鈍化處理獲得的鈍化膜的成分。結(jié)果表明:Ce68Al10Cu20Nb2大塊非晶合金在1mol/L NaOH溶液中具有明顯的自鈍化現(xiàn)象,鈍化區(qū)為-0.25~0.50V,維鈍電流密度為10-5~10-6A/cm2;通過電化學(xué)鈍化后獲得的鈍化膜可分為外部疏松層和內(nèi)部致密層;外層主要是Ce的氧化物/氫氧化物和 Nb的氧化物,內(nèi)層則由Ce,Cu和Al的氧化物/氫氧化物和Nb的氧化物構(gòu)成,鈍化膜從外到內(nèi),隨深度增加,氫氧化物含量逐漸減少,氧化物含量逐漸增加。
非晶合金;腐蝕;極化;鈍化膜;XPS
近年來,大塊非晶合金由于具有高強(qiáng)度、高彈性極限和高斷裂韌性等特性,已成為材料學(xué)界的研究熱點[1-3]。在各種塊體非晶合金體系中,Ce基大塊非晶合金具有優(yōu)異的玻璃形成能力和極低的玻璃轉(zhuǎn)變溫度(低于100℃),在沸水中可以像塑料一樣進(jìn)行復(fù)雜的變形加工,具有極高的科學(xué)研究價值和廣闊的應(yīng)用前景[4,5]。自Ce基非晶被開發(fā)以來,人們對其結(jié)構(gòu)[6-8],物理力學(xué)性能[9-11],玻璃形成能力[12,13]等方面展開了廣泛的研究。如Pelletier等[14]發(fā)現(xiàn),(Ce0.72Cu0.28)90-xAl10Fex大塊非晶合金的玻璃化轉(zhuǎn)變溫度(Tg)和晶化溫度(Tx)隨Fe含量的增加而升高。Yu等[15]發(fā)現(xiàn)Ce基大塊非晶合金的屈服強(qiáng)度隨著外界溫度的降低顯著增大。Zhou等[13]發(fā)現(xiàn)適當(dāng)降低Ce原料(用于制備Ce基非晶合金)的純度可以提高Ce-Ga-Cu大塊非晶合金的玻璃形成能力。
Ce基大塊非晶合金的耐腐蝕性能,直接關(guān)系到它的實際應(yīng)用和應(yīng)用前景。目前,已有關(guān)于Ti基、Ni基等大塊非晶合金耐腐蝕性方面的報道[16,17],但是有關(guān)Ce基非晶合金耐腐蝕性方面的研究報道極少,日本的Inoue[18]小組已經(jīng)做了抗氧化性方面的工作,發(fā)現(xiàn)Zn的添加可以提高Ce-Cu-Al非晶合金的抗氧化性,但這也只是一個開端。Zhang等[4]發(fā)現(xiàn)Ce-Al-Cu-Nb合金具有優(yōu)異的玻璃形成能力,其中Ce68Al10Cu20Nb2棒狀試樣的最大直徑可以達(dá)到8mm以上[4]。但到目前為止,鮮見Ce-Al-Cu-Nb大塊非晶合金有關(guān)腐蝕方面的報道。本工作采用電化學(xué)工作站、掃描電子顯微鏡和X射線光電子能譜儀等,發(fā)現(xiàn)Ce-Al-Cu-Nb大塊非晶合金在NaOH溶液中具有表面鈍化現(xiàn)象,研究了大塊非晶表面鈍化膜的形成過程、微結(jié)構(gòu)和元素分布。
實驗選用高純度金屬Ce(99.5%,質(zhì)量分?jǐn)?shù),下同),Cu(99.995%),Al(99.999%)和Nb(99.999%)為原料,按照Ce68Al10Cu20Nb2(原子分?jǐn)?shù))的成分配比,利用真空電弧爐熔煉成合金鑄錠,然后通過銅模冷鑄法得到尺寸為1mm×8mm×30mm的板狀非晶合金試樣。測試前,將試樣用 1200#,2000#,3000#SiC砂紙逐級打磨,然后拋光至表面光亮,分別用丙酮和酒精超聲波清洗,冷風(fēng)吹干后用于測試。
利用X射線衍射(XRD,D/max Ultima III,CuKα)分析晶體結(jié)構(gòu)。采用掃描電子顯微鏡(SEM,Zeiss Supra55)觀察試樣電化學(xué)鈍化前后的微觀形貌。采用X射線光電子能譜(XPS,ESCALAB-250)分析合金表面化學(xué)成分和元素化學(xué)狀態(tài),Ar+剝離束的能量為 3eV,電流密度為1μA/mm2,刻蝕速率為2.5nm/min。
