郝 路,肖 偉
中工武大設(shè)計(jì)研究有限公司,湖北 武漢 430205
空箱擋墻在云夢(mèng)大閘中的應(yīng)用
郝路,肖偉
中工武大設(shè)計(jì)研究有限公司,湖北 武漢 430205
將空箱擋墻技術(shù)應(yīng)用在云夢(mèng)大閘的改建工程中.首先,根據(jù)閘址區(qū)工程地質(zhì)情況,提出了地基加固處理措施.在工程設(shè)計(jì)部分,給出了空箱擋墻平面圖、縱剖面圖、地下輪廓線及典型段的分簡(jiǎn)圖.然后對(duì)空箱擋墻的穩(wěn)定性進(jìn)行了分析驗(yàn)算,主要包括水閘滲透穩(wěn)定計(jì)算和擋墻抗滑穩(wěn)定及基底應(yīng)力計(jì)算.結(jié)果顯示,在基本荷載組合和特殊荷載組合兩種工況下,空箱基底應(yīng)力的不均勻系數(shù)和抗滑穩(wěn)定安全系數(shù)均滿足設(shè)計(jì)規(guī)范的要求.將空箱擋土墻技術(shù)應(yīng)用在云夢(mèng)大閘的改建中,可以增加水閘的整體穩(wěn)定性.
空箱式擋土墻;云夢(mèng)大閘;水閘穩(wěn)定性
隨著社會(huì)的發(fā)展和技術(shù)的不斷進(jìn)步,水工建筑物對(duì)各項(xiàng)技術(shù)提出了更高的要求.水閘是水利設(shè)施中的重要組成部分[1-2],因而,對(duì)水閘設(shè)計(jì)方面的要求相應(yīng)的提高了[3].空箱擋土墻因?yàn)橹亓p、地基應(yīng)力分布均勻、效率高等優(yōu)點(diǎn)成為水工建筑物最常用的方式,被廣泛應(yīng)用于水閘連接和水閘設(shè)計(jì)中[4].文獻(xiàn)[5]將空箱式擋墻應(yīng)用在水電站水閘連接段中,水閘通過(guò)空箱擋墻與左岸連接起來(lái),正好綜合性的滿足了多項(xiàng)指標(biāo)要求.很多專家進(jìn)行過(guò)有限元實(shí)驗(yàn)計(jì)算,證明有空箱擋墻比沒(méi)有空箱擋墻的水閘在整體穩(wěn)定性方面更加優(yōu)越[6-7].正是因?yàn)榭障鋼鯄Φ闹T多優(yōu)點(diǎn),它還被廣泛應(yīng)用在河堤工程、交通樞紐工程暗挖隧道以及溢洪道等工程中[8-10].本文將空箱擋土墻技術(shù)應(yīng)用在云夢(mèng)大閘的改建中,以增加水閘的整體穩(wěn)定性,對(duì)整個(gè)閘室的安全穩(wěn)定具有重要意義.
云夢(mèng)大閘位于湖北省云夢(mèng)縣縣河出口與府河左岸堤防交匯處,具體位置在沙河鄉(xiāng)境內(nèi).云夢(mèng)大閘建于1960年,建成五十多年來(lái),一直起著排澇灌溉任務(wù),承雨面積110 km2,原設(shè)計(jì)最大過(guò)閘流量134 m3/s,排澇面積83.33 km2,灌溉面積106 km2,是一座Ⅲ等中型排、灌兩用閘.
經(jīng)安全鑒定,云夢(mèng)大閘主要運(yùn)用指標(biāo)達(dá)不到設(shè)計(jì)標(biāo)準(zhǔn),工程存在嚴(yán)重?fù)p壞,綜合評(píng)定該閘為三類閘.依據(jù)水閘運(yùn)行管理的相關(guān)規(guī)程規(guī)定,三類水閘必須進(jìn)行更新改造后,才能保證水閘安全運(yùn)行.根據(jù)該項(xiàng)目初步設(shè)計(jì)報(bào)告審查意見(jiàn),云夢(mèng)大閘除險(xiǎn)加固方案為拆除重建閘室上部結(jié)構(gòu),加固閘底板和閘墩,拆除重建空箱擋墻等.
