朱進(jìn)容,代金梅,程曉敏,張金業(yè),成純富(武漢理工大學(xué)材料科學(xué)與工程學(xué)院,湖北 武漢 430070;湖北工業(yè)大學(xué)太陽能高效利用湖北省協(xié)同創(chuàng)新中心,湖北 武漢 430068)
?
基于全息術(shù)的水平偏置橢圓管自然對流換熱
朱進(jìn)容1,2,代金梅2,程曉敏1,張金業(yè)2,成純富2
(1武漢理工大學(xué)材料科學(xué)與工程學(xué)院,湖北 武漢 430070;2湖北工業(yè)大學(xué)太陽能高效利用湖北省協(xié)同創(chuàng)新中心,湖北 武漢 430068)
摘要:采用全息術(shù)實(shí)驗(yàn)研究水平偏置橢圓管層流自然對流換熱,分析了長軸從水平方向到豎直方向不同角度的換熱規(guī)律,記錄了無限大空間水平橢圓管偏置角為0°~90°的干涉圖,通過反演橢圓管周圍的溫度場得到了橢圓管表面的局部和平均Nusselt數(shù)。實(shí)驗(yàn)結(jié)果表明,長軸從水平位置偏置到豎直位置時(shí),換熱逐漸增強(qiáng);長軸位于水平位置和豎直位置時(shí),換熱最小值均位于橢圓管上方,最大值則位于橢圓管長軸附近。研究結(jié)果與文獻(xiàn)中已有的數(shù)值和實(shí)驗(yàn)結(jié)果吻合較好,可為今后熱管換熱器的設(shè)計(jì)提供優(yōu)化方向,也可為工程應(yīng)用提供檢測方法。
關(guān)鍵詞:層流;自然對流;換熱;橢圓管;全息干涉
2015-08-21收到初稿,2015-12-15收到修改稿。
聯(lián)系人及第一作者:朱進(jìn)容(1978—),女,博士研究生。
Received date: 2015-08-21.
Foundation item: supported by the Research Project of Hubei Provincial Department of Education (Q20151409) and the Open Foundation of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy (HBSKFZD2014015).
自然對流換熱常見于太陽能空氣加熱系統(tǒng)、非能動余熱排出換熱器、電站空冷器等領(lǐng)域。由于管狀器件廣泛應(yīng)用于各種工業(yè)設(shè)備中[1],圓管的自然對流換熱一直是廣大學(xué)者的研究熱點(diǎn)[2-4]。橢圓管比圓管的換熱面積或周長大,可有效減少流動阻力,強(qiáng)化換熱。Memory等[5]研究發(fā)現(xiàn)橢圓管換熱的傳熱系數(shù)比圓管高11%。Badr[6]對不同長短軸比和偏轉(zhuǎn)角的橢圓管自然對流換熱進(jìn)行了數(shù)值研究。Mahfouz等[7]對長軸水平的橢圓管層流自然對流換熱進(jìn)行了數(shù)值研究。Corcione等[8]通過SIMPLE算法得到了不同形狀的偏置橢圓管層流自然對流換熱規(guī)律。文獻(xiàn)[9]對有限空間內(nèi)橢圓管層流自然對流和混合對流換熱進(jìn)行了數(shù)值求解,考慮了橢圓管的形狀和偏轉(zhuǎn)角對換熱的影響。由于圓管或橢圓管上方存在著不斷上升的羽狀煙柱區(qū),而這一煙柱區(qū)并不符合邊界層假設(shè),以致造成各種近似求解方法之間的差異。
實(shí)驗(yàn)方法中主要包括熱電偶測試和激光干涉法。Elsayed等[10]在偏置橢圓管周圍均勻布置8個(gè)熱電偶,研究指出橢圓管長軸豎直時(shí)Nuave最大。Demir[11]利用熱電偶測得水平圓管壁面溫度,進(jìn)而獲得其換熱。熱電偶只能進(jìn)行點(diǎn)對點(diǎn)的測量,所得信息量偏少,還會干擾實(shí)際的換熱。激光干涉法由于具有非接觸測量、精度高、獲得信息量大等優(yōu)點(diǎn)而大量應(yīng)用于應(yīng)變傳感、燃燒診斷、傳熱傳質(zhì)分析等領(lǐng)域[12-14]。橫向剪切干涉儀光學(xué)元件少、可實(shí)時(shí)測量、抗干擾能力強(qiáng),但是當(dāng)剪切量小于待測波面尺寸時(shí)還原待測波面必須采取迭代算法[15]。大剪切量時(shí),條紋簡單,數(shù)據(jù)處理仍需記錄無待測對象的干涉圖[16]。文獻(xiàn)[17-18]將橫向大剪切干涉擴(kuò)展到了水平圓管自然對流換熱。Mach-Zehnder干涉儀和全息干涉儀由于能產(chǎn)生無限寬干涉條紋而得到大量應(yīng)用。Ashjaee等[19-20]利用Mach-Zehnder干涉儀研究了不同橢圓管以及長軸豎直的橢圓管系列的自然對流換熱。全息術(shù)的抗擾性能優(yōu)于Mach-Zehnder干涉儀,放寬了對光學(xué)元件質(zhì)量的限制,條紋處理也簡單[14]。Chen等[21]采用全息術(shù)研究了圓管和橢圓管的換熱。