電化學(xué)實驗采用三電極體系,參比電極為氧化汞電極,本工作中電位都是相對于氧化汞電極,輔助電極為鉑片,面積為2cm×2cm。實驗采用CHI-660D的電化學(xué)工作站進(jìn)行測試,實驗前先測量開路電位,將試樣放入1mol/L的NaOH 溶液中浸泡,待開路電位穩(wěn)定后再進(jìn)行極化曲線和交流阻抗譜(EIS)的測量。極化曲線的掃描速率為0.5mV/s,電勢范圍為-0.55~1.30V。交流阻抗譜測量時,交流正弦激勵信號幅值為5mV,測試頻率范圍為1×10-2~1×105Hz,實驗溫度 25℃。根據(jù)極化曲線結(jié)果,將試樣在-0.1V下恒電位鈍化30min,得到用于分析的鈍化膜。
圖1為銅??焖倌毯笾频玫腃e68Al10Cu20Nb2合金的XRD圖譜,可以看出,合金為單一的非晶態(tài)結(jié)構(gòu)。Zhang等[4]在Ce基非晶合金的研究中也報道了類似的結(jié)果。
Ce68Al10Cu20Nb2大塊非晶合金在1mol/L的NaOH溶液中的極化曲線如圖2所示。極化曲線上不存在活化-鈍化區(qū),這表明Ce68Al10Cu20Nb2非晶合金在NaOH溶液中會發(fā)生自鈍化。極化曲線有較寬的鈍化區(qū),鈍化區(qū)范圍為-0.25~0.50V,維鈍電流密度范圍為10-5~10-6A/cm2。一般認(rèn)為,金屬材料的鈍化區(qū)越寬,材料的耐點蝕能力越強(qiáng),因此可知Ce-Al-Cu-Nb大塊非晶合金在NaOH溶液中具有良好的耐點蝕能力。在陽極Tafel區(qū)沒有呈現(xiàn)明顯的直線段,如圖2中的局部放大圖所示,這可能是由于該非晶合金在NaOH溶液中陽極溶解時,表面迅速形成了鈍化膜,從而阻礙了合金的溶解過程[19]。將極化曲線的數(shù)據(jù)進(jìn)行分析,可以得到Ce68Al10Cu20Nb2大塊非晶合金在1mol/L NaOH溶液中的腐蝕電位為-0.405V,腐蝕電流密度為2.09×10-6A/cm2。
圖1 銅??焖倌毯笾频玫腃e68Al10Cu20Nb2合金的XRD圖譜Fig.1 XRD pattern of Ce68Al10Cu20Nb2 bulk alloy solidified in copper mold
圖2 Ce68Al10Cu20Nb2大塊非晶合金在1mol/L NaOH溶液中的極化曲線Fig.2 Polarization curves of Ce68Al10Cu20Nb2 bulk amorphous alloy in 1mol/L NaOH solution
圖3(a)為Ce68Al10Cu20Nb2大塊非晶合金電化學(xué)鈍化前的SEM照片,在其表面只能觀察到少量劃痕。圖3(b)為電化學(xué)鈍化后的SEM照片,在其表面可以觀察到納米顆粒狀鈍化膜。
Ce68Al10Cu20Nb2大塊非晶合金在1mol/L NaOH溶液中,于-0.1V下恒電位鈍化30min后的EIS譜如圖4所示。從圖4(a)可以看出,Bode圖中存在高頻和低頻相角峰,說明存在兩個時間常數(shù),這表明合金表面形成了雙層結(jié)構(gòu)的鈍化膜。從圖4(b)中可以看出,Nyquist圖由兩個容抗弧組成,分別位于高頻區(qū)和低頻區(qū)。其中,高頻容抗弧反映的是外層膜的電阻和電容,低頻容抗弧則與內(nèi)層膜的電阻和電容相關(guān)。
圖4 Ce68Al10Cu20Nb2大塊非晶合金在-0.1V下恒電位鈍化30min后的Bode圖(a)和Niquist圖(b)Fig.4 Bode(a) and Niquist(b) diagrams of Ce68Al10Cu20Nb2 bulk amorphous alloy passived at -0.1V for 30min