閘址區(qū)揭露地層有填土、第四系全新統(tǒng)沖積物和白堊系砂礫巖全風(fēng)化殘積物,由上至下依次為素填土層(Qml)、淤泥質(zhì)粉質(zhì)黏土層(Q4l)、粉質(zhì)黏土層(Q4
al)、粉土層(Q4al)、粉質(zhì)黏土層(Q4
al)等.各土層承載力和力學(xué)性質(zhì)指標(biāo)如表1所示.云夢(mèng)大閘所處地的工程地質(zhì)剖面圖如圖1所示.
表1 各土層承載力、壓縮模量綜合成果表Tab.1 Comprehensive results of bearing capacity and compression modulus of each soil layer
圖1 工程地質(zhì)剖面圖(單位:m)Fig.1 Profiles of engineering geology(unit:m)
根據(jù)地勘補(bǔ)充地質(zhì)鉆孔資料,閘室左側(cè)空箱式擋墻部分建基面為較深厚的淤泥質(zhì)粉質(zhì)黏土層,施打松木樁加固地基,右岸空箱擋墻建基面則進(jìn)行基礎(chǔ)換填,處理后地基承載力特征值fak= 130 kPa.
云夢(mèng)水閘閘室兩側(cè)新建空箱擋墻對(duì)稱布置,空箱擋墻順?biāo)鞣较蜷L(zhǎng)9.10 m,垂直水流方向?qū)?6.4 m,底板呈階梯型與閘室、堤防填土相接,墻高9.90 m~13.10 m.擋墻底板厚0.8 m,與閘室相鄰邊墻厚0.5 m,其余三面邊墻厚0.6 m,縱橫隔墻厚度均為0.4 m,共8孔箱格,其中1孔箱格填滿開(kāi)挖土料,利用空箱內(nèi)填土、水重維持穩(wěn)定.圖2是空箱擋墻平面圖,圖3是空箱擋墻縱剖面圖.
縱橫向隔墻設(shè)置Φ75PVC通氣孔、排水孔,主要用于調(diào)節(jié)空箱內(nèi)氣壓,使空箱內(nèi)水位與河道水位保持一致,以免因?yàn)楹拥浪坏淖兓鹂障鋬?nèi)外水位出現(xiàn)落差,影響結(jié)構(gòu)穩(wěn)定.
圖2 空箱擋墻平面圖(單位:mm)Fig.2 Plan of hollowed retaining wall(unit:mm)
圖3 空箱擋墻縱剖面圖(單位:mm)Fig.3 Longitudinal section diagram of hollowed retaining wall(unit:mm)
空箱地下輪廓線及典型段劃分簡(jiǎn)圖如圖4所示.
圖4 空箱地下輪廓線及典型段劃分簡(jiǎn)圖(單位:mm)Fig.4 Diagram of underground contour and typical segment of hollowed case(unit:mm)
根據(jù)《水閘設(shè)計(jì)規(guī)范》(SL265-2001)、《水工擋土墻設(shè)計(jì)規(guī)范》(SL379-2007)、《水工混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范》(SL191-2008)、《水工建筑物荷載設(shè)計(jì)規(guī)范》(DL5077-1997)和《建筑地基基礎(chǔ)設(shè)計(jì)規(guī)范》(GB50007-2011)分別進(jìn)行滲流計(jì)算和穩(wěn)定計(jì)算.
5.1滲流計(jì)算
根據(jù)規(guī)范,土基上空箱擋墻的滲流計(jì)算采用改進(jìn)阻力系數(shù)法,共分3段,包括豎直段、空箱水平段、土層水平段.計(jì)算過(guò)程如下:
地基有效深度計(jì)算公式為:
式(1)中:Te為土基上空箱擋墻地基有效深度,m;L0為地下輪廓的水平投影長(zhǎng)度,m;S0為地下輪廓的垂直投影長(zhǎng)度,m.當(dāng)計(jì)算的Te值大于地基實(shí)際深度時(shí),Te值應(yīng)按地基實(shí)際深度采用.