本工作利用激光全息術(shù)研究水平橢圓管不同偏轉(zhuǎn)角的自然對流換熱。反演干涉條紋,獲得了溫度場。計(jì)算局部和平均Nusselt數(shù),并與見諸文獻(xiàn)的各種結(jié)果比較,以期為換熱器的優(yōu)化提供指導(dǎo)。
若定義條紋為π rad/級,根據(jù)氣體的狀態(tài)方程和Gladstone-Dale關(guān)系式[18]可計(jì)算出待測熱力學(xué)溫度[14]
式中,Tref為環(huán)境溫度;ε為條紋位移量;λ為激光波長;R為氣體常數(shù);K為G-D常數(shù),取決于氣體的種類和波長;L為橢圓管長度;M為空氣摩爾質(zhì)量;p為環(huán)境壓力。參數(shù)的值如下:Tref=295.25 K;λ=632.8 nm;R=8.3143 J·mol-1·K-1;K=2.26×10-4m3·kg-1;M=28.97×10-3kg·mol-1;p=1.013×105Pa。
全息干涉的實(shí)驗(yàn)裝置如圖1(a)所示,整個(gè)裝置位于光學(xué)防震平臺上,通過5個(gè)全反射鏡M1、M2、M3、M4和M5改變光路。光源為20 mW的He-Ne激光器,通過分光器后成為參考光和物光,經(jīng)擴(kuò)束準(zhǔn)直系統(tǒng)后成為口徑100 mm的平面波,最后共同作用于全息板。采用二次曝光法記錄橢圓管加熱前后的干涉圖。將顯影定影后的全息板復(fù)位,遮擋物光,經(jīng)參考光再現(xiàn),即可觀測到干涉條紋。干涉圖經(jīng)透鏡后由CCD采集,存儲于PC端。測試段為圖1(b)所示橢圓管,長L=50 mm,長軸a=36 mm,短軸b=24 mm (b/a=0.67)。水平狀態(tài)φ=0°,豎直狀態(tài)φ=90°,偏置0°<φ<90°。在橢圓管上均勻布置4個(gè)熱電偶監(jiān)控壁面溫度。用熱水加熱橢圓管,水溫由恒溫器調(diào)節(jié)。熱水流速很高,使得管子進(jìn)出口的溫差極小,故視為恒壁溫。
圖1 實(shí)驗(yàn)裝置Fig.1 Experimental setup
圖2 不同偏轉(zhuǎn)角的干涉圖Fig.2 Interferograms of elliptic tube with different inclination angles
壁溫Ts=335.15 K的橢圓管長軸由水平偏轉(zhuǎn)為豎直的干涉圖如圖2所示,條紋表示等溫線。干涉圖均為0~255等級的灰度圖,分辨率為39.58 pix·mm-1。圖2(b)給出了所采取的極坐標(biāo),橢圓管中心為原點(diǎn)o(1175,1100)。其中θ為極角,以豎直向下方向記為0°。條紋分布并不均勻,壁面附近十分密集,遠(yuǎn)離壁面處為對應(yīng)環(huán)境區(qū)的無限寬亮條紋。在橢圓管上方存在條紋間距較大的羽狀煙柱區(qū)。隨著偏轉(zhuǎn)角的變化,羽狀煙柱區(qū)的位置發(fā)生移動。以φ=30°為例,圖2(b)給出了條紋位移量判讀結(jié)果。通過Matlab編程提取灰度分布,灰度極大(小)值點(diǎn)即為亮(暗)條紋中心。將識別點(diǎn)與原干涉條紋中心準(zhǔn)確對應(yīng)后,圖2(b)在θ=0°時(shí)沿徑向的灰度及ε分布如圖3所示。其中r為極半徑,其值為像素坐標(biāo)值。由式(1)知環(huán)境區(qū)域的條紋位移量ε=0;溫度越高,條紋位移量越小。故從管壁向外延伸,ε逐漸增大。
圖3 圖2(b)中θ=0°沿徑向的灰度和ε分布Fig.3 Distrutions of grayscale and ε distributions at angle of 0° in Fig. 2(b)
圖4 圖2(b)橢圓管周圍溫度場Fig.4 Temperature distribution around elliptic tube in Fig. 2(b)
圖4為圖2(b)反演的溫度場。由圖可見,曲線分為組1(θ=45°,90°,225°,270°)和組2(θ=0°,135°,180°,315°),分別對應(yīng)橢圓管長軸和短軸附近。90°和135°之間正好是羽狀煙柱區(qū),受其影響,這兩個(gè)極角處的溫度曲線不同于其他曲線。每一條曲線都隨r增大而減小,間距也越來越大。受橢圓管形狀影響,等溫線不再類似于同心圓,故溫度曲線有交叉。
由式(1)可知,條紋位移量ε到溫度場T的誤差傳遞公式為
ε直接從干涉條紋圖中得到,其理論最大誤差為0.5。溫度值為335.15 K時(shí),由ε引發(fā)的反演誤差為4.47 K。同時(shí)在干涉條紋的定級過程中僅需識別明、暗條紋的中心線,而不再識別過渡區(qū)域。所以ε的實(shí)際誤差可以控制在0.1級。
在流體的換熱分析中,局部換熱的傳熱系數(shù)hθ、局部Nusselt數(shù)Nuloc和平均Nusselt數(shù)Nuave分別定義為