圖5 Ce68Al10Cu20Nb2大塊非晶合金在-0.1V下恒電位鈍化30min后EIS的等效電路圖Fig.5 Equivalent circuits used to fit EIS of Ce68Al10Cu20Nb2 bulk amorphous alloy passived at -0.1V for 30min
根據(jù)Nyquist圖建立等效電路模型,如圖5所示。其中Rs為溶液電阻,Qp和Rp分別表示外層膜的常相位角元件和電阻,表征外層膜與溶液界面的反應(yīng)過程。Qb和Rb分別表示內(nèi)層膜的常相位角元件和電阻,Rb越大,表明內(nèi)層膜對于基體的防護(hù)作用越好。常相位角元件Q=1/Y0(jω)n,Y0是常相位角元件Q的基本導(dǎo)納,n為無量綱指數(shù),表征Q偏離理想電容的程度[20]。EIS采用ZsimpWin軟件進(jìn)行參數(shù)解析,表1為等效電路模型中的各參量經(jīng)過擬合后得到的數(shù)值,等效電路圖中的各參數(shù)擬合誤差在4%以內(nèi),表明擬合結(jié)果和實驗結(jié)果吻合良好。從圖4也可以看出,測量數(shù)據(jù)和擬合數(shù)據(jù)基本重合。
從表1中擬合的數(shù)值可以看出,Rb和Rp分別為43000Ω·cm2和168.8Ω·cm2,Rb?Rp,表明內(nèi)層膜較為致密,外層膜較為疏松,且內(nèi)層膜對非晶合金的耐腐蝕性能起決定作用。
利用 XPS對在1mol/L NaOH溶液中電化學(xué)鈍化30min所形成的鈍化膜的成分進(jìn)行了分析。圖6為鈍化膜對應(yīng)刻蝕0,1,4min和10min的XPS圖譜??梢钥闯觯g化膜外層中含有Ce元素、Nb元素和O元素,沒有Al元素,Cu元素含量很少,說明Cu和Al這兩種元素較之Ce和Nb,在形成鈍化膜時會被優(yōu)先腐蝕。從刻蝕1min以后的Cu2p (圖6(b))和Al2p(圖6(c))XPS圖譜可以看出,隨刻蝕時間延長,信號強(qiáng)度越來越大,表明越靠近外部,Cu和Al被腐蝕掉的越多。
表1 Ce68Al10Cu20Nb2大塊非晶合金在-0.1V下恒電位鈍化30min后EIS的等效電路參數(shù)
圖7為鈍化膜刻蝕10min后的XPS高分辨圖譜(Ce3d,Cu2p,Al2p,Nb3d和O1s)的擬合結(jié)果。由圖7(a)Ce3d XPS圖譜的分析可知,由于自旋-軌道相互作用,Ce3d的軌道分裂為兩個能態(tài),分別為Ce3d5/2(v0,v,v′和v″)和Ce3d3/2(u0,u,u′和u″)。圖譜是由4組Ce3d的自旋-軌道耦合雙線組成,其中v0-u0(880.9,899.7eV)和v′-u′(886.0,904.6eV)是Ce3+的自旋-軌道耦合雙線,v-u(882.5,901.1eV)和v″-u″(897.8,916.3eV)這兩組是Ce4+的自旋-軌道耦合雙線[21-24]。對以上提到的4組峰分別積分后,可得到刻蝕10min后鈍化膜中Ce3+和Ce4+的質(zhì)量分?jǐn)?shù)。通過計算表明,在刻蝕10min后,Ce3+占主導(dǎo)地位,約為65%。
圖6 Ce68Al10Cu20Nb2大塊非晶合金表面鈍化膜對應(yīng)不同刻蝕時間的XPS圖譜 (a)Ce3d;(b)Cu2p;(c)Al2p;(d)Nb3d;(e)O1sFig.6 XPS spectra with different sputtering time for passive film formed on the surface of Ce68Al10Cu20Nb2 bulk amorphous alloy(a)Ce3d;(b)Cu2p;(c)Al2p;(d)Nb3d;(e)O1s
