張冬梅,程文萍,張明勝,崔杏雨,馬靜紅,李瑞豐,(太原理工大學(xué)化學(xué)化工學(xué)院,山西 太原 03004;太原理工大學(xué)精細(xì)化工研究所,山西 太原 03004)
?
AC/X-G吸附劑的制備及CH4/N2吸附分離性能
張冬梅1,程文萍1,張明勝1,崔杏雨2,馬靜紅2,李瑞豐1,2
(1太原理工大學(xué)化學(xué)化工學(xué)院,山西 太原 030024;2太原理工大學(xué)精細(xì)化工研究所,山西 太原 030024)
摘要:采用濃度為0.2 g·ml?1的葡萄糖溶液對(duì)13X沸石/活性炭復(fù)合材料(AC/X)進(jìn)行碳沉積,研究沉積次數(shù)對(duì)復(fù)合吸附劑(AC/X-G)孔結(jié)構(gòu)、表面性質(zhì)和CH4/N2吸附分離性能的影響。通過(guò)X射線衍射,77 K下的N2吸附/脫附,掃描電鏡,CO2-TPD以及紅外光譜表征樣品的晶型、孔結(jié)構(gòu)和表面性質(zhì),在298 K、100 kPa下對(duì)其CH4和N2吸附等溫線進(jìn)行測(cè)定,并將吸附結(jié)果與文獻(xiàn)中碳材料和13X沸石的吸附性能進(jìn)行比較。結(jié)果表明:隨著沉積次數(shù)的增加,AC/X-G吸附劑中X型沸石的相對(duì)含量降低,微孔比表面積和微孔體積減少。AC/X-G的表面被碳膜覆蓋,堿量降低,但出現(xiàn)強(qiáng)堿位和含氧基團(tuán)C—O鍵。AC/X-G的CH4和N2吸附量下降,但吸附分離系數(shù)提高,沉積3次的樣品AC/X-G-3的CH4/N2吸附分離系數(shù)達(dá)到3.0,表面的含氧基團(tuán)有利于提高復(fù)合材料的CH4/N2吸附分離性能。
關(guān)鍵詞:吸附劑;葡萄糖;碳沉積;吸附;分離
2015-10-23收到初稿,2016-03-03收到修改稿。
聯(lián)系人:程文萍。第一作者:張冬梅(1991—),女,碩士研究生。
Received date: 2015-10-03.
Foundation item: supported by the National Natural Science Foundation of China (51204120), the Natural Science Foundation of Shanxi Province (2014021014-1, 2012011005-6) and the Key Scientific and Technological Project of Coal Fund of Shanxi Province (FT201402-03).
甲烷作為潔凈高效的能源和重要的化工原料,其分離提純對(duì)于緩解能源危機(jī)和環(huán)境保護(hù)均具有積極意義。因CH4和N2的物理化學(xué)性質(zhì)相近,使其分離提純尤為困難[1]。目前用于CH4/N2分離提純技術(shù)主要有膜分離法[2-4]、水合物法[5]、深冷法[6-7]、溶劑法[8]和變壓吸附分離法[9],其中變壓吸附分離法由于可操作性強(qiáng)而被廣泛關(guān)注。變壓吸附分離技術(shù)的核心是高性能吸附劑的制備,而影響吸附劑性能的關(guān)鍵是其孔結(jié)構(gòu)[10]和表面性質(zhì)[11-12]。