由于水平偏置橢圓管和豎直偏置橢圓管溫度場的對稱性,只提取右側(cè)的數(shù)據(jù)。根據(jù)壁溫得到Raa=104,以長軸為特征尺寸獲得的Nuloc如圖5所示,兩種偏置的結(jié)果相差很大。與文獻(xiàn)[8]和[9]的數(shù)值結(jié)果相比,實(shí)驗(yàn)曲線均位于兩者的上方,平均誤差為3.98%;對于水平偏置橢圓管和豎直偏置橢圓管,誤差在1.52%以內(nèi)。在180°時(shí)Nuloc均為最小值,峰值15.35和12.58分別位于90°和0°,均對應(yīng)長軸所在的位置,最大值與最小值之差分別為11.99和10.15。橢圓管換熱曲線的非線性極其明顯,水平偏置φ=0°的曲線分為2段,豎直偏置φ=90°的曲線則分為較為平滑的3段。
圖5 φ=0°和90°時(shí)橢圓管的Nuloc分布Fig.5 Nulocdistribution of elliptic tube at φ=0°and 90°
由于橢圓管周長涉及到非初等的橢圓積分,沒有精確計(jì)算公式。將橢圓管長軸、橢圓管短軸、文獻(xiàn)[9]和文獻(xiàn)[22]推薦的當(dāng)量直徑公式分別作為特征尺寸,在不同偏轉(zhuǎn)角時(shí)的Nuave如圖6所示。由圖可知,特征尺寸不同,結(jié)果也不同。式(5)指出Nuave之比等于特征尺寸之比,故繪制出的曲線相互平行。文獻(xiàn)[9]和[22]計(jì)算得到的當(dāng)量直徑分別為28.24 mm和28.51 mm,故Nuave曲線幾乎重合。橢圓管從水平狀態(tài)偏轉(zhuǎn)到豎直狀態(tài),Nuave逐漸單調(diào)遞增,偏轉(zhuǎn)角為90°時(shí)Nuave最大,偏轉(zhuǎn)角為0°時(shí)Nuave最小。這種趨勢與文獻(xiàn)[8]和[9]一致。因此,優(yōu)化橢圓管偏轉(zhuǎn)位置可實(shí)現(xiàn)強(qiáng)化換熱。
圖6 不同特征尺寸的Nuave隨偏轉(zhuǎn)角的變化Fig.6 Variation of Nuaveof different characteristic lengths with different inclination angles
(1)雙曝光全息術(shù)可多次記錄,根據(jù)一張干涉圖即可快速反演待測溫度場,條紋處理簡單。配合Matlab程序,大大增強(qiáng)了條紋判讀的可操作性和準(zhǔn)確性。
(2)橢圓管的偏置影響局部換熱的峰值點(diǎn)。偏轉(zhuǎn)角增加,Nuave增大。豎直偏置時(shí)Nuave最大,水平偏置時(shí)Nuave最小。特征尺寸的標(biāo)準(zhǔn)不同,換熱數(shù)據(jù)也不同。
(3)雙曝光全息術(shù)得到的水平橢圓管的自然對流換熱與已有的實(shí)驗(yàn)和數(shù)值結(jié)果一致。結(jié)合高分辨率的照相和圖像處理,該技術(shù)可擴(kuò)展到高溫和其他形狀換熱器的換熱研究中。設(shè)計(jì)橢圓管換熱器,須考慮其形狀和偏轉(zhuǎn)位置。
符號說明
a——橢圓管長軸,m
b——橢圓管短軸,m
D——當(dāng)量直徑,D=4×橫截面積/周長,m
K ——G-D常數(shù),m3·kg-1
L ——橢圓管長度,m
l ——特征尺寸,m
M ——空氣摩爾質(zhì)量,kg·mol-1
Nu ——Nusselt數(shù)
p ——環(huán)境壓力,Pa
R ——?dú)怏w常數(shù),J·mol-1·K-1
r ——極半徑,pix
Ra ——Rayleigh數(shù)
T ——溫度,K
ε ——條紋位移量
θ ——極角,(°)
φ ——偏轉(zhuǎn)角,(°)
下角標(biāo)
ave ——平均
loc ——局部
ref ——環(huán)境
s ——壁面
References
[1] 明廷臻,黨艷輝,劉偉,等. 橢圓管矩形翅片空冷器流體流動與傳熱特性數(shù)值分析 [J]. 化工學(xué)報(bào),2009,60(6): 1380-1384. MING T Z,DANG Y H,LIU W,et al. Numerical analysis of fluid flow and heat transfer characteristics of elliptic tube with rectangular fins of air cooler [J]. CIESC Journal,2009,60(6): 1380-1384.
[2] WU J M,TAO W Q. Numerical computation of laminar natural convection heat transfer around a horizontal compound tube with external longitudinal fins [J]. Heat Transfer Engineering,2007,28 (2): 93-102. DOI: 10.1080/01457630601023294.