圖7 Ce68Al10Cu20Nb2大塊非晶合金表面鈍化膜的XPS高分辨譜圖擬合結(jié)果(刻蝕10min后)(a)Ce3d;(b)Cu2p;(c)Al2p;(d)Nb3d;(e)O1sFig.7 Fitting curves of high resolution XPS spectra for passive film formed on the surface of Ce68Al10Cu20Nb2 bulk amorphous alloy (after sputtering for 10min) (a)Ce3d;(b)Cu2p;(c)Al2p;(d)Nb3d;(e)O1s
通過對刻蝕10min后Nb3d的XPS圖譜(圖7(d))進(jìn)行分析,并結(jié)合不同刻蝕時間的Nb3d XPS圖譜(圖6(d))可以看到,隨刻蝕時間的延長,圖譜并無明顯變化。Nb的氧化物為NbO(203.8eV和206.8eV),NbO2(205.8eV和208.5eV)和Nb2O5(207.0eV和210.3eV)[32,33],其中Nb2O5含量最多,NbO含量最少,在刻蝕10min時,Nb5+約為60%。
在刻蝕10min后O1s 的XPS圖譜(圖7(e))中,529.8eV對應(yīng)CeO2中的氧峰[34],530.9eV代表M—O鍵(M代表Ce,Cu,Al和Nb元素)。532.0eV對應(yīng)的是Ce—OH 鍵[34]和Cu—OH鍵,此時的—OH 鍵含量已經(jīng)很少。與之對應(yīng)的鈍化膜未經(jīng)刻蝕時O1s的XPS圖譜如圖8所示,529.8eV對應(yīng)CeO2中的氧峰,530.8eV處的峰,對應(yīng)的是Ce2O3,CuO及Nb的氧化物中的氧峰[32,34],532.0eV對應(yīng)的是Ce—OH鍵,含量最多。結(jié)合O的XPS圖譜(圖6(e),圖7(e)和圖8)分析可知,隨刻蝕時間的延長,氫氧化物逐漸減少,氧化物逐漸增多。
圖8 Ce68Al10Cu20Nb2大塊非晶合金表面鈍化膜O1s高分辨XPS譜圖的擬合結(jié)果(未刻蝕)Fig.8 Fitting curves of O1s high resolution XPS spectrum for passive film formed on the surface of Ce68Al10Cu20Nb2 bulk amorphous alloy(before sputtering)
綜上所述,結(jié)合所有XPS圖譜分析可知,通過電化學(xué)鈍化得到的鈍化膜,外層元素分布和內(nèi)層分布差別較大,外層不含Al,含有少量的Cu,在刻蝕1min后,即出現(xiàn)明顯的Cu峰和Al峰,可知外層很薄。膜的外層由于氧含量最高,有可能形成金屬氫氧化合物,如Ce(OH)3,Ce(OH)4等,從外到內(nèi),隨深度增加,氫氧化物含量逐漸減少,此時膜內(nèi)層主要形成金屬氧化物。在內(nèi)層膜中,Ce3+和Cu+的含量要比Ce4+和Cu2+多,Al和Nb則主要以Al2O3和Nb2O5居多。
(1)Ce68Al10Cu20Nb2大塊非晶合金在NaOH溶液中表現(xiàn)出明顯的自鈍化行為,鈍化區(qū)范圍為-0.25~0.50V,維鈍電流密度范圍為10-5~10-6A/cm2。
(2)Ce68Al10Cu20Nb2大塊非晶合金在NaOH溶液中通過電化學(xué)鈍化形成內(nèi)層致密、外層疏松的雙層結(jié)構(gòu)的鈍化膜,致密內(nèi)層對材料的耐腐蝕性能起決定性作用。
(3)鈍化膜外層主要由Ce的氧化物和氫氧化物以及Nb的氧化物構(gòu)成,此外還有少量Cu的氧化物。內(nèi)層則由Ce,Cu,Al和Nb的氧化物及氫氧化物構(gòu)成,由外到內(nèi),隨深度增加,氫氧化物逐漸減少,氧化物最終占據(jù)絕大部分。
[1]汪衛(wèi)華. 金屬玻璃研究簡史[J]. 物理, 2011, 40(11): 701-709.
WANG Wei-hua. A brief history of metallic glasses[J]. Physics, 2011, 40(11): 701-709.
[2]胡壯麒,張海峰.塊狀非晶合金及其復(fù)合材料研究進(jìn)展[J]. 金屬學(xué)報, 2010, 46(11):1391-1421.