Baksh等[13]用Br2或ICl對(duì)活性炭表面進(jìn)行單層沉積,沉積之后的復(fù)合吸附劑對(duì)CH4的吸附量不變而對(duì)N2的吸附量下降,CH4/N2平衡分離系數(shù)達(dá)到4。楊明莉[14]用十二烷基硫酸鈉和正二十四烷為改性劑對(duì)活性炭進(jìn)行了表面親烴改性,提高了對(duì)CH4的吸附性能,在更大的壓力范圍內(nèi)提高了活性炭對(duì)CH4/N2的分離效果,但是CH4和N2在活性炭上的吸附容量較低,影響了其吸附分離的效果。Ahmad 等[15]研究了苯沉積對(duì)棕櫚殼碳分子篩吸附性能的影響,實(shí)驗(yàn)表明其對(duì)CO2/CH4和O2/N2的動(dòng)力學(xué)選擇性分別達(dá)到了16和7.06,提高了碳分子篩的吸附分離性能。另有研究者[16-17]用CH4作為沉積劑進(jìn)行高溫碳沉積制備出的碳分子篩可將混合氣中N2的濃度提高至97.5%。李瑞豐等提出了13X沸石/活性炭復(fù)合材料的制備方法,該材料結(jié)合了13X沸石和活性炭?jī)煞N材料的孔結(jié)構(gòu)和表面性質(zhì)[18],對(duì)CH4和N2的吸附容量較高,但是吸附平衡分離比較低,為2.0[19]。因此,本文將在13X沸石/活性炭復(fù)合材料的基礎(chǔ)上,以葡萄糖作為沉積劑,對(duì)復(fù)合材料的孔結(jié)構(gòu)和表面性質(zhì)進(jìn)行調(diào)節(jié),以期獲得適宜的孔結(jié)構(gòu)和理想的表面性質(zhì),從而提高復(fù)合吸附劑對(duì)CH4/N2吸附分離性能。
1.1樣品制備
1.1.1復(fù)合材料的制備將煤矸石粉、瀝青和白炭黑按一定比例混勻成型、烘干,在管式爐中氮?dú)獗Wo(hù)下,1123 K炭化2 h,再通入CO2,1123 K活化24 h。將活化后的樣品置入一定濃度的NaOH溶液中,338 K凝膠12 h,室溫老化12 h,363 K晶化24 h,洗滌、干燥制得沸石/活性炭復(fù)合材料[18],記為AC/X。
1.1.2沉積樣品的制備取5 g AC/X加入0.2 g·ml?1葡萄糖溶液20 ml,室溫?cái)嚢? h,洗滌過(guò)濾,然后在453 K下靜置干燥固化2 h,再放入管式爐內(nèi),氮?dú)獗Wo(hù)下,823 K炭化2 h。依據(jù)沉積次數(shù)的不同,分別命名為AC/X-G-1、AC/X-G-2、AC/X-G-3 和AC/X-G-4。
1.2樣品表征
采用日本島津LabX XRD-6000型X射線衍射儀(XRD)對(duì)樣品的晶型進(jìn)行表征。CuKα為射線源(λ=0.15406 nm),石墨單色器,工作電壓40 kV,管電流30 mA,掃描速率(2θ) 8(°)·min?1,掃描角度5°~35°,掃描步長(zhǎng)0.01°。采用美國(guó)Quantachrome公司Quantachrome Quadrasorb SI型吸附儀測(cè)定樣品的N2吸附-脫附等溫線。經(jīng)BET方程計(jì)算樣品的比表面積(SBET),以p/p0=0.98時(shí)氮?dú)獾奈搅坑?jì)算樣品的總孔容,由t-plot方法計(jì)算樣品的微孔比表面積(Smic)、外比表面積(Sext)和微孔體積(Vmic)。采用美國(guó)Quantachrome公司的NOVA1200e型吸附儀對(duì)樣品在273 K時(shí)的CO2吸附等溫線進(jìn)行測(cè)定,由NLDFT模型獲得樣品的微孔孔分布以及<1 nm的微孔體積(V<1 nm)。采用日本島津FT-IR型傅里葉變換紅外分析儀分析樣品的表面性質(zhì)(樣品與KBr的質(zhì)量比為1:200)。采用日本S-4800型掃描電子顯微鏡對(duì)復(fù)合材料的形貌特征進(jìn)行觀測(cè),并對(duì)碳沉積后材料進(jìn)行表面成分分析。采用美國(guó)Micromeritics公司Chemsorb2720型全自動(dòng)程序升溫化學(xué)吸附儀,進(jìn)行CO2-TPD測(cè)定。
1.3CH4和N2吸附量的測(cè)定
采用美國(guó)Quantachrome公司的NOVA1200e型吸附儀測(cè)定樣品在298 K、100 kPa時(shí)CH4和N2的吸附等溫線。
2.1X射線衍射分析