分段阻力系數(shù)計(jì)算公式為:
1)進(jìn)出口段的阻力系數(shù):
式(2)中:S為板樁或齒墻的入土深度,m;T為地基透水層深度,m.
2)內(nèi)部垂直段阻力系數(shù):
式(3)中:Lx為水平段長(zhǎng)度,m;S1、S2為進(jìn)出口段板樁或齒墻的入土深度,m.
4)各段水頭損失計(jì)算公式:
式(4)中:hi為各分段水頭損失值,m;εi為各分段的阻力系數(shù).
5)進(jìn)、出口段修正后的水頭損失值:
計(jì)算中考慮閘室段防滲的最不利工況,即防洪外水位31.83 m,內(nèi)河最低水位24.20 m,上、下游水頭差ΔH=7.63 m.空箱底基礎(chǔ)為粉質(zhì)黏土,允許滲透坡降0.60.水閘滲透穩(wěn)定計(jì)算結(jié)果見(jiàn)表2.
根據(jù)表2顯示的計(jì)算成果,空箱水平段滲流坡降最大值0.355<0.6,滿足安全要求.
表2 水閘滲透穩(wěn)定計(jì)算成果表Tab.2 Calculation results of seepage stability of sluice gate
5.2穩(wěn)定計(jì)算
根據(jù)《水工擋土墻設(shè)計(jì)規(guī)范》(SL379-2007),空箱擋墻基底應(yīng)力計(jì)算公式為:
式(6)中:Pmax min為擋墻基底應(yīng)力的最大或最小值,kPa;∑G為作用在擋墻上全部垂直于水平面的荷載,kN;A為擋墻基底面的面積,m2;∑M為作用在擋墻上全部豎向荷載對(duì)于水平面平行于前墻墻面方向形心軸的力矩之和,kN·m;W為擋墻基底面對(duì)于基底面平行前墻墻面方向形心軸的截面矩,m3.
土基上擋土墻沿基底面的抗滑穩(wěn)定安全系數(shù):
式(7)中:f為擋土墻基底面與地基間摩擦系數(shù),粉質(zhì)黏土地基,f取值0.3;∑H為作用在擋土墻上全部平行于基底面的荷載,kN.
根據(jù)規(guī)范,并結(jié)合擋墻實(shí)際運(yùn)行情況,擋墻抗滑穩(wěn)定及基底應(yīng)力計(jì)算情況如表3所示.
表3的計(jì)算結(jié)果表明,基本荷載組合工況下,空箱基底應(yīng)力的不均勻系數(shù)最大值為1.45<1.5,抗滑穩(wěn)定安全系數(shù)最小值為3.71>1.25;特殊荷載組合工況下,空箱基底應(yīng)力的不均勻系數(shù)為1.13<2.00,抗滑穩(wěn)定安全系數(shù)最小值為2.67>1.10,均滿足規(guī)范要求.
表3 擋墻穩(wěn)定計(jì)算水位Tab.3 Calculation results of water level of stable retaining wall
本文將空箱擋土墻技術(shù)應(yīng)用在云夢(mèng)大閘的改建工程中,對(duì)整個(gè)閘室的安全穩(wěn)定具有重要意義.空箱擋土墻作為水閘閘室與兩岸堤防的過(guò)渡段,可以降低作用在閘室邊墩的邊荷載,從而減小邊墩應(yīng)力,更進(jìn)一步減小閘墩變形從而引起的閘門開(kāi)啟困難,以及閘室不均勻沉降等一系列類似問(wèn)題;從另一個(gè)角度來(lái)看,閘室底板內(nèi)力和地基應(yīng)力的降低,在設(shè)計(jì)中進(jìn)一步減小底板及邊墩的厚度,使得地基應(yīng)力變得均勻一致.
[1]黃志偉.水閘的維護(hù)與管理[J].科技創(chuàng)新與應(yīng)用,2016(11):215.
HUANG Z W.Maintenance and management of water gate[J].Hydraulic science and technology,2016(11):215.
[2]金京權(quán).水閘工程的安全綜合評(píng)價(jià)系統(tǒng)研究[J].建筑知識(shí),2016,36(2):200.