HU Zhuang-qi, ZHANG Hai-feng. Recent progress in the area of bulk amorphous alloy and composites[J]. Acta Metallurgica Sinica, 2010, 46(11): 1391-1421.
[3]PARK E S, KIM D H. Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: a review[J]. Metals and Materials International, 2005, 11(1): 19-27.
[4]ZHANG B, ZHAO D Q, PAN M X, et al. Amorphous metallic plastic[J]. Physical Review Letters, 2005, 94(20): 1-4.
[5]ZHANG B, WANG R J, ZHAO D Q, et al. Properties of Ce-based bulk metallic glass-forming alloys[J]. Physical Review B, 2004, 70(22): 1-7.
[6]ZHANG T, LI R, PANG S. Effect of similar elements on improving glass-forming ability of La-Ce-based alloys[J]. Journal of Alloys and Compounds, 2009, 483(1-2): 60-63.
[7]LI R, PANG S J, MEN H, et al. Formation and mechanical properties of (Ce-La-Pr-Nd)-Co-Al bulk glassy alloys with superior glass-forming ability[J]. Scripta Materialia, 2006, 54(6): 1123-1126.
[8]BAI Y Y, GENG Y L, JIANG C M, et al. β relaxation and its composition dependence in Ce-based bulk metallic glasses[J]. Journal of Non-Crystalline Solids, 2014, 390: 1-4.
[9]FORNELL J, SURIACH S, BARM D, et al. Unconventional elastic properties, deformation behavior and fracture characteristics of newly developed rare earth bulk metallic glasses[J]. Intermetallics, 2009, 17(12): 1090-1097.
[10]WEI B C, ZHANG T H, ZHANG L C, et al. Plastic deformation in Ce-based bulk metallic glasses during depth-sensing indentation[J]. Materials Science and Engineering: A, 2007, 449-451: 962-965.
[11]ZHANG L C, WEI B C, XING D M, et al. The characterization of plastic deformation in Ce-based bulk metallic glasses[J]. Intermetallics, 2007, 15(5-6): 791-795.
