張晉凱李根生黃中偉田守嶒宋先知王海柱. 油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室;2. 中國石化石油工程技術(shù)研究院
不同偏心度的環(huán)空渦動(dòng)流場特性
張晉凱1,2李根生1黃中偉1田守嶒1宋先知1王海柱1
1. 油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室;2. 中國石化石油工程技術(shù)研究院
為了深入研究環(huán)空渦動(dòng)時(shí)的流場特性,根據(jù)流體力學(xué)理論,以連續(xù)性方程和N-S方程為控制方程,利用計(jì)算流體力學(xué)技術(shù)對(duì)鉆柱渦動(dòng)時(shí)環(huán)空赫巴流體的流動(dòng)進(jìn)行了系統(tǒng)的數(shù)值模擬,研究了不同公轉(zhuǎn)方向下鉆柱偏心度的變化對(duì)環(huán)空切向速度剖面與合速度剖面的影響。通過對(duì)模擬數(shù)據(jù)的對(duì)比分析,發(fā)現(xiàn)不同公轉(zhuǎn)方向下環(huán)空流場分布截然不同,正向公轉(zhuǎn)時(shí)切向速度在環(huán)空寬間隙處隨著公轉(zhuǎn)速度、自轉(zhuǎn)速度和偏心度增大正向增大;反向公轉(zhuǎn)時(shí)會(huì)出現(xiàn)二次流,切向速度在環(huán)空寬間隙處隨偏心度的減小整體反向減小,同時(shí)二次流趨勢越明顯,摩阻壓耗越大。合理應(yīng)用這些規(guī)律有助于完善現(xiàn)有鉆井水力學(xué)理論,更好地揭示井下環(huán)空流場特性,并為鉆井水力參數(shù)優(yōu)化設(shè)計(jì)提供有效的理論指導(dǎo)。
渦動(dòng);環(huán)空;赫巴流體;摩阻壓耗;數(shù)值模擬;流場
鉆進(jìn)過程中鉆柱在井筒內(nèi)一般會(huì)出現(xiàn)渦動(dòng),即在地面轉(zhuǎn)盤帶動(dòng)下順時(shí)針自轉(zhuǎn)的同時(shí)還繞井眼軸線公轉(zhuǎn)。渦動(dòng)的出現(xiàn)以及公轉(zhuǎn)的半徑(即渦動(dòng)時(shí)鉆柱的偏心度)和方向(順時(shí)針方向、逆時(shí)針方向)就目前鉆井水平而言無法控制且很難預(yù)測,通過實(shí)驗(yàn)難以揭示其內(nèi)部規(guī)律,最可行的方法是借助數(shù)值模擬技術(shù)進(jìn)行研究[1-5]。因此研究渦動(dòng)時(shí)的偏心度對(duì)由自轉(zhuǎn)旋流場、公轉(zhuǎn)旋流場和軸向流場疊加而成的環(huán)空真實(shí)流場[6-12]的影響有助于完善現(xiàn)有鉆井水力學(xué)理論,更好地揭示井下環(huán)空流場特性,并為鉆井水力參數(shù)優(yōu)化設(shè)計(jì)提供理論指導(dǎo)[13-16]。
1.1鉆井液模型
Model for drilling fluids
為更好地描述非牛頓不可壓縮流體的流變特性,采用了更為合理的赫巴流變模式,該模式也可看作修正的冪律模式,具體方程為[17]
式中,τ為剪切應(yīng)力,Pa;τHB為該模式的屈服值,Pa;K為稠度系數(shù),Pa·sn;n為流性指數(shù),無因次;γ為剪切速率,s-1。屈服值是鉆井液的實(shí)際動(dòng)切力。根據(jù)文獻(xiàn)[18-19]內(nèi)的具體數(shù)據(jù),采用其中的一種油基鉆井液的數(shù)據(jù),回歸出相應(yīng)的赫巴模式的具體參數(shù)
1.2幾何模型
Geometric model
數(shù)值模擬所涉及到的幾何尺寸均采用現(xiàn)場實(shí)際尺寸,鉆柱外徑139.7 mm,套管內(nèi)徑244.0 mm,環(huán)空長度15 m,其他參數(shù)見表1。選取15 m長的環(huán)空鉆井液作為研究對(duì)象,采用基于交錯(cuò)網(wǎng)格的SIMPLEC算法對(duì)連續(xù)性方程和N-S方程進(jìn)行離散化,動(dòng)量方程的對(duì)流項(xiàng)進(jìn)行離散化時(shí)為保證計(jì)算精度,采用二階格式;建立的網(wǎng)格幾何模型如圖1。