JIN J Q.Study on safety comprehensive evaluation system of Sluice Project[J].Architectural knowledge,2016,36(2):200.
[3]李賢亮.探討水閘設(shè)計(jì)要點(diǎn)及方法[J].四川建材,2015,41(6):164,166.
LI X L.Discussion on design key points and methods of sluice[J].Sichuan building materials,2015,41(6):164,166.
[4]袁俊年,陳花.空箱擋土墻在水工建筑物中的運(yùn)用[J].建筑工程技術(shù)與設(shè)計(jì),2014(36):645.
YUAN J N,CHEN H.Hollowed retaining wall and its applications in hydraulic structure[J].Architectural engineering technology and design,2014(36):645.
[5]王躍武,陳乃仲,王云峰.空箱式擋土墻在七和水電站水閘連接段的應(yīng)用[J].廣東水利水電,2002(2):68-69.
WANG Y W,CHEN N Z,WANG Y F.Hollowed retaining wall and its applications in the connection section of qihe hydropower station gate[J].Guangdong water resource and hydropower,2002(2):68-69.
[6] 徐旭松,朱忠龍,呂國(guó)華,等.淺談空箱擋土墻在水閘設(shè)計(jì)中的應(yīng)用[J].大科技,2014(6):143-144.
XU X S,ZHU Z L,LYU G H,et al.Discussion on the application of retaining wall in the design of hydropower gate[J].Super science,2014(6):143-144.
[7]蘇超,牛先玄,尹曉明.水閘改造工程有限元計(jì)算方法研究[J].水利水電技術(shù),2015,46(10):98-100,110.
SU C,NIU X X,YIN X M.Study on finite element method for sluice renovation project[J].Water resources and hydropower engineering,2015,46(10):98-100,110.
[8] 王槐楠,曾其東.沉井基礎(chǔ)漿砌石扶壁式(空箱)擋墻在河堤工程中的應(yīng)用[J].土工基礎(chǔ),1998,12(4):51-54.
WANG H N,ZENG Q D.Hollowed masonry buttressed retaining wall on caisson used in levee bank protectiol [J].Soil engineering and foundation,1998,12(4):51-54.
[9] 張學(xué)富,羅智,丁燕平,等.隧道穿越空箱擋墻樁基礎(chǔ)的施工方案研究[J].重慶建筑,2010,9(9):33-37.
ZHANG X F,LUO Z,DING Y P,et al.The study of construction plans for tunneling through the pile foundation of a box retaining wall[J].Chongqing architecture,2010,9(9):33-37.
[10]李志乾,陳攀.空箱扶壁擋墻在巴家咀水庫(kù)溢洪道工程中的應(yīng)用[J].珠江水運(yùn),2014(21):58-59.
LI Z Q,CHEN P.Container buttress wall and its applications in Bajiazui reservoir spillway[J].Pearl river water transport,2014(21):58-59.
本文編輯:龔曉寧
Hollowed Retaining Wall and Its Application in Project of Yunmeng Main Gate
HAO Lu,XIAO Wei
CAMCE WHU Design and Research Co.Ltd,Wuhan 430205,China
The hollowed retaining wall technology was applied in project of Yunmeng main gate.First,the measures for strengthening the foundation were proposed according to the engineering geological conditions of the site.The diagram of plan,longitudinal section and the underground contour and typical segment diagram of hollowed retaining wall were given respectively for the engineering design.Then,the stability of hollowed retaining wall was analyzed,including seepage stability calculation of sluice gate and anti-sliding stability of retaining wall.It demonstrates that the uneven coefficient of stress of empty base and anti-slide safety coefficient can meet the design requiremen under two kinds of conditions,the basic load combination and the special load combination.We suggest that we should adpot the hollowed retaining wall technology to improve the overall stability of the sluice in Yunmeng main gate.
hollowed retaining wall;Yunmeng main gate;stability of the sluice
郝路,工程師.E-mail:361243929@qq.com
TV5
A
10.3969/j.issn.1674-2869.2016.04.012
1674-2869(2016)04-0376-06
2016-04-19