[12]XU B C, XUE R J, ZHANG B. Superior glass-forming ability and its correlation with density in Ce-Ga-Cu ternary bulk metallic glasses[J]. Intermetallics, 2013, 32: 1-5.
[13]ZHOU Y, ZHAO Y, QU B Y, et al. Remarkable effect of Ce base element purity upon glass forming ability in Ce-Ga-Cu bulk metallic glasses[J]. Intermetallics, 2014, 56: 56-62.
[14]QIAO J C, PELLETIER J M. Thermal stability of (Ce0.72Cu0.28)90-xAl10Fex(x=0, 5 or 10) bulk metallic glasses[J]. Physica Status Solidi (c), 2011, 8(11-12): 3074-3077.
[15]YU P, CHAN K C, CHEN W, et al. Low-temperature mechanical properties of Ce[J]. Philosophical Magazine Letters, 2011, 91(1): 70-77.
[16]胡僑, 張敏, 李海飛, 等. Ti-Zr-Cu-Co-Sn-Si塊體非晶合金的形成及生物腐蝕行為和力學(xué)性能[J]. 材料工程, 2014, (6): 18-21.
HU Qiao, ZHANG Min, LI Hai-fei, et al. Formation, bio-corrosion behavior and mechanical properties of Ti-Zr-Cu-Co-Sn-Si bulk metallic glasses[J]. Journal of Materials Engineering, 2014, (6): 18-21.
[17]邱春龍, 黃璐, 盧旭陽, 等. Ni-Ti(-Zr)-P非晶合金的熱穩(wěn)定性及腐蝕行為[J]. 稀有金屬材料與工程, 2013, 42(5): 975-978.
QIU Chun-long, HUANG Lu, LU Xu-yang, et al. Thermal stability and corrosion behavior of Ni-Ti(-Zr)-P glassy alloys[J]. Rare Metal Materials and Engineering, 2013, 42(5): 975-978.
[18]BIAN Z, INOUE A. New Ce-Cu-Al-Zn bulk metallic glasses with high oxidation resistance[J]. Materials Transactions, 2006, 47(10): 2599-2602.
[19]GEBERT A, MUMMERT K, ECKERT J, et al. Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5alloy[J]. Materials and Corrosion, 1997, 48(5): 293-297.
[20]WU H, WANG Y, ZHONG Q, et al. The semi-conductor property and corrosion resistance of passive film on electroplated Ni and Cu-Ni alloys[J]. Journal of Electroanalytical Chemistry, 2011, 663(2): 59-66.
[21]紀(jì)紅, 許越, 周德瑞, 等. LY12鋁合金表面鈰納米膜的制備及顯微組織特征[J]. 航空材料學(xué)報, 2003, 23(1): 21-23.
JI Hong, XU Yue, ZHOU De-rui, et al. Process and microstructure characters of ceria nanocrystalline film on aluminium alloy LY12[J]. Journal of Aeronautical Materials, 2003, 23(1): 21-23.
[22]MONTEMOR M F, SIMES A M, FERREIRA M G S, et al. Composition and corrosion resistance of cerium conversion films on the AZ31 magnesium alloy and its relation to the salt anion[J]. Applied Surface Science, 2008, 254(6): 1806-1814.
[23]康俊龍, 姚蘭芳, 楊松林, 等. Ce摻雜TiO2納米復(fù)合薄膜的制備及光催化活性[J]. 人工晶體學(xué)報, 2013, 42(4): 671-676.
KANG Jun-long, YAO Lan-fang, YANG Song-lin, et al. Preparation and photocatalytic activity of Ce-doped TiO2composite nanometer films[J]. Journal of Synthetic Crystals, 2013, 42(4): 671-676.
[24]LARACHI F, PIERRE J, ADNOT A, et al. Ce 3d XPS study of composite CexMn1-xO2-ywet oxidation catalysts[J]. Applied Surface Science, 2002, 195(1-4): 236-250.