表1 環(huán)空流動(dòng)幾何參數(shù)Table 1 Geometric parameters for flows in annulus
設(shè)置3類邊界類型:速度入口邊界,壓力出口邊界以及旋轉(zhuǎn)壁面邊界,設(shè)定該邊界繞其自身軸線自轉(zhuǎn)的同時(shí)繞井壁軸線公轉(zhuǎn),井壁為靜止壁面,所有壁面都簡化為無滑移水力光滑的壁面,且近壁面處的網(wǎng)格加密劃分,采用柱坐標(biāo)系,對(duì)稱軸為z軸,按照速度分量方式設(shè)定速度入口值[20]。
圖1 不同偏心度下環(huán)空流體區(qū)域的幾何網(wǎng)格模型Fig.1 Geometric grid model for flowing zones in annulus with various eccentricities
1.3流動(dòng)模型
Flow model
將流體視為不可壓縮流體,且具有一定的黏度值和密度值,不考慮傳熱和重力的影響[21]。用連續(xù)性方程和N-S方程共同描述環(huán)空流動(dòng),基于有限體積法的思想進(jìn)行離散。由于渦動(dòng)時(shí)的環(huán)空流場屬于復(fù)雜的旋流場,流體質(zhì)點(diǎn)脈動(dòng)程度較高,因此采用湍流兩方程模型中的Realizable模型,該模型能夠有效地將湍動(dòng)黏度模型中的系數(shù)與應(yīng)變率耦合起來,能夠更為精確地描述包括旋轉(zhuǎn)均勻剪切流、包含有射流和混合流的自由流、管道內(nèi)流動(dòng)、邊界層流動(dòng)以及帶有分離的流動(dòng)。因此文中采用Realizable模型[22]。
1.4環(huán)空流動(dòng)的數(shù)值模擬
Numerical simulation for flows in annulus
渦動(dòng)時(shí)自轉(zhuǎn)和公轉(zhuǎn)坐標(biāo)系都遵循右手準(zhǔn)則,規(guī)定轉(zhuǎn)盤自轉(zhuǎn)為順時(shí)針方向,以此作為旋轉(zhuǎn)正方向,鉆柱在井眼內(nèi)的公轉(zhuǎn)根據(jù)已有研究的描述有順時(shí)針和逆時(shí)針2個(gè)方向,當(dāng)公轉(zhuǎn)為順時(shí)針時(shí),與自轉(zhuǎn)方向一致,根據(jù)右手準(zhǔn)則,為正向渦動(dòng),反之為反向渦動(dòng)。
為更好地研究不同偏心度下流場的變化規(guī)律,設(shè)置其余鉆井參數(shù)在合理范圍,如表2。
表2 鉆柱渦動(dòng)時(shí)環(huán)空流動(dòng)數(shù)值模擬參數(shù)設(shè)置Table 2 Parameters for numerical simulation of flows in annulus during drill pipe vortex
取15 m長偏心環(huán)空鉆井液距入口9 m處橫截面上沿對(duì)稱軸的剖面進(jìn)行分析,橫坐標(biāo)0表示井筒中軸線。
設(shè)井筒圓心為O1,鉆柱圓心為O2,井筒半徑為R,鉆柱半徑為r,偏心距為h,公轉(zhuǎn)速度為ω1,自轉(zhuǎn)速度為ω2,P1為最寬間隙處對(duì)應(yīng)的鉆柱外壁面位置,P2為最窄間隙處對(duì)應(yīng)的鉆柱外壁面位置。設(shè)圖2中時(shí)刻的自轉(zhuǎn)線速度方向?yàn)檎较?,根?jù)分析可知:
當(dāng)自轉(zhuǎn)與公轉(zhuǎn)同向,P1點(diǎn)和P2點(diǎn)的線速度(切向速度)分別為
當(dāng)自轉(zhuǎn)與公轉(zhuǎn)反向,P1點(diǎn)和P2點(diǎn)的線速度(切向速度)分別為
2.1偏心度對(duì)流速剖面的影響