由圖1不同沉積次數(shù)樣品的XRD譜圖可知,所有樣品在2θ為6.10°、10.00°、15.40°、20.05°、23.30°、26.60°、30.90°均出現(xiàn)了13X沸石的特征峰。并且隨著沉積次數(shù)的增加,特征峰強(qiáng)度逐漸減弱,這表明隨著沉積次數(shù)的增加,AC/X-G樣品中活性炭的相對(duì)含量增多,X沸石的相對(duì)含量降低。
圖1 樣品XRD譜圖Fig.1 XRD patterns of samples
2.2掃描電鏡(SEM)
圖2(a)、(b)是樣品AC/X和AC/X-G-3的電鏡圖。從圖(a)可以看出,復(fù)合材料AC/X中部分八面體X型沸石裸露在碳材料的外面,圖2(b)中AC/X-G-3的X型沸石則被沉積的碳包裹,并且經(jīng)EDS對(duì)材料表面進(jìn)行成分分析,沸石13X表面C、O含量分別為37.7%、35.3%,這說(shuō)明用葡萄糖溶液進(jìn)行浸漬、沉積之后,在復(fù)合材料的表面形成了碳膜,將其中X型沸石完全包裹,并且隨著沉積次數(shù)的增加,碳膜的量增大,也因此改變了復(fù)合吸附劑AC/X-G-3的孔結(jié)構(gòu)和表面性質(zhì)。
圖2 AC/X和 AC/X-G-3的SEM圖及AC/X-G-3的EDS分析Fig 2 SEM images of AC/X and AC/X-G-3, and EDS analysis of AC/X-G-3
2.3液氮吸附-脫附表征
圖3中樣品在77 K下N2吸附/脫附等溫線,具有Ⅰ型和Ⅳ型吸附等溫線的特征,并且在p/p0>0.8時(shí),出現(xiàn)了明顯突躍,表明復(fù)合材料中不僅含有大量微孔,而且存在一定量的介孔和大孔。從表1中樣品的孔結(jié)構(gòu)參數(shù)可以看出,隨著沉積次數(shù)的增加,樣品的BET比表面積、微孔比表面積和微孔體積依次下降,而外比表面積增加,相對(duì)含量升高。由273 K下CO2吸附等溫線得到,微孔分布主要在0.45~0.55、0.55~0.70和0.70~1.0 nm3個(gè)區(qū)間,隨著浸漬次數(shù)的增加,各區(qū)間范圍內(nèi)的孔體積均呈下降趨勢(shì),表明碳沉積對(duì)復(fù)合材料微孔調(diào)節(jié)效果明顯。這一結(jié)果與電鏡的結(jié)果一致,由于復(fù)合材料表面被碳膜覆蓋,所以微孔表面積和微孔體積下降,外比表面積的相對(duì)含量增加。
2.4紅外光譜表征
AC/X-G吸附劑中活性炭的表面具有很多種官能團(tuán),表面含氧基團(tuán)的種類也會(huì)極大影響復(fù)合材料的吸附分離性能。從樣品的紅外譜圖(圖4)中發(fā)現(xiàn),與AC/X相比,AC/X-G在878、1046和2970 cm?1處出現(xiàn)了特征吸收峰。其中,878 cm?1處為C—H 3鍵彎曲振動(dòng)峰,1046 cm?1處為C—O的伸縮振動(dòng)峰,2970 cm?1處為C—H鍵的伸縮振動(dòng)峰。由此可見,復(fù)合吸附劑AC/X-G的表面含有C—H鍵和含氧官能團(tuán)C—O鍵,由于C—O鍵具有較強(qiáng)極化作用,使其對(duì)極化率較大的氣體分子表現(xiàn)出較強(qiáng)的吸附能力[20]。
圖3 樣品在77 K下N2吸附等溫線及由273 K CO2吸附等溫線得到的ACX、ACX-G(1~4)樣品V<1 nm微孔孔容Fig.3 N2adsorption isotherms at 77 K on samples and V<1 nmmicropore volume of ACX and ACX-G(1—4) samples obtained from CO2adsorption isotherms at 273 K
表1 樣品的孔結(jié)構(gòu)參數(shù)Table 1 Pore structure parameters of samples
圖4 樣品的紅外譜圖Fig.4 Infrared spectra of samples
2.5CO2-TPD表征