[3] ASHJAEE M,BIGHAM S,YAZDANI S. A numerical study on natural convection heat transfer from a horizontal isothermal cylinder located underneath an adiabatic ceiling [J]. Heat Transfer Engineering,2014,35(10): 953-962. DOI: 10.1080/01457632. 2014.859878.
[4] SEBASTIAN G,SHINE S R. Natural convection from horizontal heated cylinder with and without horizontal confinement [J]. International Journal of Heat and Mass Transfer,2015,82: 325-334. DOI: 10.1016/j.ijheatmasstransfer.2014.11.063.
[5] MEMORY S B,ADAMS V H,MARTO P J. Free and forced convection laminar film condensation on horizontal elliptical tubes [J]. International Journal of Heat and Mass Transfer,1997,40(14): 3395-3406. DOI: 10.1016/S0017-9310(96)00374-2.
[6] BADR H M. Laminar natural convection from an elliptic tube with different orientations [J]. Journal of Heat Transfer,1997,119(4): 709-718. DOI: 10.1115/1.2824175.
[7] MAHFOUZ F M,KOCABIYIK S. Transient numerical simulation of buoyancy driven flow adjacent to an elliptic tube [J]. International Journal of Heat and Fluid Flow,2003,24(6): 864-873. DOI: 10.1016/S0142-727X(03)00091-2.
[8] CORCIONE M,HABIB E. Multi-Prandtl correlating equations for free convection heat transfer from a horizontal tube of elliptic cross-section [J]. International Journal of Heat and Mass Transfer,2009,52(5/6): 1353-1364. DOI:10.1016/j.ijheatmasstransfer. 2008.07.049.
[9] LIAO C C,LIN C A. Influences of a confined elliptic cylinder at different aspect ratios and inclinations on the laminar natural and mixed convection flows [J]. International Journal of Heat and Mass Transfer,2012,55(23/24): 6638-6650. DOI: 10.1016/j. ijheatmasstransfer. 2012.06.073.
[10] ELSAYED A O,IBRAHIM E Z,ELSAYED S A. Free convection from a constant heat flux elliptic tube [J]. Energy Conversion and Management,2003,44(15): 2445-2453. DOI: 10.1016/S0196-8904(03)00002-5.
[11] DEMIR H. Experimental and numerical studies of natural convection from horizontal concrete cylinder heated with a cylindrical heat source [J]. International Communications in Heat and Mass Transfer,2010,37(4): 422-429. DOI: 10.1016/j.icheatmasstransfer. 2009.11.010.
[12] MAUGER C,MEES L,MICHARD M,et al. Shadowgraph,schlieren and interferometry in a 2D cavitating channel flow [J]. Experiments in Fluids,2012,53(6): 1895-1913. DOI: 10.1007/s00348-012-1404-3.