Impacts of eccentricity on flow velocity profile
分析模擬數(shù)據(jù)發(fā)現(xiàn),其他條件不變時(shí),隨軸向流速增大,環(huán)空內(nèi)寬窄間隙處合速度剖面變化規(guī)律與一般環(huán)空流動(dòng)相同,由于徑向速度較小且變化不明顯,本研究未作討論。下面著重分析渦動(dòng)時(shí)的偏心度及公轉(zhuǎn)正反方向的變化對(duì)環(huán)空氣場的影響。
圖2 鉆柱渦動(dòng)原理圖Fig.2 Principles of drill pipe vortex
設(shè)定環(huán)空鉆井液密度為1.0 g/cm3,軸向流速為2.0 m/s,公轉(zhuǎn)速度為18.84 rad/s,自轉(zhuǎn)速度為18.84 rad/s,考查偏心度分別為0.32、0.64、0.95時(shí)各流動(dòng)參數(shù)剖面的變化規(guī)律。
切向速度剖面:偏心度增大,寬間隙處切向速度剖面變大變寬,窄間隙處的切向速度剖面整體增大,鉆柱外壁面在寬間隙處根據(jù)式(3)的推導(dǎo)切向速度越小,在窄間隙處根據(jù)式(4)的推導(dǎo)切向速度越大,如圖3a。合速度剖面:偏心度增大,寬間隙處合速度剖面整體增大,窄間隙處合速度剖面整體減小,鉆柱外壁面在寬窄間隙處的變化規(guī)律同切向速度的變化規(guī)律,如圖3b。
圖3 偏心度對(duì)流場速度剖面的影響Fig.3 Impacts of eccentricity on flow field velocity profile
設(shè)定環(huán)空鉆井液密度為1 000 kg/m3,軸向流速為2.0 m/s,公轉(zhuǎn)速度為-18.84 rad/s,自轉(zhuǎn)速度為18.84 rad/s,考查偏心度分別為0.32、0.64、0.95時(shí)各流動(dòng)參數(shù)剖面的變化規(guī)律。
切向速度剖面:隨偏心度增大,寬間隙處的切向速度剖面整體反向增大,窄間隙處的切向速度剖面先增大后減小,鉆柱外壁面在寬間隙處根據(jù)式(5)的推導(dǎo)切向速度正向增大,在窄間隙處根據(jù)式(6)的推導(dǎo)切向速度減小,井壁處切向速度為0,如圖3c。
合速度剖面:隨偏心度增大,寬間隙處合速度剖面整體增大,窄間隙處的合速度剖面整體減小,鉆柱外壁面寬窄間隙處的變化規(guī)律同切向速度的變化規(guī)律,如圖3d。
2.2二次流的分析
Analysis for secondary flows
反向公轉(zhuǎn)時(shí),寬間隙鉆柱外壁面附近的流體質(zhì)點(diǎn)跟隨鉆柱自轉(zhuǎn)呈正向旋轉(zhuǎn),此處的切向速度為正值,但在遠(yuǎn)離鉆柱外壁面的區(qū)域,由于鉆柱正向自轉(zhuǎn)的趨勢弱于反向公轉(zhuǎn)的趨勢,故此區(qū)域的流體質(zhì)點(diǎn)跟隨鉆柱反向公轉(zhuǎn),所以此處切向速度為負(fù)值,如圖3c所示。在寬間隙區(qū)域,同時(shí)出現(xiàn)正反2個(gè)方向的切向速度,兩股不同方向的旋流在環(huán)空窄間隙的兩側(cè)分離與匯合,使得環(huán)空寬間隙處出現(xiàn)一個(gè)明顯的大渦,環(huán)空窄間隙處由于鉆柱旋轉(zhuǎn)壁面帶動(dòng)的旋流將本應(yīng)對(duì)應(yīng)出現(xiàn)的另一個(gè)不對(duì)稱的小渦淹沒,最終形成了不對(duì)稱的二次流,如圖4所示。
圖4 不同偏心度下的截面二次流矢量圖(ρ=1 000 kg/m3,v=2.0 m/s,ω1=-18.84 rad/s,ω2=18.84 rad/s)Fig.4 Vector diagram for secondary flows under different eccentricities(ρ=1 000 kg/m3,v=2.0 m/s,ω1=-18.84 rad/s,ω2=18.84 rad/s)