圖5為AC/X和AC/X-G-3的CO2-TPD曲線圖,AC/X在67℃附近的脫附位為弱堿脫附位,在209℃附近的脫附位為中強(qiáng)堿脫附位;AC/X-G-3在58℃附近的脫附位為弱堿脫附位,在190℃附近的脫附位為中強(qiáng)堿位,而其在410℃附近的脫附位為強(qiáng)堿位,表明AC/X-G-3在葡萄糖沉積后,雖然堿量降低,但具有明顯的強(qiáng)堿脫附位,而強(qiáng)堿位的增加有利于提高CH4/N2的分離[21]。
圖5 AC/X和AC/X-G-3的CO2-TPD曲線Fig.5 CO2-TPD profiles of AC/X and AC/X-G-3
2.6CH4和N2吸附性能表征
從表2中可見,一次沉積的吸附劑AC/X-G-1的CH4和N2吸附量大幅度降低,這一方面是由于AC/X-G-1的BET比表面積、微孔比表面積和微孔體積均下降所致,另一方面是因?yàn)槌练e樣品表面堿量的降低所引起的。而2~4次沉積后的吸附劑對(duì)CH4的吸附量未發(fā)生顯著變化,這表明雖然隨著微孔參數(shù)和表面堿量的降低會(huì)引起CH4吸附量的降低,但是強(qiáng)堿位的增加有利于非極性分子的吸附[21]。盡管CH4和N2均為非極性分子,但是CH4的極化率大于N2,與吸附劑表面的C—O鍵產(chǎn)生較強(qiáng)的吸附作用,因此,CH4的吸附量穩(wěn)定在11.8 cm3·g?1,而N2的吸附量則依次降低。
表2 N2和CH4在樣品上的吸附參數(shù)Table 2 Adsorption parameters of N2and CH4on samples
由圖6和表2可見,F(xiàn)reundlich吸附等溫式(F式)比Henry(H式)更適于擬合298 K時(shí)CH4和N2在樣品上的吸附等溫線。在F式中,k值是與吸附劑的吸附能力相關(guān)的常數(shù),n值在0~1之間,反映了吸附劑表面吸附位的多相性。由CH4的F式擬合結(jié)果可知,隨著沉積次數(shù)的增加,k值增加,n值降低,這是因?yàn)锳C/X-G吸附劑表面強(qiáng)堿位的增加使其CH4的吸附作用增強(qiáng),同時(shí)導(dǎo)致吸附劑表面對(duì)于CH4吸附位的多相性增加。N2的n值很接近,k值降低,表明沉積之后復(fù)合材料表面對(duì)N2的吸附活性位均一性不變,但是吸附能力降低,這與AC/X-G微孔參數(shù)和表面堿量的降低有關(guān)。
圖6 298 K下AC/X和AC/X-G-3 CH4、N2吸附等溫線的擬合Fig 6 Adsorption isotherms of N2and CH4on AC/X and AC/X-G-3 under 298 K
由亨利常數(shù)計(jì)算的CH4和N2平衡分離系數(shù)α(CH4/N2)(表2)可看出,AC/X-G-3的α (CH4/N2) 從AC/X的2.1增加到3.0,這也說(shuō)明AC/X-G-3吸附劑對(duì)CH4和N2的吸附分離能力遠(yuǎn)高于AC-X,這是由于沉積樣品表面的C—O鍵具有較強(qiáng)極化作用,對(duì)極化率較高的CH4吸附作用更強(qiáng),有利于CH4和N2的吸附分離。
2.7吸附劑的性能比較
表3為文獻(xiàn)報(bào)道的不同活性炭吸附劑、13X沸石和本文制備的AC/X-G-3吸附劑對(duì)于CH4和N2吸附性能的比較。由表可見,Anderson AX-21和Carbon(G2X7/12)兩種活性炭吸附劑都表現(xiàn)出較高的CH4和N2平衡吸附量及分離比,與之相比,AC/X-G-3吸附劑具有較高的平衡分離比,而平衡吸附量偏低。但是AC/X-G-3與文獻(xiàn)中的13X沸石、Carbon(PVDC)及Carbon(FFAD)吸附劑相比,CH4和N2平衡吸附量接近,而平衡分離比卻有較大提高;與Carbon(CMS-2)和Vulcan carbon吸附劑相比,CH4和N2的平衡分離比接近,但是平衡吸附量大大提高。相比之下,AC/X-G-3不僅具有較高的平衡吸附量,而且平衡分離比達(dá)到3.0,能夠滿足變壓吸附分離甲烷和氮?dú)鈱?duì)于吸附劑的要求。