[13] AHADI A,SAGHIR M Z. An extensive heat transfer analysis using Mach Zehnder interferometry during thermodiffusion experiment on board the International Space Station [J]. Applied Thermal Engineering,2014,62(2): 351-364. DOI: 10.1016/j.applthermaleng. 2013.09.048.
[14] NAYLOR D. Recent developments in the measurement of convective heat transfer rates by laser interferometry [J]. International Journal of Heat and Fluid Flow,2003,24(3): 345-355. DOI: 10.1016/S0142-727X(03)00021-3.
[15] SINGH P,F(xiàn)ARIDI M S,SHAKHER C. Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique [J]. Optical Engineering,2004,43(2): 387-392. DOI: 10.1117/1.1635370.
[16] LV W,ZHOU H C,ZHU J R. Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame [J]. Applied Optics,2011,50(21): 3924-3936. DOI: 10.1364/AO.50.003924.
[17] 朱進(jìn)容,呂偉,周懷春. 橫向大剪切干涉應(yīng)用于水平圓管自然對流換熱 [J]. 化工學(xué)報(bào),2012,63(10): 3034-3039. DOI: 10.3969/j.issn.0438-1157.2012.10.004. ZHU J R,Lü W,ZHOU H C. Natural convection heat transfer of horizontal cylinder with lateral shearing interferometry [J]. CIESC Journal,2012,63(10): 3034-3039. DOI: 10.3969/j.issn.0438-1157. 2012.10.004.
[18] ZHU J R,DAI J M,CHENG X M,et al. Temperature measurement of a horizontal cylinder in natural convection using a lateral shearing interferometer with a large shear amount [J]. Optical Engineering,2015,54(3): 034109-1-034109-8. DOI: 10.1117/1.OE.54.3.034109.
[19] ASHJAEE M,AMIRI M,Baghapour B,et al. An empirical correlation for natural convection from confined elliptic cylinder [J]. Experimental Heat Transfer,2007,20(3): 213-228. DOI: 10.1080/08916150701229675.
[20] YOUSEFIA T,ASHJAEE M. Experimental study of natural convection heat transfer from vertical array of isothermal horizontal elliptic cylinders [J]. Experimental Thermal and Fluid Science,2007,32(1): 240-248. DOI: 10.1016/j.expthermflusci.2007.04.001.
[21] CHEN Y M,WANG K C. Numerical and experimental studies on natural convection from a horizontal elliptic cylinder [J]. Journal of the Chinese Institute of Chemical Engineers,1996,27(5): 353-362.
[22] HUANG S Y,MAYINGER F. Heat transfer with natural convection around elliptic tubes [J]. Warme-Und Stoffubertragung,1984,18: 175-183.
Natural convection heat transfer from horizontal offset elliptic tube based on holographic interferometry
ZHU Jinrong1,2,DAI Jinmei2,CHENG Xiaomin1,ZHANG Jinye2,CHENG Chunfu2
(1School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,Hubei,China;2Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy,Hubei University of Technology,Wuhan 430068,Hubei,China)
Abstract:Natural convection heat transfer from a horizontal offset elliptic tube is experimentally investigated using holographic interferometry. The effect of the ellipse major axis from horizontal to vertical direction on heat transfer is analyzed. Interferometric fringes of the tube in infinite space at different inclination angles 0°—90° are recorded. The local and average Nusselt numbers are determined according to the reconstruction of the temperature field around the tube. The experimental results indicate that the heat transfer increases with the ellipse major axis inclined from horizontal to vertical direction. The local Nusselt numbers above the tube is the minimum and the maximum is located near the major axis when the direction of the major axis are horizontal and vertical. The results obtained in this investigation show good agreement with the existing experimental and numerical studies,which can contribute to the optimal design of heat exchanger and also provide a test method for engineering applications.
Key words:laminar flow; natural convection; heat transfer; elliptic tube; holographic interferometry
DOI:10.11949/j.issn.0438-1157.20151327
中圖分類號:TK 311; TK 124; TH 744
文獻(xiàn)標(biāo)志碼:A
文章編號:0438—1157(2016)04—1145—05
基金項(xiàng)目:湖北省教育廳科學(xué)技術(shù)研究計(jì)劃項(xiàng)目(Q20151409);太陽能高效利用湖北省協(xié)同創(chuàng)新中心開放基金重點(diǎn)項(xiàng)目(HBSKFZD2014015)。
Corresponding author:ZHU Jinrong,jinrzhu@sina.com