反向公轉(zhuǎn)時(shí),其他參數(shù)不變,偏心度越大,越不容易出現(xiàn)二次流。寬間隙處二次流產(chǎn)生的大渦越靠近旋轉(zhuǎn)鉆柱外壁面,同時(shí)二次流的分離與匯合點(diǎn)越靠近窄間隙處,當(dāng)偏心度大到一定程度后,鉆柱的正向自轉(zhuǎn)趨勢被二次流在寬窄間隙處的反向流動(dòng)趨勢完全包裹且基本抵消掉,此時(shí)狀態(tài)與偏心環(huán)空自轉(zhuǎn)的螺旋流場(自轉(zhuǎn)方向?yàn)榉聪?,自轉(zhuǎn)速度大小同公轉(zhuǎn))最為接近。二次流的明顯出現(xiàn)使得環(huán)空流體質(zhì)點(diǎn)的脈動(dòng)趨勢進(jìn)一步加強(qiáng),隨著偏心度減小,鉆柱正向自轉(zhuǎn)趨勢越不容易被抵消,二次流趨勢越明顯,偏心環(huán)空流動(dòng)的摩阻壓耗將進(jìn)一步增大。
(1)偏心度對(duì)渦動(dòng)流場的影響較為復(fù)雜,不能輕易忽略。宏觀上不論公轉(zhuǎn)方向如何,隨偏心度增大,寬間隙處的合速度剖面整體增大,窄間隙處的合速度剖面整體減小,但當(dāng)具體分析不同公轉(zhuǎn)方向的環(huán)空流場時(shí),又有各自截然不同的流動(dòng)特性。
(2)正向公轉(zhuǎn)時(shí),鉆柱的自轉(zhuǎn)和公轉(zhuǎn)共同增強(qiáng)了寬窄間隙處的正向旋流趨勢,此時(shí)切向速度整體為正值,無二次流出現(xiàn),偏心度增大,寬間隙處切向速度增大。
(3)反向公轉(zhuǎn)時(shí),切向速度同時(shí)出現(xiàn)正反向旋流趨勢,鉆柱的公轉(zhuǎn)流場與自轉(zhuǎn)流場出現(xiàn)相互抵消狀態(tài),環(huán)空截面呈現(xiàn)不對(duì)稱的二次流。偏心度減小,寬間隙處切向速度反向越小,公轉(zhuǎn)流場與自轉(zhuǎn)流場相互抵消越小,二次流趨勢越明顯,摩阻壓耗越大。
References:
[1]魏淑惠. 基于計(jì)算流體動(dòng)力學(xué)的偏心環(huán)空流場數(shù)值模擬[J].大慶石油學(xué)院學(xué)報(bào),2007,31(6):62-64.
WEI Shuhui. CFD numerical simulation of eccentric annuli flow field.[D]. Daqing: Dqing Petroleum Institute, 2007, 31(6): 62-64.
[2]王常斌,陳皖,田迪,賈雪松,趙海燕.冪律流體偏心環(huán)空流場CFD模擬[J]. 鉆井液與完井液,2009,26(3):62-64.
WANG Changbin, CHEN Wan, TIAN Di, JIA Xuesong,ZHAO Haiyan. A CFD simulation of the flow field of a power law fluid in an eccentric annulus[J]. Drilling Fluid & Completion Fluid, 2009, 26(3): 62-64.
[3]陳皖. 偏心環(huán)空流場的數(shù)值模擬[D]. 大慶: 大慶石油學(xué)院,2009:62-64.
CHEN Wan. Numerical simulation of flow field in eccentric annulus[D]. Daqing: Dqing Petroleum Institute, 2009: 62-64.
[4]朱云偉. 赫巴流體環(huán)空流動(dòng)的CFD模擬[D]. 大慶:東北石油大學(xué),2011:50-52.
ZHU Yunwei. CFD simulation of Herschel-Bulkley fluid flow in annulus[D]. Daqing: Northeast Petroleum University, 2011: 50-52.
[5]李子豐,梁爾國.鉆柱力學(xué)研究現(xiàn)狀及進(jìn)展[J].石油鉆采工藝,2008,30(2):1-9.