表3 各種吸附劑的CH4和N2的吸附性能Table 3 Adsorption abilities of various adsorbents for CH4and N2
隨著沉積次數(shù)的增加,AC/X-G吸附劑中X型沸石表面沉積碳膜的量增大,導(dǎo)致BET比表面積、微孔比表面積和微孔體積減小,表面堿量降低,但是AC/X-G吸附劑表面出現(xiàn)強(qiáng)堿位,并且存在極化作用強(qiáng)的C—O鍵。AC/X-G吸附劑的孔結(jié)構(gòu)和表面性質(zhì)的變化,對(duì)CH4和N2的吸附量影響較大,由于吸附劑表面C—O鍵較強(qiáng)的極化作用,使AC/X-G-3對(duì)CH4和N2的平衡分離系數(shù)增加至3.0,有望應(yīng)用于變壓吸附裝置,實(shí)現(xiàn)低濃度甲烷的分離提純。
References
[1]YANG H W, YIN C B, JIANG B, et al. Optimization and analysis of a VPSA process for N2/CH4separation [J]. Separation and Purification Technology, 2014, 134: 232-240.
[2]LOKHANDWALA K A, PINNAU I, HE Z J, et al. Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment [J]. Journal of Membrane Science, 2010, 346(2): 270-279.
[3]BUONOMENNA M G, GOLEMME G, TONE C M, et al. Nanostructured poly(styrene-b-butadiene-b-styrene) (SBS) membranes for the separation of nitrogen from natural gas [J]. Advanced Functional Materials, 2012, 22(8): 1759-1767.
[4]阮雪華, 賀高紅, 肖武, 等. 生物甲烷膜分離提純系統(tǒng)的設(shè)計(jì)與優(yōu)化[J]. 化工學(xué)報(bào), 2014, 65(5): 1688-1695. RUAN X H, HE G H, XIAO W, et al. Design and optimization of membrane-based system for bio-methane purification [J]. CIESC Journal, 2014, 65(5): 1688-1695.
[5]ZHONG D L, LU Y Y, SUN D J, et al. Performance evaluation of methane separation from coal mine gas by gas hydrate formation in a stirred reactor and in a fixed bed of silica sand [J]. Fuel, 2015, 143: 568-594.
[6]范慶虎, 李紅艷, 尹全森, 等. 低濃度煤層氣液化技術(shù)及其應(yīng)用[J].天然氣工業(yè), 2008, 28(3): 117-120. FAN Q H, LI H Y, YIN Q S, et al. Liquefaction technology on low-concentration CBM and its application [J]. Natur. Gas Ind., 2008, 28(3): 117-120.