[25]TAN C W, DAUD A R, YARMO M A. Corrosion study at Cu-Al interface in microelectronics packaging[J]. Applied Surface Science, 2002, 191(1-4): 67-73.
[26]PROCACCINI R, SCHREINER W H, VAZQUEZ M, et al. Surface study of films formed on copper and brass at open circuit potential[J]. Applied Surface Science, 2013, 268: 171-178.
[27]MARQUES M T, FERRARIA A M, CORREIA J B, et al. XRD, XPS and SEM characterisation of Cu-NbC nanocomposite produced by mechanical alloying[J]. Materials Chemistry and Physics, 2008, 109(1): 174-180.
[28]KUNZE J, MAURICE V, KLEIN L H, et al. In situ STM study of the duplex passive films formed on Cu(111) and Cu(001) in 0.1 M NaOH[J]. Corrosion Science, 2004, 46(1): 245-264.
[29]BRAJPURIYA R, SHRIPATHI T. Investigation of Fe/Al interface as a function of annealing temperature using XPS[J]. Applied Surface Science, 2009, 255(12): 6149-6154.
[30]QIN F X, ZHANG H F, CHEN P, et al. Corrosion behavior of bulk amorphous Zr55Al10Cu30Ni5-xPdxalloys[J]. Materials Letters, 2004, 58(7-8): 1246-1250.
[31]WANG X M, ZHU L Q, HE X, et al. Effect of cerium additive on aluminum-based chemical conversion coating on AZ91D magnesium alloy[J]. Applied Surface Science, 2013, 280: 467-473.
[33]HALBRITTER J. On the oxidation and on the superconductivity of niobium[J]. Applied Physics A, 1987, 43(1): 1-28.
[34]YU X, LI G. XPS study of cerium conversion coating on the anodized 2024 aluminum alloy[J]. Journal of Alloys and Compounds, 2004, 364(1-2): 193-198.
Passive Film Formed on Ce68Al10Cu20Nb2Bulk Amorphous Alloy
WANG Guo-cai,XIAO Xiao-bo,CHEN Yan-ping,WANG Chen
(College of Materials Science and Engineering,Fuzhou University,Fuzhou 350116,China)
The Ce68Al10Cu20Nb2bulk amorphous alloy was prepared by injection casting into copper mold. The corrosion behaviors of the alloy in 1mol/L NaOH solution were investigated by potentiodynamic polarization curve method and electrochemical impedance spectroscopic (EIS) technique. The surface morphology of passive film was investigated by scanning electron microscopy (SEM). The composition of passive film was characterized using X-ray photoelectron spectroscopy (XPS). The results show that the Ce68Al10Cu20Nb2bulk amorphous alloy exhibits a self-passivation phenomenon in 1mol/L NaOH solution with the passive region from -0.25V to 0.50V and the passive current density between 10-5-10-6A/cm2. The passive film obtained through electrochemical passivation consists of a porous outer layer and a dense inner layer. The outer layer is mainly composed of the oxides/hydroxides of Ce and the oxides of Nb,the inner layer is composed of the oxides/hydroxides of Ce, Cu,Al and the oxides of Nb. The content of hydroxides gradually decreases and the content of oxides gradually increases from the surface to the inside of the passive film.
amorphous alloy;corrosion;polarization;passive film;XPS
王晨(1979-),男,教授,碩士研究生導(dǎo)師,研究方向:磁性材料、材料表面處理、電致變色材料,聯(lián)系地址:福建省福州市閩侯縣上街鎮(zhèn)大學(xué)城學(xué)園路2號福州大學(xué)材料科學(xué)與工程學(xué)院(350116),E-mail: msewang@fzu.edu.cn
10.11868/j.issn.1001-4381.2016.05.012
TG174.3
A
1001-4381(2016)05-0072-07
國家自然科學(xué)基金資助項目(51001027);福建省自然科學(xué)基金資助項目(2012J01200);福建省教育廳資助項目(JA10049)
2014-09-28;
2015-11-24