LI Zifeng, LIANG Erguo. Research and development of drill string mechanics[J]. Oil Drilling & Production Technology, 2008, 30(2): 1-9.
[6]陳庭根,管志川,劉希圣.鉆井工程理論與技術(shù)[M].東營:石油大學(xué)出版社,2000.
CHEN Tinggen, GUAN Zhichuan, LIU Xisheng. Drilling engineering theory and technology[M]. Dongying:University of Petroleum Press, 2000.
[7]高德利.鉆井科技發(fā)展的歷史回顧現(xiàn)狀分析與建議[J].石油科技論壇,2004,23(2):29-39.
GAO Deli. Analysis and suggestion on the history of the development of drilling technology[J]. Petroleum Science and Technology Forum, 2004, 23(2): 29-39.
[8]高德利.油氣井管柱力學(xué)與工程[M].東營:中國石油大學(xué)出版社,2006.
GAO Deli. Down-hole tubular mechanics and its applications[M]. Dongying: University of Petroleum Press, 2006.
[9]章?lián)P烈.鉆柱運(yùn)動(dòng)學(xué)與動(dòng)力學(xué)[M].北京:石油工業(yè)出版社,2001.
ZHANG Yanglie. Drillstring kinematics and dynamics [M]. Beijing: Petroleum Industry Press, 2001.
[10]狄勤豐,王文昌,胡以寶,張小柯.鉆柱動(dòng)力學(xué)研究及應(yīng)用進(jìn)展[J].天然氣工業(yè),2006,26(4):57-59.
DI Qinfeng, WANG Wenchang, HU Yibao, ZHANG Xiaoke. Study and application of Drilling string dynamics[J]. Natural Gas Industry, 2006, 26(4): 57-59.
[11]《中國石油鉆井》編輯委員會(huì).中國石油鉆井(綜合卷)[M].北京:石油工業(yè)出版社,2007.
CHINA PETROLEUM DRILLING editorial board. China petroleum drilling(comprehensive volume) [M]. Beijing: Petroleum Industry Press, 2007.
[12]李子豐,王兆運(yùn),陽鑫軍,田新民.鉆柱渦動(dòng)分析及防渦穩(wěn)定器設(shè)計(jì)[J]. 石油鉆采工藝,2008,30(3):124-127.
LI Zifeng, WANG Zhaoyun, YANG Xinjun, TIAN Xinmin. Swirling analysis of drilling strings and antiwhirl stabilizers design[J]. Oil Drilling & Production Technology, 2008, 30(3): 124-127.
[13]REHM B, SCHUBERT J, HAGHSHENAS A,PAKNEJAD A S. Managed pressure drilling[M]. Houston: Gulf Publishing Company, 2008.
[14]KOK M V. TERCAN E. Managed pressure drilling techniques, equipments, and applications[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects. 2012, 34: 591.
[15]GODHAVN J M. Control requirements for automatic managed pressure drilling system[J].SPE Drilling & Completion. 2010,25(3): 336-338.
[16]ZHOU J, STAMNES O N, AAMO O M, KAASA G O. Switched control for pressure regulation and kick attenuation in a managed pressure drilling system[J]. IEEE Transactions on Control Systems Technology. 2011,19(2): 337-379.
[17]HERSCHEL W H, BULKLEY R. Measurement of consistency as applied to rubber-benzene solutions:29th Annual Meeting of the American Society Testing Materials Atlantic City, June 1926 [C]. Proc. ASTM,26 (II) : 621-633.
[18]胡茂炎,尹文斌,鄭秀華,夏柏如.鉆井液流變參數(shù)計(jì)算方法的分析及流變模式的優(yōu)選[J].探礦工程:巖土鉆掘工程,2004,(7):41-45.
HU Maoyan, YIN Wenbin, ZHENG Xiuhua, XIA Boru. Analyses on calculation methods of rheological parameters of drilling fluid and optimization of rheological model[J]. Exploration Engineering:Drilling & Tunneling,2004,(7): 41-45.
[19]韓洪升,魏兆勝,崔海青,李昌連.石油工程非牛頓流體力學(xué)[M].哈爾濱:哈爾濱工業(yè)大學(xué)出版社,1993:116-145.
HAN Hongsheng, WEI Zhaosheng, CUI Haiqing, LI Changlian. Non-newtonian fluid mechanics in petroleum engineering[M]. Haerbin: Harbin Institute of Technology Press, 1993: 116-145.