[7]BRIAN R S. Process for removing nitrogen from natural gas: US 4352685 [P]. 1982-10-05.
[8]FRIESEN D T, BABCOCK W C, EDLUND D J, et al. Liquid of absorbent solutions for separating nitrogen from natural gas: US 6136222 [P]. 2000-10-24.
[9]WARMUZI?SKI K, SODZAWICZNY W. Effect of adsorption pressure on methane purity during PSA separations of CH4/N2mixtures [J]. Chemical Engineering and Processing, 1999, 38: 55-60.
[10]GU M, ZHANG B, QI Z D, et al. Effects of pore structure of granular activated carbons on CH4enrichment from CH4/N2by vacuum pressure swing adsorption [J]. Separation and Purification Technology, 2015, 146: 213-218.
[11]MAROTO-VALER M M, ZHANG Y Z, GRANITE E J, et al. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample [J]. Fuel, 2005, 84(1): 105-108.
[12]劉立恒, 辜敏, 鮮學(xué)福. 孔結(jié)構(gòu)和表面化學(xué)性質(zhì)對(duì)活性炭吸附性能的影響[J]. 環(huán)境工程學(xué)報(bào), 2012, 6(4): 1299-1304. LIU L H, GU M, XIAN X F. Effect of pore structure and surface chemical properties on adsorption properties of activated carbons [J]. Chinese Journal of Environmental Engineering, 2012, 6(4): 1299-1304.
[13]BAKSH M S A, YANG R T, CHUNG D D L. Composite sorbents by chemical vapor deposition on activated carbon [J]. Carbon, 1989, 27(6): 931-934.
[14]楊明莉. 煤層甲烷變壓吸附濃縮的研究[D]. 重慶: 重慶大學(xué), 2004. YANG M L. Study on concentration of methane in coal bed by pressure swing adsorption [D]. Chongqing: Chongqing University, 2004.
[15]WAN DAUDA W M A, AHMAD M A, AROUA M K. Carbon molecular sieves from palm shell: effect of the benzene deposition times on gas separation properties [J]. Separation and Purification Technology, 2007, 57: 289-293.
[16]張香蘭, 周瑋, 張英, 等. 甲烷沉積法對(duì)甲烷/氮?dú)夥蛛x炭分子篩性能的研究[J]. 化學(xué)工業(yè)與工程, 2011, 28(5): 20-25. ZHANG X L, ZHOU W, ZHANG Y, et al. Effect of CH4sedimentary conditions on performance of carbon molecular sieve in methane/nitrogen separation process [J]. Chemical Industry and Engineering, 2011, 28(5): 20-25.
[17]VILLAR-RODIL S, NAVARRETE R, DENOYEL R, et al. Carbon molecular sieve cloths prepared by chemical vapour deposition of methane for separation of gas mixtures [J]. Microporous and Mesoporous Materials, 2005, 77(2): 109-118.
[18]LI Z L, CUI X Y, MA J H, et al. Preparation of granular X-type zeolite/activated carbon composite from elutrilithe by adding pitchand solid SiO2[J]. Materials Chemistry and Physics, 2014, 147(3): 1003-1008.
[19]薛彩龍, 程文萍, 崔杏雨, 等. X沸石/活性炭孔結(jié)構(gòu)對(duì)CH4/N2分離的影響[J]. 煤炭轉(zhuǎn)化, 2015, 38(3): 92-96. XUE C L, CHENG W P, CUI X Y, et al. Effect of pore structure of zeolite X/ activated carbon composite on CH4/N2separation [J]. Coal Conversion, 2015, 38(3): 92-96.
[20]張薄, 辜敏, 鮮學(xué)福. 碳分子篩的結(jié)構(gòu)和表面性質(zhì)對(duì)其吸附分離CH4/N2和CO2/N2的影響[J]. 功能材料, 2012, 43(20): 2858-2862. ZHANG B, GU M, XIAN X F. Effects of structure and surface property on adsorptive separation of carbon molecular sieve for CH4/N2and CO2/N2[J]. Functional Materials, 2012, 20(43): 2858-2862.
[21]劉立恒, 辜敏, 鮮學(xué)福, 等. 黏結(jié)劑對(duì)顆?;钚蕴?PSA 分離CH4/N2性能的影響[J]. 材料研究學(xué)報(bào), 2011, 25(3): 249-254. LIU L H, GU M, XIAN X F, et al. Effect of binders on CH4/N2performances of granular activated carbons by pressure swing adsorption [J]. Chinese Journal of Materials Research, 2011, 25(3): 249-254.
[22]QUINN D F. Supercritical adsorption of ‘permanent’ gases under corresponding states on various carbons [J]. Carbon, 2002, 40(15): 2767-2773.
[23]OLAJOSSY A, GAWDZIK A, BUDNER Z, et al. Methane separation from coal mine methane gas by vacuum pressure swing adsorption [J]. Chemical Engineering Research and Design, 2003, 81(4): 474-482.
[24]張進(jìn)華, 車永芳, 李蘭廷, 等. 煤基碳分子篩的制備及CH4/N2分離性能研究[J]. 潔凈煤技術(shù), 2011, 17(2): 64-67. ZHANG J H, CHE Y F, LI L T, et al. Preparation of coal-based carbon molecular sieve and its application effects in CH4/N2separation [J]. Clean Coal Technology, 2011, 17(2): 64-67.
[25]KLUSON P, SCAIFE S, QUIRKE N. The design of microporous graphitic adsorbents for selective separation of gases [J]. Separation and Purification Technology, 2000, 20(1): 15-24.
[26]MOFARAHI M, BAKHTYARI A. Experimental investigation and thermodynamic modeling of CH4/N2adsorption on zeolite 13X [J]. Journal of Chemical & Engineering Data, 2015, 60(3): 683-696.
Preparation of AC/X-G adsorbent and CH4/N2adsorption separation performance
ZHANG Dongmei1, CHENG Wenping1, ZHANG Mingsheng1, CUI Xingyu2, MA Jinghong2, LI Ruifeng1,2
(1College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China;2Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China)
Abstract:The 13X/activated carbon composite was treated by 0.2 g·ml?1glucose solution for carbon deposition. The effect of deposition times on the pore structure, surface properties and separation performance of CH4/N2were studied. The crystalline, pore structure and surface properties of the samples were investigated by X-ray diffraction (XRD), N2adsorption-desorption isotherms at 77 K, scanning electron microscopy (SEM), CO2-TPD and Fourier transform infrared spectrum (FT-IR). The adsorption isotherms of CH4and N2were tested at 298 K and 100 kPa,and compared with the adsorption separation properties of carbon materials and 13X zeolite reported in the literatures. The experimental results showed that the relative content of X zeolite, the micropore surface area and the micropore volume of AC/X-G were gradually decreased with the increase of deposition times. The surface of samples was covered by carbon membrane, which led to decrease of the alkaline functional groups but increase of containing C—O groups. The adsorption capacities of CH4and N2decreased, while the adsorption separation coefficient was improved. After third deposition, the adsorption separation coefficient of CH4/N2reached 3.0. The oxygen-containing functional groups on the surface of AC/X-G were beneficial to improve the separationperformance of CH4/N2.
Key words:adsorbent; glucose; carbon deposition; adsorption; separation
中圖分類號(hào):TQ 424
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0438—1157(2016)06—2386—07
DOI:10.11949/j.issn.0438-1157.20151606
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(51204120);山西省青年科技研究基金項(xiàng)目(2014021014-1);山西省自然科學(xué)基金項(xiàng)目(2012011005-6);山西省煤基重點(diǎn)科技攻關(guān)項(xiàng)目(FT201402-03)。
Corresponding author:CHENG Wenping, chengwenping@tyut.edu.cn