[20]張晉凱,李根生,黃中偉,田守嶒,宋先知.連續(xù)油管螺旋段摩阻壓耗數(shù)值模擬[J].中國石油大學(xué)學(xué)報(bào):自然科學(xué)版2012,36(2):115-119.
ZHANG Jinkai, LI Gensheng, HUANG Zhongwei,TIAN Shouceng, SONG Xianzhi. Numerical simulation on friction pressure loss in helical coiled tubing[J]. Journal of China University of Petroleum: Edition of Natural Science, 2012, 36(2): 115-119.
[21]高學(xué)平.高等流體力學(xué)[M].天津:天津大學(xué)出版社,2005:16-28.
GAO Xueping. Advanced fluid mechanics[M]. Tianjin: Tianjin University Press, 2005: 16-28.
[22]王福軍.計(jì)算流體動(dòng)力學(xué)分析——CFD 軟件原理與應(yīng)用[M].北京:清華大學(xué)出版社,2004:122-126.
WANG Fujun. Computational fluid dynamics analysis-Software principles and applications of CFD[M]. Beijing: Tsinghua University Press, 2004: 122-126.
(修改稿收到日期 2016-01-28)
〔編輯 薛改珍〕
Features of vortex flow fields in annuluses with different eccentricities
ZHANG Jinkai1,2, LI Gensheng1, HUANG Zhongwei1, TIAN Shouceng1, SONG Xianzhi1, WANG Haizhu1
1. State Key Laboratory of Petroleum Resources and Prospecting, Beijing 102249, China;2. SINOPEC Research Institute of Petroleum Engineering, Beijing 100101, China
To further understand features of flow field during vortex in annulus, impacts of eccentricity variations on tangential velocity profile and resultant velocity profile of annulus under different rotation directions were determined according to the fluid dynamics theories and with continuity equation and N-S equation as controlling equations. In this study, systematic numerical simulations were performed on flows of Hershel-Bulkley fluid in annulus during vortex of drill pipes by using fluid dynamics. Through comparison of simulation data, it is seen that distributions of flow fields in the annulus are significantly different in different rotation directions. During rotation in positive direction, tangential velocity increases with the increases of revolution speed, speed of autorotation and eccentricity around wide clearance of annulus. During rotation in negative position, secondary flows are observed, and tangential velocity decreases reversely with the decreases of eccentricity in wide clearance of the annulus. Moreover, more obvious the trends of secondary flows, higher the frictional pressure losses. Proper application of these patterns may improve existing hydraulic theories for drilling operations to highlight properties of flow fields in the annulus and to provide theoretical guidance for design and optimization of hydraulic parameters for drilling operations.
vortex; annulus; Hershel-Bulkley fluid; frictional pressure loss; numerical simulation; flow field
ZHANG Jinkai, LI Gensheng, HUANG Zhongwei, TIAN Shouceng, SONG Xianzhi, WANG Haizhu. Features of vortex flow fields in annuluses with different eccentricities[J].Oil Drilling & Production Technology, 2016, 38(2): 133-137.
TE21
A
1000 -7393( 2016 ) 02 -0133-05
10.13639/j.odpt.2016.02.001
國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)“深井復(fù)雜地層安全高效鉆井基礎(chǔ)研究”(編號(hào):2010CB226704)。
張晉凱(1980-),2013年畢業(yè)于中國石油大學(xué)(北京)油氣井工程專業(yè),現(xiàn)從事油氣井流體力學(xué)與工程方面的研究。通訊地址:(100101)北京市朝陽區(qū)北辰東路8號(hào)北辰時(shí)代大廈10層。E-mail:bob33@163.com
李根生(1961-),中國工程院院士,教授,博士生導(dǎo)師,從事油氣鉆井和完井工程方面的研究和教學(xué)。通訊地址:(102249)北京市昌平區(qū)府學(xué)路18號(hào)中國石油大學(xué)(北京)石油工程學(xué)院。電話:010-89733935。E-mail:ligs@cup.edu.cn
引用格式:張晉凱,李根生,黃中偉,田守嶒,宋先知,王海柱.不同偏心度的環(huán)空渦動(dòng)流場特性[J].石油鉆采工藝,2016,38(2):133-137.